簡易檢索 / 詳目顯示

研究生: 陳奕銘
I-Ming Chen
論文名稱: 以Cu2ZnSnS4作為對電極材料於染料敏化太陽能電池之研究
The Study of Using Cu2ZnSnS4 Hierarchical Structure as Counter Electrode for Dye-Sensitized Solar Cells
指導教授: 戴龑
Yian Tai
口試委員: 江佳穎
Chia-Ying Chiang
蔡大翔
Dah-Shyang Tsai
王復民
Wang, Fu-Ming
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 234
中文關鍵詞: 染料敏化太陽能電池銅鋅錫硫遲滯效應溶劑熱法自組裝單分子薄膜
外文關鍵詞: Dye-Sensitized Solar Cells, CZTS, Hysteresis phenomenon, Solvothermal approach, Self-Assembled monolayer
相關次數: 點閱:285下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們以新穎且一步式之溶劑熱法成功合成出不同型態結構的銅鋅錫硫四元半導體材料,以改進相對嚴苛的製程方式和製造成本,進而應用於染料敏化太陽能電池中當作新穎對電極材料。並且藉由具有不同尾端官能基之自組裝單分子薄膜進一步修飾銅鋅錫硫表面特性,以有效的降低介面電阻值,透過不同尾端基之偶極矩與親疏水性之特性,以影響電解液對CZTS進行之氧化還原速度,來增進元件各項數據表現。在最佳化方面,使用2-Mercaptoethanol成長於CZTS對電極表面,藉由其尾端官能基之親水性質和硫醇頭端基進行修飾,成功使串聯電阻由7.97Ω*cm2降至7.18Ω*cm2,進而提升對電極表面之載子遷移率,促使短路電壓由11.42mA/cm2提升至13.39 mA/cm2。接著,吾人以所製備出CZTS材料其具備的特殊優勢及光電響應作為進一步的應用和探討,因而了解其半導體材料於此系統中所觸動的反應機制。其中,透過於緩慢的掃描速度下比較正向與逆向掃描之光電特性分析,成功發現該材料本質於染料敏化太陽能電池中存在電遲滯效應,進而透過一系列之實驗釐清該效應於元件之光電響應。並且,於本論文所分析之結果,將作為未來可進一步利用此遲滯效應所帶來的獨特優勢於各種領域中之前哨站。


    In this work, we present a novel one-step solvothermal approach to synthesize Cu2ZnSnS4(CZTS) nanostructures with different morphological constitutions. There are two promising alternative, simple procedure and cost-effective concepts. For this reason, applied as counter electrode in Dye-Sensitized Solar Cells (DSSCs). For next part, SAMs with different functional group were modified between electrolyte and CZTS interlayer. Owning to there electric diploe moment and hydrophilicity, the series resistance decreases efficitivly to enhance redox ability in CZTS surface, therefore, prompting the increase of the photovoltaic results. And for the optimized results, 2-Mercaptoethanol SAMs with thiol-head group modified CZTS surface in DSSCs which can lead to decreasing of series resistance(7.97Ω*cm2 to 7.18Ω*cm2) because of hydrophilicity and adhesive ability, and boost Jsc value from 11.42mA/cm2 to 13.39 mA/cm2 . Then we would like to inquire into the photoresponse of hierarchical CZTS nanostructure in DSSCs system, and attempt to comprehend the mechanism of this electric reaction during charge speration process. By optical characterization under forward and reverse bias scan when bias is swept exteremly slow, there are unusual characteristics that have been rise, specifically aberrant hysteresis in the current-voltage curves. We identify this phenomenon in DSSC when CZTS was applied as counter electrode, and show some examples of factor to hypothesis some possibile origins of this effects. In the furture, these proposed mechanism will assist and apply in many fields.

    第一章 緒論 1 第一節 前言 1 第二節 無機太陽能電池 5 1-1. 銅銦鎵硒太陽能電池介紹 5 1-2. 銅鋅錫硫太陽能電池介紹 8 1-2-1. 銅鋅錫硫薄膜太陽能電池之起源及發展 8 第三節 有機太陽能電池 10 1-3. 染料敏化太陽能電池介紹 11 第二章 相關理論與文獻回顧 13 第一節 太陽能電池相關係數 13 2-1. 太陽能電池參數 13 2-2. 太陽能電池之等效電路(Equivalent Circuit Diagram) 16 2-3. 太陽光光譜分析(Spectrum Irradiance) 19 第二節 染料敏化太陽能電池介紹 20 2-4. 染料敏化太陽能電池工作原理與轉換效率 20 2-4-1. 染料敏化太陽能電池工作原理 20 2-4-2. 染料敏化太陽能電池中電子電洞對分離 21 2-5. 染料敏化太陽能電池中對應電極材料介紹 24 2-5-1. 對應電極特性分析 24 2-5-2. 白金材料 25 2-5-3. 碳質複合材料 25 2-5-4. 無機過渡金屬化合物 26 2-5-5. 有機導電高分子材料 28 第三節 銅鋅錫硫半導體材料介紹 30 2-6. 銅鋅錫硫四元化合物基本性質與合成方法 30 2-6-1. CZTS晶格結構特性 30 2-6-2. CZTS能帶結構介紹 33 2-6-3. 合成CZTS材料之方法介紹 35 2-6-4. 溶劑熱合成法(Solvothermal method) 38 第四節 自組裝單分子薄膜(SELF-ASSEMBLED MONOLAYER,SAM ) 41 第五節 遲滯效應 44 2-7. 遲滯效應之研究與文獻回顧 44 2-7-1. 起源與發展 44 2-7-2. 電遲滯現象 47 2-8. 遲滯效應於太陽能電池之物理性質與電容效應介紹 49 2-8-1. 遲滯效應於Perovskite Solar Cells中的機制研究與電容效應探討 49 第三章 實驗方法與步驟 56 第一節 實驗藥品 56 第二節 實驗器材及儀器 59 第三節 銅鋅錫硫四元化合物製備 61 第四節 染料敏化太陽能電池元件製備 63 第五節 樣品分析量測 66 第四章 實驗結果與討論 77 第一節 HIERARCHICAL CZTS薄膜特性分析 78 4-1. 不同成分比例之CZTS四元化合物之形態及成分分析 78 4-2. 不同成分比例之CZTS四元化合物之成分性質及結晶程度分析 80 4-3. 固定成分比例下合成CZTS四元化合物之光學特性分析 83 4-4. 固定成分比例下合成CZTS四元化合物於不同基板之表面型態及結晶程度分析 86 第二節 以CZTS作為新穎對電極材料於染料敏化太陽能電池 89 4-5. 固定成分比例下製備CZTS薄膜於不同基板作為對電極之光電特性分析 89 4-6. 層疊式CZTS薄膜於不同基板作為對電極之光電特性分析 91 4-6-1. C2+C5之C2-CZTS成長時間調控 92 4-6-2. C2+C5之C5-CZTS成長時間調控 93 4-7. 不同成分比例下合成CZTS四元化合物作為對電極對於電解液之電化學活性能力分析 94 4-7-1. 電化學氧化還原能力分析 95 4-7-2. 電化學阻抗頻譜(EIS)分析 98 4-8. 比較C5+C5和C2+C5之CZTS薄膜作為對電極之光電特性分析 104 4-9. 以自主裝單分子薄膜對CZTS/電解液介面進行修飾 110 4-9-1. 自主裝單分子薄膜之選用及成長 110 4-9-2. 於CZTS表面成長矽烷頭端基群之SAMs後其接觸角分析與元件之光電特性分析 112 4-9-3. 於CZTS表面成長硫醇頭端基群之SAMs後其接觸角分析與元件之光電特性分析 117 第三節 光電特性之CZTS作為新穎對電極材料於染料敏化太陽能電池 127 4-10. 利用可雙面照光特性之CZTS作為新穎對電極材料於染料敏化太陽能電池 128 4-10-1. 正向及背向照光之光電特性分析 128 4-10-2. 雙面照光下以不同燈源作為背向式照光之光電特性分析 130 4-10-3. 比較CZTS材料及白金作為對電極之光學吸收圖譜分析 133 4-10-4. 比較單面和雙面照光之光電響應分析 134 4-11. 不同情況下觀察CZTS對電極於染料敏化太陽能電池之遲滯效應 141 4-11-1. 比較以不同對電極之光電分析次數結果 141 4-11-2. 比較不同掃描速度於白金和CZTS對電極之光電特性分析 144 4-11-3. CZTS對電極於染料敏化太陽能電池之遲滯效應分析層階圖 147 4-11-4. CZTS對電極於正向-背向循環式掃描之光電流趨勢 150 4-11-5. 比較不同測試情況下CZTS對電極之光電特性分析 154 4-11-6. 針對逆向式掃描後之CZTS薄膜表面鍵結成分分析 172 4-11-7. 不同掃描情況之阻抗頻譜與IPCE分析 177 第五章 結論與未來展望 181

    [1] U.S.E.I. Administration, Annual Energy Outlook (U.S. Department of Energy, Washington, DC, 2013).
    [2] U.S.E.I. Administration, International Energy Outlook (U.S. Department of Energy, Washington, DC, 2013).
    [3] A. Khare, PHD Thesis (2012).
    [4] http://commons.wikimedia.org/.
    [5] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Advanced Energy Materials,4, (2014).
    [6] K. Kalyanasundaram, M. Gratzel, Material Matters,4, 88-90 (2009).
    [7] http://www.nrel.gov/ncpv/.
    [8] F. Lenzmann, J. Kroon, Advances in OptoElectronics,2007, (2007).
    [9] P.S. Priambodo, D. Sukoco, W. Purnomo, H. Sudibyo, D. Hartanto, (2013).
    [10] D.I.K. Petritsch, Organic solar cell architectures, Technische Universitat Graz, Austria, 2000.
    [11] http://www.laserfocusworld.com/index.html.
    [12] X. Xin, (2012).
    [13] D. Cahen, G. Hodes, M. Gratzel, J.F. Guillemoles, I. Riess, The Journal of Physical Chemistry B,104, 2053-2059 (2000).
    [14] T.-C. Wei, C.-C. Wan, Y.-Y. Wang, C.-m. Chen, H.-s. Shiu, The Journal of Physical Chemistry C,111, 4847-4853 (2007).
    [15] A. Hauch, A. Georg, Electrochimica Acta,46, 3457-3466 (2001).
    [16] H. Choi, H. Kim, S. Hwang, W. Choi, M. Jeon, Solar Energy Materials and Solar Cells,95, 323-325 (2011).
    [17] J.D. Roy-Mayhew, D.J. Bozym, C. Punckt, I.A. Aksay, Acs Nano,4, 6203-6211 (2010).
    [18] H. Wang, Y.H. Hu, Energy & Environmental Science,5, 8182-8188 (2012).
    [19] D. Zhang, X. Li, H. Li, S. Chen, Z. Sun, X. Yin, S. Huang, Carbon,49, 5382-5388 (2011).
    [20] G. Wang, S. Zhuo, W. Xing, Materials Letters,69, 27-29 (2012).
    [21] K.S. Lee, Y. Lee, J.Y. Lee, J.H. Ahn, J.H. Park, ChemSusChem,5, 379-382 (2012).
    [22] W. Hong, Y. Xu, G. Lu, C. Li, G. Shi, Electrochemistry Communications,10, 1555-1558 (2008).
    [23] M. Wu, X. Lin, Y. Wang, L. Wang, W. Guo, D. Qi, X. Peng, A. Hagfeldt, M. Grätzel, T. Ma, Journal of the American Chemical Society,134, 3419-3428 (2012).
    [24] H. Wang, Q. Feng, F. Gong, Y. Li, G. Zhou, Z.-S. Wang, Journal of Materials Chemistry A,1, 97-104 (2013).
    [25] F. Guo, H. Hu, Q.-D. Tai, B.-L. Chen, B. Sebo, C.-H. Bu, J.-H. Xu, X.-Z. Zhao, Journal of Renewable and Sustainable Energy,4, 023109 (2012).
    [26] S.H. Park, K.-H. Shin, J.-Y. Kim, S.J. Yoo, K.J. Lee, J. Shin, J.W. Choi, J. Jang, Y.-E. Sung, Journal of Photochemistry and Photobiology A: Chemistry,245, 1-8 (2012).
    [27] K.-C. Huang, C.-W. Hu, C.-Y. Tseng, C.-Y. Liu, M.-H. Yeh, H.-Y. Wei, C.-C. Wang, R. Vittal, C.-W. Chu, K.-C. Ho, Journal of Materials Chemistry,22, 14727-14733 (2012).
    [28] C. Bu, Q. Tai, Y. Liu, S. Guo, X. Zhao, Journal of Power Sources,221, 78-83 (2013).
    [29] S.S. Jeon, C. Kim, J. Ko, S.S. Im, Journal of Materials Chemistry,21, 8146-8151 (2011).
    [30] J. Luo, H.-j. Niu, W.-j. Wu, C. Wang, X.-d. Bai, W. Wang, Solid State Sciences,14, 145-149 (2012).
    [31] N. Balis, T. Makris, V. Dracopoulos, T. Stergiopoulos, P. Lianos, Journal of Power Sources,203, 302-307 (2012).
    [32] S. Hou, X. Cai, H. Wu, Z. Lv, D. Wang, Y. Fu, D. Zou, Journal of Power Sources,215, 164-169 (2012).
    [33] S. Ahmad, J.-H. Yum, Z. Xianxi, M. Gratzel, H.-J. Butt, M.K. Nazeeruddin, Journal of Materials Chemistry,20, 1654-1658 (2010).
    [34] C.-W. Kung, Y.-H. Cheng, H.-W. Chen, R. Vittal, K.-C. Ho, Journal of Materials Chemistry A,1, 10693-10702 (2013).
    [35] J.-Y. Kim, K.J. Lee, S.H. Kang, J. Shin, Y.-E. Sung, The Journal of Physical Chemistry C,115, 19979-19985 (2011).
    [36] K.-M. Lee, C.-Y. Hsu, P.-Y. Chen, M. Ikegami, T. Miyasaka, K.-C. Ho, Physical Chemistry Chemical Physics,11, 3375-3379 (2009).
    [37] M. Xu, J. Zhang, S. Wang, X. Guo, H. Xia, Y. Wang, S. Zhang, W. Huang, S. Wu, Sensors and Actuators B: Chemical,146, 8-13 (2010).
    [38] T. Muto, M. Ikegami, T. Miyasaka, Journal of The Electrochemical Society,157, B1195-B1200 (2010).
    [39] J. Chang, E.R. Waclawik, RSC Advances,4, 23505-23527 (2014).
    [40] S. Chen, A. Walsh, Y. Luo, J.-H. Yang, X. Gong, S.-H. Wei, Physical Review B,82, 195203 (2010).
    [41] X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, International Journal of Photoenergy,2014, (2014).
    [42] A. Walsh, S. Chen, S.H. Wei, X.G. Gong, Advanced Energy Materials,2, 400-409 (2012).
    [43] S. Chen, A. Walsh, X.G. Gong, S.H. Wei, Advanced materials,25, 1522-1539 (2013).
    [44] Y. Sun, Y. Zhang, H. Wang, M. Xie, K. Zong, H. Zheng, Y. Shu, J. Liu, H. Yan, M. Zhu, Journal of Materials Chemistry A,1, 6880-6887 (2013).
    [45] K. Zong, Y. Sun, Y. Zhang, H. Wang, J. Liu, H. Yan, Journal of Materials Chemistry A (2013).
    [46] I. Dudchak, L. Piskach, Journal of alloys and compounds,351, 145-150 (2003).
    [47] I. Olekseyuk, I. Dudchak, L. Piskach, Journal of alloys and compounds,368, 135-143 (2004).
    [48] S. Delbos, EPJ Photovoltaics,3, (2012).
    [49] P. Fernandes, P. Salome, A. Da Cunha, B.-A. Schubert, Thin Solid Films,519, 7382-7385 (2011).
    [50] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, Applied physics express,1, 041201 (2008).
    [51] F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y. Liu, Solar Energy Materials and Solar Cells,94, 2431-2434 (2010).
    [52] N. Momose, M.T. Htay, T. Yudasaka, S. Igarashi, T. Seki, S. Iwano, Y. Hashimoto, K. Ito, Japanese Journal of Applied Physics,50, (2011).
    [53] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Journal of Physics and Chemistry of Solids,66, 1978-1981 (2005).
    [54] Y. Wang, H. Gong, Journal of the Electrochemical Society,158, H800-H803 (2011).
    [55] Z.-H. XIONG, L. WANG, J.-G. ZHOU, J.-M. LIU, J.-Y. RAN, L.-J. ZHAO, Y.-Y. LIU, P.-K. CHEN, J.-H. LUO, G. ZHOU, Acta Phys Chim Sin,26, 2890-2898 (2010).
    [56] H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Thin Solid Films,517, 1457-1460 (2008).
    [57] H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Solar Energy Materials and Solar Cells,49, 407-414 (1997).
    [58] B.A. Schubert, B. Marsen, S. Cinque, T. Unold, R. Klenk, S. Schorr, H.W. Schock, Progress in Photovoltaics: Research and Applications,19, 93-96 (2011).
    [59] B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Progress in Photovoltaics: Research and Applications,21, 72-76 (2013).
    [60] H. Kim, A. Pique, J. Horwitz, H. Murata, Z. Kafafi, C. Gilmore, D. Chrisey, Thin Solid Films,377, 798-802 (2000).
    [61] K. Moriya, K. Tanaka, H. Uchiki, Japanese Journal of Applied Physics,46, 5780 (2007).
    [62] K. Moriya, K. Tanaka, H. Uchiki, Japanese Journal of Applied Physics,47, 602 (2008).
    [63] L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Solar Energy Materials and Solar Cells,95, 2907-2913 (2011).
    [64] K. Ramasamy, M.A. Malik, P. O'Brien, Chemical Science,2, 1170-1172 (2011).
    [65] T. Washio, T. Shinji, S. Tajima, T. Fukano, T. Motohiro, K. Jimbo, H. Katagiri, Journal of Materials Chemistry,22, 4021-4024 (2012).
    [66] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew, 2001.
    [67] J.D. Hoffman, G.T. Davis, J.I. Lauritzen Jr, Treatise on solid state chemistry, Springer, 1976, pp. 497-614.
    [68] J. Lothe, G.M. Pound, The Journal of Chemical Physics,36, 2080-2085 (1962).
    [69] Y. Cao, C.R. Wang, J.Q. Hu, Advanced Materials Research,347, 848-851 (2012).
    [70] Y.-F. Du, W.-H. Zhou, Y.-L. Zhou, P.-W. Li, J.-Q. Fan, J.-J. He, S.-X. Wu, Materials Science in Semiconductor Processing,15, 214-217 (2012).
    [71] Z. Yan, A. Wei, Y. Zhao, J. Liu, X. Chen, Materials Letters,111, 120-122 (2013).
    [72] Y.-L. Zhou, W.-H. Zhou, Y.-F. Du, M. Li, S.-X. Wu, Materials Letters,65, 1535-1537 (2011).
    [73] F. Xu, L. Sun, Energy & Environmental Science,4, 818-841 (2011).
    [74] T. Buffeteau, B. Desbat, J. Turlet, Applied Spectroscopy,45, 380-389 (1991).
    [75] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Chemical reviews,105, 1103-1170 (2005).
    [76] A. Ulman, Chemical reviews,96, 1533-1554 (1996).
    [77] Ulman.A, Academic Press ( San Diego.(2005)).
    [78] R. Glazebrook, Obituary Notices of Fellows of the Royal Society,1, 475-492 (1935).
    [79] R.V. Lapshin, Review of Scientific Instruments,66, 4718-4730 (1995).
    [80] H. Eral, J. Oh, Colloid and polymer science,291, 247-260 (2013).
    [81] http://www.electronics-tutorials.ws/electromagnetism/magnetic-hysteresis.html.
    [82] B.E. Deal, Journal of the Electrochemical Society,127, 979-981 (1980).
    [83] R.F. Pierret, (1996).
    [84] S.M. Sze, K.K. Ng, (1981).
    [85] M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat Photon,8, 506-514 (2014).
    [86] H.J. Snaith, A. Abate, J.M. Ball, G.E. Eperon, T. Leijtens, N.K. Noel, S.D. Stranks, J.T.-W. Wang, K. Wojciechowski, W. Zhang, The Journal of Physical Chemistry Letters,5, 1511-1515 (2014).
    [87] H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E.J. Juarez-Perez, N.-G. Park, J. Bisquert, Nature communications,4, (2013).
    [88] R.S. Sanchez, V. Gonzalez-Pedro, J.-W. Lee, N.-G. Park, Y.S. Kang, I. Mora-Sero, J. Bisquert, The Journal of Physical Chemistry Letters,5, 2357-2363 (2014).
    [89] http://www.winnerscience.com/electromagnetic-field-theory/polarization-or-dielectric-polarization/.
    [90] http://www.coretechint.com/technical_info-xps.php.
    [91] X.-r.d.B.D. Discover.
    [92] http://chemwiki.ucdavis.edu/.
    [93] C. Longo, J. Freitas, M.-A. De Paoli, Journal of Photochemistry and Photobiology A: chemistry,159, 33-39 (2003).
    [94] P. Fernandes, P. Salome, A. Da Cunha, Journal of Alloys and Compounds,509, 7600-7606 (2011).
    [95] H. Haick, M. Ambrico, T. Ligonzo, D. Cahen, Advanced Materials,16, 2145-2151 (2004).
    [96] K.B. Wiberg, The Journal of organic chemistry,67, 4787-4794 (2002).
    [97] C. Goh, S.R. Scully, M.D. McGehee, Journal of Applied Physics,101, 114503 (2007).
    [98] H.L. Yip, S.K. Hau, N.S. Baek, H. Ma, A.K.Y. Jen, Advanced Materials,20, 2376-2382 (2008).
    [99] J.D. Daniel Beacham, Kyle Gee, Vladimir Martin, Aleksey Rukavishnikov, Patent (2009).
    [100] http://www.ccs-inc.co.jp/ledlamp/.
    [101] D. Kleinman, Physical Review,126, 1977 (1962).
    [102] H. Jiang, P. Dai, Z. Feng, W. Fan, J. Zhan, Journal of Materials Chemistry,22, 7502-7506 (2012).
    [103] S.C. Riha, B.A. Parkinson, A.L. Prieto, Journal of the American Chemical Society,131, 12054-12055 (2009).
    [104] P. Dai, X. Shen, Z. Lin, Z. Feng, H. Xu, J. Zhan, Chemical Communications,46, 5749-5751 (2010).
    [105] J. Moulder, W. Stickle, P. Sobol, K. Bomben, There is no corresponding record for this reference.

    QR CODE