簡易檢索 / 詳目顯示

研究生: Rui Li Ya
Amaliya - Rasyida
論文名稱: PBAT 奈米複合材料之製備及其在醫療與產業應用之評估
Preparation and Characterization of Poly(butylene adipate-co-terephthalate) (PBAT) based Nanocomposites for Medical and Industrial applications
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 芮祥鵬
S.P.Rwei
游進陽
Chin-Yang Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 108
中文關鍵詞: PBAT奈米粒子奈米複合材料生物材料
外文關鍵詞: PBAT, nanocomposites, nanoclays, biomaterials.
相關次數: 點閱:259下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文將聚(丁二醇己二酸-共-對苯二甲酸乙二醇酯)(PBAT)以熔融法混摻改質和未改質的蒙脫土(MMT)、改質和未改質含氟鋰蒙脫土(fluorohectorite)或海泡石而成比例為5%與10%之奈米複合材料。本文著重於探討不同改質方法之奈米粒子在聚合物奈米複合材料結構以及不同粘土類型和負載的影響的效果進行了研究,並評估其在工業和醫療之應用。
    所得之奈米複合材料以XRD,SEM和TEM觀察粘土分散之程度與情形。其熱性質則以差示掃描量熱(DSC),熱重分析(TGA)和動態熱機械分析儀(DMTA)測定之。另以接觸角測量試樣之親疏水性,以表面硬度和擠壓力學試驗測試材料的機械性能。並進行體外生物相容性試驗(蛋白吸附,血液相容性和細胞增殖試驗)測試材料之生物相互作用以應用於醫療上。
    實驗結果顯示黏土與PBAT基質的插層度與PBAT隨化學親和性而增高。奈米複合材料的力學性能隨粘土含量而增加,但對其生物相容性無顯著影響。有機改質劑與PBAT基質的化學親和力會影響PBAT的熱機械性能。結果發現,PBAT/海泡石複合材料具有最佳熱機械和物理性能。與其他層狀矽酸鹽奈米複合材料相比,在廣溫度範圍中海泡石對熱機械性能的改進最佳,使得海泡石奈米顆粒極適用於醫療和工業應用環境(如包裝),甚至無需使用任何有機改質劑或用相容劑,即可高度分散於PBAT中。
    總而言之,這些奈米顆粒在工業和醫療應用上,與PBAT的奈米複合材料最有應用性,係由於其可增進原始PBAT之物理和機械性能,且具有生物相容性及對環境極安全。


    Poly (butylene adipate-co-terephthalate) (PBAT) nanocomposites were prepared by melt blending 5% and 10% of modified and unmodified montmorillonites (MMT), modified and unmodified fluorohectorites, and sepiolite. Since only few researchers reported about the possibility to use PBAT nanocomposites, the effect of a different organic modifier structure in nanoparticles on polymer nanocomposites as well as the effect of different clay type and loading were studied in this work in order to evaluate their possible application for both industrial and medical applications.
    Some morphological analyses (XRD, SEM, and TEM) were performed to observe the clays dispersion and distribution level. Thermal studies were employed for nanocomposite characterization including differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA) and dynamic mechanical thermal analysis (DMTA). For investigating the specimen wettability, contact angle measurements were carried out. Surface hardness and compression-mechanical tests were conducted to inquire the mechanical properties of the final materials. In vitro biocompatibility tests (protein adsorption, hemocompatibility and cell proliferation tests) were performed to study the biological interactions of the final specimens for medical applications.
    All nanocomposites showed a good level of clay intercalation into PBAT, especially those systems with a higher clay chemical affinity with the polymer matrix. Increases in the amount of clays in the polymer matrix brought increases in the mechanical properties of nanocomposites without significant changes in their biocompatibility level. The presence of different organic modifier in layered silicate nanocomposites gave different effect on the thermal-mechanical properties of PBAT, depending on their chemical affinity with the polymer matrix.
    It was found that sepiolite based nanocomposites showed best thermo-mechanical and physical properties among all the nanocomposites studied here. They showed higher thermo-mechanical improvements, in a wide range of temperature, as compared to the studied layered silicates nanocomposites, make these sepiolite nanoparticles the materials with the highest potential to be used for medical and/or for numerous environmental industrial applications (such as packaging), even without the need to use any kind of organic modifierand/or compatibiliser to obtain its very good dispersion within PBAT.
    In general, all these new materials studied here, especially those based on 10% clay could be very interesting for industrial and medical applications due to their considerable improved physical and mechanical properties as compare to the pristine polymer, and to their environmental safety and biocompatible properties.

    Table1. Selected nanomaterials and their biomedical applications, taken from [16]…………….… 10 Table2. Classification of nanoparticles, taken from [27]………….…………………………...…… 16 Table3. Chemical formula and characteristic parameter of commonly used 2:1 phyllosilicates, taken from [32]………………………………………………………………………………………..…… 18 Table4. Characteristic of nanoparticles used in this work…………………………………….……. 29 Table5. Interlayer d-spacing and 2θ obtained from WAXS…….………………………..………… 41 Table6. Contact angle measurements for PBAT/nanocomposites based on 5% cl…………...……. 45 Table7. DSC data on PBAT and PBAT based nanocomposites obtained from cooling and second heating……………………………………………………………………………………………..... 47 Table8.TGA mass loss curves for PBAT based nanocomposites under air…………...…………… 48 Table9. Hardness value in A shore for PBAT and nanocomposites……………………………..… 48 Table10. Compression test result for pristine PBAT and its nanocomposites………………...…… 50 Table11. Storage modulus (E′) and Tan Delta of PBAT and PBAT based nanocomposites at different temperatures……………………………………………………………………………..... 52 Table12. Contact angle measurements of PBAT and its nanocomposites with 5 and 10% clay loading………………………………………………………………………………………………. 69 Table13. DSC data on PBAT and nanocomposites obtained by cooling and second heating scans… 73 Table14. TGA data on pristine PBAT and nanocomposites………………………………………… 75 Table15. Hardness measurements for pristine PBAT and its nanocomposites, increases calculated with respect to neat of PBAT…………………………………………………….…………………..….… 76 Table16. Compression test results for pristine PBAT and nanocomposites…………………………. 78 Table17. Storage modulus (E′) and Tan Delta of PBAT and PBAT based nanocomposites at different temperature ranges…………………………………………………………………………………… 84 Table18. Comparison of CBC test on neat PBAT and nanocomposites……………………………... 93

    Chapter 2

    [1] Langer R VJ. Tissue engineering. Science. 1993;260:920-6.
    [2] Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polymer Degradation and Stability. 2010;95:2126-46.
    [3] Schacht E. Biodegradable polymers for biomedical application. European Cells and Materials. 2003 5:58.
    [4] Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science. 2007;32:762-98.
    [5] M Navarro AM, O Castano and J.A Planell. Biomaterials in orthopaedics. Journal of the royal society interface. 2008;5 1137-58.
    [6] Averous L. Biodegradable multiphase systems based on plasticized starch: A review. Journal of macromolecular science. 2004;C44:231-74.
    [7] M.Stevens M. Biomaterials for bone tissue engineering. Materials today2008.
    [8] L.L.Hench. Biomaterials science 1980;208:826-31.
    [9] Shin H JS, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353-64.
    [10] Wen X TP. Fabrication and characterization of permeable degradable poly(DL-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract gidance channels. Biomaterials. 2006;27:3800-9.
    [11] Koegler WS GL. Osteoblast response to PLGA tissue engineering scaffolds with PEO modified surface chemistries and demonstration of patterned cell response. Biomaterials. 2004;25:2819-30.
    [12] Jin CY ZB, Wang XF, Lu QH. Cytotoxicity of titanium dioxide nanoparticles in mouse fibroblast cells. Chemical Research in Toxicology. 2008;9:1871-7.
    [13] Metzler V BH, Lehmann T, Mottaghy K, Spitzer K. A novel method for quantifying shape deformation applied to biocompatibility testing. ASAIO Journal. 1999;45:264-71.
    [14] Ciccone WJ 2nd MC, Bentley C, Tasto JP. Bioabsorable implants in orthopaedic: new developments and clinical applications. Journal of the American Academy of orthopaedic surgeon. 2001;9:280-8.
    [15] Guarino V CF, Ambrosio L. Bioactive scaffolds for bone and ligament tissue. Expert review medical devices. 2007;4:405-18.
    [16] Liu H, Webster TJ. Nanomedicine for implants: A review of studies and necessary experimental tools. Biomaterials. 2007;28:354-69.
    [17] Park GE pM, Park K, Webster TJ. Accelerated chondrocyte functions on NaOH-treated PLGA scaffolds. Biomaterials. 2005;26(16):3075-82.
    [18] Michiko Sato TJW. Nanobiotechnology: implications for future of nanotechnology in orthopedic. Expert Review Medical Devices. 2004;1:105-14.
    [19] Carretero MI, Gomes CSF, Tateo F. Chapter 11.5 Clays and Human Health. In: Faiza Bergaya BKGT, Gerhard L, editors. Developments in Clay Science: Elsevier; 2006. p. 717-41.
    [20] Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: Possibilities and limitations. Applied Clay Science. 2007;36:22-36.
    [21] Anne B. Environmental-friendly biodegradable polymers anc composites. Environmental-friendly biodegradable polymers and composites.
    [22] M.Kolybaba LGt, s. Panigrahi, W.J. Crear, T. Powell,B.Wang. Biodegradable polymers: past, present, and future. The society for engineering in agricultural, food, and biological systems. 2003.

    chapter 4.1

    [1] Sinha Ray S, Bousmina M. Biodegradable polymers and their layered silicate nanocomposites: In greening the 21st century materials world. Progress in Materials Science. 2005;50:962-1079.
    [2] Utracki LA, Sepehr M, Boccaleri E. Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies. 2007;18:1-37.
    [3] Chivrac F, ric, Kadlecov, Zuzana, Pollet E, Av, et al. Aromatic Copolyester-based Nano-biocomposites: Elaboration, Structural Characterization and Properties. Journal of Polymers and the Environment. 2006;14:393-401.
    [4] Chen J-H, Chen C-C, Yang M-C. Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay. Journal of Polymer Research. 2011;18:2151-9.
    [5] Mohanty S, Nayak S. Starch based biodegradable PBAT nanocomposites: Effect of starch modification on mechanical, thermal, morphological and biodegradability behavior. International Journal of Plastics Technology. 2009;13:163-85.
    [6] Kumar P, Sandeep KP, Alavi S, Truong VD, Gorga RE. Effect of Type and Content of Modified Montmorillonite on the Structure and Properties of Bio-Nanocomposite Films Based on Soy Protein Isolate and Montmorillonite. Journal of Food Science. 2010;75:N46-N56.
    [7] Mohanty S, Nayak S. Biodegradable nanocomposites of poly (butylene adipate-co-terephthalate) (PBAT) with organically modified nanoclays. International Journal of Plastics Technology. 2010;14:192-212.
    [8] Alexandre B, Langevin D, Mederic P, Aubry T, Couderc H, Nguyen QT, et al. Water barrier properties of polyamide 12/montmorillonite nanocomposite membranes: Structure and volume fraction effects. Journal of Membrane Science. 2009;328:186-204.
    [9] Anadao P, Sato LF, Wiebeck H, Valenzuela-Diaz FR. Montmorillonite as a component of polysulfone nanocomposite membranes. Applied Clay Science. 2010;48:127-32.
    [10] Yang F, Qiu Z. Preparation, crystallization, and properties of biodegradable poly(butylene adipate-co-terephthalate)/organomodified montmorillonite nanocomposites. Journal of Applied Polymer Science. 2011;119:1426-34.
    [11] Goiato MC, Pesqueira AA, Santos DMd, Dekon SFdC. Evaluation of hardness and surface roughness of two maxillofacial silicones following disinfection. Brazilian Oral Research. 2009;23:49-53.
    [12] Avinash Ambre RJ, and badal dewangan. ABS Nanocomposites containing modified clay. Reinforced Plastic and Composite. 2009;28:343.
    [13] Varghese S, Karger-Kocsis J, Gatos KG. Melt compounded epoxidized natural rubber/layered silicate nanocomposites: structure-properties relationships. Polymer. 2003;44:3977-83.
    [14] Kyongbum Lee DK, Christian Chan. Tissue Engineering I: Scaffold Systems for Tissue Engineering. Berlin Heidelberg: Springer-Verlag 2006.
    [15] Peter C. LeBaron ZW, Thomas J. Pinnavaia. Polymer layered silicate nanocomposites: an overview. Applied Clay Science. 1999;15:11-29.
    [16] Tsai J-L, Kuo J-C, Hsu S-M. Organoclay effect on transverse compressive strength of glass/epoxy nanocomposites. Journal of Materials Science. 2006;41:7406-12.
    [17] Yasmin A, Luo JJ, Abot JL, Daniel IM. Mechanical and thermal behavior of clay/epoxy nanocomposites. Composites Science and Technology. 2006;66:2415-22.
    [18] Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science. 2003;28:1539-641.
    [19] Manchado MAL, Valentini L, Biagiotti J, Kenny JM. Thermal and mechanical properties of single-walled carbon nanotubes-polypropylene composites prepared by melt processing. Carbon. 2005;43:1499-505.
    [20] Kornmann X, Berglund LA, Thomann R, Mulhaupt R, Finter J. High performance epoxy-layered silicate nanocomposites. Polymer Engineering and Science. 2002;42:1815-26.

    chapter 4.2

    [1] Chivrac F, ric, Kadlecov, Zuzana, Pollet E, Av, et al. Aromatic Copolyester-based Nano-biocomposites: Elaboration, Structural Characterization and Properties. Journal of Polymers and the Environment. 2006;14:393-401.
    [2] Mohanty S, Nayak S. Biodegradable nanocomposites of poly (butylene adipate-co-terephthalate) (PBAT) with organically modified nanoclays. International Journal of Plastics Technology. 2010;14:192-212.
    [3] Mittal V. Naocomposites with biodegradable polymers: oxford university press; 2011.
    [4] Utracki LA, Sepehr M, Boccaleri E. Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs). Polymers for Advanced Technologies. 2007;18:1-37.
    [5] Ammala A, Bell C, Dean K. Poly(ethylene terephthalate) clay nanocomposites: Improved dispersion based on an aqueous ionomer. Composites Science and Technology. 2008;68:1328-37.
    [6] Bilotti E, Zhang R, Deng H, Quero F, Fischer HR, Peijs T. Sepiolite needle-like clay for PA6 nanocomposites: An alternative to layered silicates? Composites Science and Technology. 2009;69:2587-95.
    [7] Dexter SC. Influence of substratum critical surface tension on bacterial adhesion—in Situ studies. Journal of Colloid and Interface Science. 1979;70:346-54.
    [8] FRE’DE’RIC CHIVRAC EP, LUC AVE’ROUS. Nonisothermal Crystallization Behavior of Poly(butylene adipate-co-terephthalate)/Clay Nano-biocomposites. Journal of Polymer Science: Part B: Polymer Physics. 2007;45: 1503–10
    [9] Fukushima K, Tabuani D, Camino G. Nanocomposites of PLA and PCL based on montmorillonite and sepiolite. Materials Science and Engineering: C. 2009;29:1433-41.
    [10] Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Progress in Polymer Science. 2003;28:1539-641.
    [11] Tsai J-L, Kuo J-C, Hsu S-M. Organoclay effect on transverse compressive strength of glass/epoxy nanocomposites. Journal of Materials Science. 2006;41:7406-12.
    [12] Kornmann X BL, Lindberg H. Stiffness improvements and molecular mobility in epoxy-clay nanocomposites. Mat Res Soc Symp. 2000;628:CC11.8.
    [13] Kornmann X, Thomann R, Mulhaupt R, Finter J, Berglund L. Synthesis of amine-cured, epoxy-layered silicate nanocomposites: The influence of the silicate surface modification on the properties. Journal of Applied Polymer Science. 2002;86:2643-52.
    [14] Yasmin A, Abot JL, Daniel IM. Processing of clay/epoxy nanocomposites by shear mixing. Scripta Materialia. 2003;49:81-6.
    [15] K.R. Ratinac RGG, L. Ye, A.S. Jones, and S.P.Ringer. 2006.
    [16] Marras SI, Tsimpliaraki A, Zuburtikudis I, Panayiotou C. Morphological, thermal, and mechanical characteristics of polymer/layered silicate nanocomposites: The role of filler modification level. Polymer Engineering & Science. 2009;49:1206-17.
    [17] Kornmann X, Berglund LA, Thomann R, Mulhaupt R, Finter J. High performance epoxy-layered silicate nanocomposites. Polymer Engineering and Science. 2002;42:1815-26.
    [18] Li L, Li CY, Ni C, Rong L, Hsiao B. Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer. 2007;48:3452-60.

    chapter 4.3

    [1] Kim JO, Park JK, Kim JH, Jin SG, Yong CS, Li DX, et al. Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone. International Journal of Pharmaceutics. 2008;359:79-86.
    [2] Barandeh F NP-L, Kumar R, Iacobucci GJ, Kuznicki ML, et al. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo. PLoS ONE. 2012;7(1):e29424.
    [3] FRE’DE’RIC CHIVRAC EP, LUC AVE’ROUS. Nonisothermal Crystallization Behavior of Poly(butylene adipate-co-terephthalate)/Clay Nano-biocomposites. Journal of Polymer Science: Part B: Polymer Physics. 2007;45: 1503–10
    [4] Farda Barandeh P-LN, Rajiv Kumar, Gary J. Iacobucci, Michelle L. Kuznicki,Andrew Kosterman, Earl J. Bergey., Paras N. Prasad, Shermali Gunawardena. Organically Modified Silica Nanoparticles Are Biocompatible and Can Be Targeted to Neurons In Vivo. PLoS ONE. 2012;7(1):e29424.
    [5] Yoshihiro Someya NK, Mitsuhiro Shibata. Biodegradation of Poly(butylene adipate-co-butylene terephthalate)/Layered-Silicate Nanocomposites. Journal of Applied Polymer Science,. 2007;106: 730–6.
    [6] Cerda-Cristerna BI, Cottin S, Flebus L, Pozos-Guillen A, Flores H, Heinen E, et al. Poly(2-dimethylamino ethylmethacrylate)-Based Polymers To Camouflage Red Blood Cell Antigens. Biomacromolecules. 2012;13:1172-80.
    [7] Fan H WL, Zhao K, Li N, Shi Z, Ge Z, Jin Z. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules. 2010;11(9):2345-51.
    [8] Metzler V, Bienert H, Lehmann T, Mottaghy K, Spitzer K. A novel method for quantifying shape deformation applied to biocompatibility testing. ASAIO Journal. 1999;45:264-71.

    chapter 4.4

    [1] Middleton JC TA. Synthetic biodegradable polymers as orthopedic devices. Biomaterials. 2000;23:2335-46.
    [2] W.S. Pietrzak DRS, B.S. Verstynen. Bioabsorbable polymer science for the practicing surgeon. Craniofaxial Surgery. 1997;2:87-91.
    [3] T. Kijchavengkul RA, M. Rubino, S. Selke, M. Ngouajio, R.T. Fernandez. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polymer Degradation and Stability. 2010;95:2641-7.
    [4] Fukushima K, Tabuani D, Dottori M, Armentano I, Kenny JM, Camino G. Effect of temperature and nanoparticle type on hydrolytic degradation of poly(lactic acid) nanocomposites. Polymer Degradation and Stability. 2011;96:2120-9.
    [5] Jarerat A, Pranamuda H, Tokiwa Y. Poly(L-lactide)-Degrading Activity in Various Actinomycetes. Macromolecular Bioscience. 2002;2:420-8.
    [6] Jarerat A, Tokiwa Y. Degradation of Poly(L-lactide) by a Fungus. Macromolecular Bioscience. 2001;1:136-40.
    [7] Torres A, Li SM, Roussos S, Vert M. Poly(lactic acid) degradation in soil or under controlled conditions. Journal of Applied Polymer Science. 1996;62:2295-302.
    [8] M.A. Paul CD, M. Alexandre, P. Degee, F. Monteverde, P. Dubois. Polylactide/montmorillonite nanocomposites: study of the hydrolytic degradation. Polymer degradation stability. 2005;87:535-42.
    [9] Mochizuki M, Hirami M. Structural Effects on the Biodegradation of Aliphatic Polyesters. Polymers for Advanced Technologies. 1997;8:203-9.
    [10] M. Hakkarainen SK, A. Albertsson. Influence of low molecular weight lactic acid derivatives on degradability of polylactide. Applied polymer science. 2000;76:228-39.
    [11] N. Hayase HY, E. Kudoh, C. Tsutsumi. Isolation and characterization of poly(butylene succinate-co-butylene adipate)-degrading microorganism. Bioscience Bioengineering. 2004;97:131-3.
    [12] Z. Gan KK, H. Abe, T. Iwata, Y. Doi. The role of polymorphic crystal structure and morphology in enzymatic degradation of melt-crystallized poly (butylene adipate) films. Polymer degradation stability. 2005;87:191-9.
    [13] Hakkarainen M. Aliphatic polyesters: abiotic and biotic degradation and degradation products. Advances in Polymer Science 2002;157:113–38.
    [14] Chen J-H, Chen C-C, Yang M-C. Characterization of Nanocomposites of Poly(butylene adipate-co-terephthalate) blending with Organoclay. Journal of Polymer Research. 2011;18:2151-9.
    [15] S. Sinha Ray KY, M. Okamoto, K. Ueda. New polylactide-layered silicate nanocomposites. 2. Concurrent improvements of material properties, biodegradability and melt rheology. polymer. 2003:857–66.
    [16] Q. Zhou MX. Nanoclay and crystallinity effects on the hydrolytic degradation of polylactides. Polymer degradation stability. 2008;93:1450-9.

    QR CODE