簡易檢索 / 詳目顯示

研究生: 趙奕晴
Yi-Ching Chao
論文名稱: 以自組裝單分子薄膜修飾雙極矩氧化鋅中間層應用於有機層疊式太陽能電池之研究
Self-assembled Monolayers Modified ambipolar Zinc Oxide Inter-Connecting Layer for Organic Tandem Solar Cell
指導教授: 何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
口試委員: 陳銘崇
Ming-Chung Chem
何郡軒
Jinn-Hsuan Ho
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 101
中文關鍵詞: 有機層疊式太陽能電池自組裝單分子薄膜氧化鋅奈米粒子噴霧裂解法偶極矩
外文關鍵詞: Organic Tandem solar cells, Self-assembled monolayer, ZnO NPs, Spray pyrolysis, dipole moment
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在利用以轉印法製備具雙極矩氧化鋅中間層應用於塊狀異質結構之層疊式有機太陽能電池(Organic bulk hetero-junction tandem solar cells),藉由具相反極性的自組裝單分子層薄膜修飾氧化鋅中間層之兩側表面,並探討氧化鋅中間層表面極性的強度及方向於層疊式有機太陽能電池中載子傳遞及再結合性質對於元件效率的影響。
    藉由氧化鋅奈米粒子(ZnO NPs)及霧化裂解法(SP-ZnO)製備之薄膜氧化鋅作為中間層基材,並成長具相反極性的自組裝單分子薄膜(Self-assembled monolayers, SAMs)於氧化鋅兩側表面,根據不同氧化鋅結構型態分析自組裝分子薄膜的成長方式及表面偶極矩的變化。本實驗使用具電洞傳導性質的自組裝單分子薄膜4-(trifluoromethyl)benzylphosphonic acid (CF3BPA)及相對應極性的自組裝單分子薄膜4-Methoxybenzoic acid (OCH3BA)於下電池/中間層及中間層/上電池介面之修飾。根據自組裝單分子薄膜的能帶改變,促使提升層疊式太陽能電池中間層載子的再結合率,進而提升元件整體效率。
    由相反極性的SAMs於SP-ZnO與ZnO NPs上作為層疊式有機太陽能電池之中間層,並利用轉印的方法製作中間層,使氧化鋅其具有雙極性特性。雙極性氧化鋅中間層能調整氧化鋅表面之功函數,進而促使電子電洞結合。因此,在元件效率上能有效提升Voc與FF。


    In this study, we utilize transfer-printing method for ambipolar ZnO film in inter-connecting layer of organic bulk hetero-junction tandem solar cells by modifying two sides of ZnO surface with opposite dipole. We study the dipole and direction of SAMs on ZnO surface, and also study for its effect to charge transport and recombination in the device performance of tandem solar cell.

    By utilizing intermediate layer (IML) with zinc oxide nanoparticles (ZnO NPs) and ZnO film by Spray methods (SP-ZnO), which passivated opposite dipole SAMs on both sides for P3HT-based homo-tandem polymer solar cell. Comparing the difference of SAMs on different structure of ZnO surface. For the charge recombination IML, the SAMs attach on ZnO surfaces cause an “ambipolar” property. We exploit 4-(trifluoromethyl)benzylphosphonic acid (CF3BPA) and 4-Methoxybenzoic acid (OCH3BA) for hole and electron injection, respectively. The ambipolar IML can adjust the surface work function, which align the energy level, further improve the charges recombination in the ZnO films then the fill factor enhanced. Furthermore, we use water transfer-printing approach for amibipolar IML and rear sub-cell to tandem polymer solar cell. With ambipolar IML, the open circuit voltage (Voc) of tandem polymer solar cell can reach almost twice higher than single solar cell.

    中文摘要 I Abstract III 目錄 VII 圖目錄 XI 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章 文獻回顧與理論 4 2-1 太陽能電池種類簡介 4 2-2-1 有機太陽能電池 5 2-2-2 有機太陽能電池結構之發展 7 2-2-3 有機太陽能電池之正式和反式結構 11 2-2 層疊式有機太陽能電池 13 2-2-1層疊式有機太陽能電池之中間層 15 2-3 氧化鋅 16 2-3-1氧化鋅之晶體結構 16 2-3-2氧化鋅之機械性質 17 2-3-3氧化鋅之光學性質 18 2-3-4氧化鋅薄膜成長方法 19 2-4 自組裝單分子薄膜 21 2-4-1 自組裝單分子薄膜在有機太陽能元件之應用 22 2-5 太陽光光譜分析 26 2-6太陽能電池工作原理與轉換效率 27 2-6-1基本工作原理 27 2-6-2太陽能電池之參數 30 2-7層疊式有機太陽能電池工作原理 32 第三章 實驗設備與方法 35 3-1 實驗藥品與耗材 35 3-2 實驗裝置 37 3-2-1手套箱系統 37 3-2-2 噴霧裂解系統 37 3-2-3蒸鍍機系統 37 3-3 分析儀器 38 3-3-1接觸角測量儀(Contact angle, CA) 38 3-3-2 X射線光電子能譜儀(XPS) 38 3-3-3 場發射掃瞄式電子顯微鏡 (FESEM) 38 3-3-4 原子力顯微鏡(AFM) 39 3-3-5 紫外-可見光譜儀(UV-Visible Spectrometer) 39 3-3-6 單點式功函數量測儀(KP) 39 3-3-7 Ultraviolet spectroscopy (UPS) 39 3-3-7 太陽光源模擬系統 39 3-4 實驗步驟 41 3-4-1 氧化鋅奈米粒子的製備 (ZnO NPs) 41 3-4-2 噴霧裂解之氧化鋅薄膜 (SP-ZnO) 41 3-4-3 自組裝單分子層薄膜的製備 41 3-4-4 太陽能電池元件製備 42 第四章 結果與討論 48 4-1氧化鋅奈米粒子及薄膜氧化鋅的性質分析 48 4-1-1氧化鋅中間層的表面型態分析及特性 48 4-2 以CF3BPA自組裝單分子薄膜修飾氧化鋅之電洞傳導中間層 55 4-2-1 SAM CF3BPA修飾氧化鋅之薄膜性質 55 4-2-2 SAM CF3BPA修飾ZnO NP應用於層疊式太陽能電池元件 58 4-2-3 SAM CF3BPA擴散於氧化鋅中間層之效應 59 4-2-4 SAM CF3BPA修飾SP-ZnO應用於層疊式太陽能電池元件 62 4-3 以OCH3BA自組裝單分子薄膜修飾氧化鋅之電子傳導中間層 67 4-3-1 SAM OCH3BA修飾氧化鋅之薄膜性質 67 4-3-2 SAM OCH3BA修飾氧化鋅應用於層疊式太陽能電池元件 71 第五章 結論與未來展望 77 參考文獻 79

    1. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. 2007, 317 (5835), 222-225.
    2. Sista, S.; Park, M. H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W. L.; Li, G.; Yang, Y., Highly efficient tandem polymer photovoltaic cells. Advanced materials 2010, (3), 380-383.
    3. Linder, V.; Gates, B. D.; Ryan, D.; Parviz, B. A.; Whitesides, G. M., Water‐Soluble Sacrificial Layers for Surface Micromachining. J small 2005, 1 (7), 730-736.
    4. Wei, Q.; Miyanishi, S.; Tajima, K.; Hashimoto, K., Enhanced charge transport in polymer thin-film transistors prepared by contact film transfer method. ACS applied materials interfaces 2009, 1 (11), 2660-2666.
    5. Yen, Y.-S.; Chou, H.-H.; Chen, Y.-C.; Hsu, C.-Y.; Lin, J. T., Recent developments in molecule-based organic materials for dye-sensitized solar cells. Journal of Materials Chemistry 2012, 22 (18), 8734-8747.
    6. Hancox, I.; Sullivan, P.; Chauhan, K.; Beaumont, N.; Rochford, L.; Hatton, R.; Jones, T., The effect of a MoOx hole-extracting layer on the performance of organic photovoltaic cells based on small molecule planar heterojunctions. Organic Electronics 2010, 11 (12), 2019-2025.
    7. Zhao, D.; Tang, W.; Ke, L.; Tan, S. T.; Sun, X. W., Efficient bulk heterojunction solar cells with poly [2, 7-(9, 9-dihexylfluorene)-alt-bithiophene] and 6, 6-phenyl C61 butyric acid methyl ester blends and their application in tandem cells. ACS applied materials interfaces
    2010, 2 (3), 829-837.
    8. Tang, C. W., Two‐layer organic photovoltaic cell. Applied physics letters 1986, 48 (2), 183-185.
    9. Mathias, NREL Sets New World Record with Two-Junction Solar Cell. 2013.
    10. Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J., Design Rules for Donors in Bulk‐Heterojunction Tandem Solar Cells Towards 15% Energy‐Conversion Efficiency. Advanced Materials 2008, 20 (3), 579-583.
    11. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer. Advanced materials 2006, 18 (5), 572-576.
    12. Kearns D., C. M., Photovoltaic Effect and Photoconductivity
    in Laminated Organic Systems. J.Chem.Phys 1958, 29, 950.
    13. Ghosh, A. K.; Morel, D. L.; Feng, T.; Shaw, R. F.; Rowe Jr, C. A., Photovoltaic and rectification properties of Al/Mg phthalocyanine/Ag Schottky‐barrier cells. Journal of Applied Physics 1974, 45 (1), 230-236.
    14. Sariciftci, N.; Braun, D.; Zhang, C.; Srdanov, V.; Heeger, A.; Stucky, G.; Wudl, F., Semiconducting polymer‐buckminsterfullerene heterojunctions: Diodes, photodiodes, and photovoltaic cells. Applied physics letters 1993, 62 (6), 585-587.
    15. Rodríguez, J. I.; Matta, C. F.; Uribe, E. A.; Götz, A. W.; Castillo-Alvarado, F. L.; Molina-Brito, B., A QTAIM topological analysis of the P3HT⿿PCBM dimer. Chemical Physics Letters 2016, 644, 157-162.
    16. Dou, L.; You, J.; Yang, J.; Chen, C.-C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y., Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nature Photonics 2012, 6 (3), 180.
    17. Hadipour, A.; de Boer, B.; Blom, P. W., Organic tandem and multi‐junction solar cells. Advanced functional materials 2008, 18 (2), 169-181.
    18. Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J., Organic tandem solar cells: A review. Energy Environmental Science 2009, 2 (4), 347-363.
    19. Hiramoto, M.; Suezaki, M.; Yokoyama, M., Effect of thin gold interstitial-layer on the photovoltaic properties of tandem organic solar cell. Chemistry Letters 1990, 19 (3), 327-330.
    20. Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J., Open circuit voltage of stacked bulk heterojunction organic solar cells. Applied Physics Letters 2006, 88 (7), 073514.
    21. Hadipour, A.; de Boer, B.; Wildeman, J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G.; Wienk, M. M.; Janssen, R. A.; Blom, P. W., Solution‐processed organic tandem solar cells. Advanced Functional Materials 2006, 16 (14), 1897-1903.
    22. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature communications 2013, 4, 1446.
    23. You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G. J. N. c., A polymer tandem solar cell with 10.6% power conversion efficiency. 2013, 4, 1446.
    24. Yearian, H., Intensity of diffraction of electrons by ZnO. Physical Review 1935, 48 (7), 631.
    25. Ho, N. T.; Tien, H. N.; Jang, S.-J.; Senthilkumar, V.; Park, Y. C.; Cho, S.; Kim, Y. S., Enhancement of recombination process using silver and graphene quantum dot embedded intermediate layer for efficient organic tandem cells. Scientific reports 2016, 6, 30327.
    26. Coleman, V. A.; Bradby, J.; Jagadish, C.; Munroe, P.; Heo, Y.; Pearton, S.; Norton, D.; Inoue, M.; Yano, M., Mechanical properties of ZnO epitaxial layers grown on a-and c-axis sapphire. Applied Physics Letters 2005, 86 (20), 203105.
    27. Zhang, H.; Yang, D.; Li, S.; Ma, X.; Ji, Y.; Xu, J.; Que, D., Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process. Materials Letters 2005, 59 (13), 1696-1700.
    28. Guo, M.; Diao, P.; Cai, S., Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions. Journal of Solid State Chemistry 2005, 178 (6), 1864-1873.
    29. de Boer, B.; Hadipour, A.; Mandoc, M. M.; van Woudenbergh, T.; Blom, P. W., Tuning of metal work functions with self‐assembled monolayers. Advanced Materials 2005, 17 (5), 621-625.
    30. Sun, Y.; Ndifor-Angwafor, N. G.; Riley, D. J.; Ashfold, M. N., Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chemical Physics Letters 2006, 431 (4-6), 352-357.
    31. Liu, X.; Wu, X.; Cao, H.; Chang, R. P., Growth mechanism and properties of ZnO nanorods synthesized by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2004, 95 (6), 3141-3147.
    32. Cremer, J. Novel head-to-tail coupled oligo (3-hexylthiophene) derivatives for photovoltaic applications. Universität Ulm, 2005.
    33. Perednis, D.; Gauckler, L. J., Thin film deposition using spray pyrolysis. Journal of electroceramics 2005, 14 (2), 103-111.
    34. Ulman, An Introducton to Ultrathin Organic Films. 1991.
    35. Khodabakhsh, S.; Sanderson, B. M.; Nelson, J.; Jones, T. S., Using self‐assembling dipole molecules to improve charge collection in molecular solar cells. Advanced Functional Materials 2006, 16 (1), 95-100.
    36. Kim, J. S.; Park, J. H.; Lee, J. H.; Jo, J.; Kim, D.-Y.; Cho, K., Control of the electrode work function and active layer morphology via surface modification of indium tin oxide for high efficiency organic photovoltaics. Applied Physics Letters 2007, 91 (11), 112111.
    37. Ulman, A., Formation and structure of self-assembled monolayers. Chemical reviews 1996, 96 (4), 1533-1554.
    38. Campbell, I.; Hagler, T.; Smith, D.; Ferraris, J., Direct measurement of conjugated polymer electronic excitation energies using metal/polymer/metal structures. Physical review letters 1996, 76 (11), 1900.
    39. Parker, I. D., Carrier tunneling and device characteristics in polymer light‐emitting diodes. Journal of Applied Physics 1994, 75 (3), 1656-1666.
    40. Hatton, R. A.; Day, S. R.; Chesters, M. A.; Willis, M. R., Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) derivatized ITO electrode. Thin Solid Films 2001, 394 (1-2), 291-296.
    41. Yip, H. L.; Hau, S. K.; Baek, N. S.; Ma, H.; Jen, A. K. Y., Polymer solar cells that use self‐assembled‐monolayer‐modified ZnO/metals as cathodes. Advanced Materials 2008, 20 (12), 2376-2382.
    42. Petritsch, K., Organic solar cell architectures. na: 2000.
    43. Spanggaard, H.; Krebs, F. C., A brief history of the development of organic and polymeric photovoltaics. Solar Energy Materials Solar Cells 2004, 83 (2-3), 125-146.
    44. X 光光電子能譜儀 (XPS/ESCA), https://www.istgroup.com/tw/service/xps/.
    45. 掃描電子顯微鏡, https://zh.wikipedia.org/wiki/%E6%89%AB%E6%8F%8F%E7%94%B5%E5%AD%90%E6%98%BE%E5%BE%AE%E9%95%9C.
    46. Beek, W. J.; Wienk, M. M.; Kemerink, M.; Yang, X.; Janssen, R. A., Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells. The Journal of Physical Chemistry B 2005, 109 (19), 9505-9516.
    47. Yun, M. H.; Kim, G.-H.; Yang, C.; Kim, J. Y., Towards optimization of P3HT: bisPCBM composites for highly efficient polymer solar cells. Journal of Materials Chemistry 2010, 20 (36), 7710-7714.
    48. Ratcliff, E. L.; Garcia, A.; Paniagua, S. A.; Cowan, S. R.; Giordano, A. J.; Ginley, D. S.; Marder, S. R.; Berry, J. J.; Olson, D. C., Investigating the influence of interfacial contact properties on open circuit voltages in organic photovoltaic performance: work function versus selectivity. Advanced Energy Materials 2013, 3 (5), 647-656.
    49. Lange, I.; Reiter, S.; Pätzel, M.; Zykov, A.; Nefedov, A.; Hildebrandt, J.; Hecht, S.; Kowarik, S.; Wöll, C.; Heimel, G., Tuning the Work Function of Polar Zinc Oxide Surfaces using Modified Phosphonic Acid Self‐Assembled Monolayers. Advanced Functional Materials 2014, 24 (44), 7014-7024.
    50. Paniagua, S. A.; Giordano, A. J.; Smith, O. N. L.; Barlow, S.; Li, H.; Armstrong, N. R.; Pemberton, J. E.; Brédas, J.-L.; Ginger, D.; Marder, S. R., Phosphonic Acids for Interfacial Engineering of Transparent Conductive Oxides. Chemical Reviews 2016, 116 (12), 7117-7158.
    51. Heterojunction, https://en.wikipedia.org/wiki/Heterojunction.
    52. Song, S. H.; Aydil, E. S.; Campbell, S. A., Metal-oxide broken-gap tunnel junction for copper indium gallium diselenide tandem solar cells. Solar Energy Materials Solar Cells 2015, 133, 133-142.
    53. Johnson, F.; Song, S. H.; Abrahamson, J.; Liptak, R.; Aydil, E.; Campbell, S. A., Sputtered metal oxide broken gap junctions for tandem solar cells. Solar Energy Materials Solar Cells 2015, 132, 515-522.
    54. Chi, C.-Y., Study of Self-assembled Monolayers Modified Zinc Oxide Inter-connnecting Layer with Tunable Surfaces Dipole Moment for Organic Tandem Solar Cell. 2018

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE