簡易檢索 / 詳目顯示

研究生: 王暉棠
Huei-tang Wang
論文名稱: 密度泛函理論應用於新世代釕金屬染料之研究
Density Functional Theory Investigation of New Generation Ruthenium Sensitizers
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 呂光烈
Kuang-lieh Lu
趙奕姼
Ito Chao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 73
中文關鍵詞: 密度泛函理論染料敏化太陽能電池釕金屬錯合物
外文關鍵詞: DFT, DSSC, Ruthenium Sensitizers
相關次數: 點閱:283下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 染料敏化太陽電池材料本身穩定又無污染、成本低廉、製程簡便不需真空設備、可大面積製作、可彎曲性等優點,被公認為最有發展潛力的再生能源之一,但其光電轉換效率目前僅12%,因此仍有許多改進的空間。
    本研究選擇及設計一系列的釕金屬錯合物,利用Gaussian 09中的密度泛函數理論(DFT)將結構最佳化後,使用時間依賴密度泛函理論(TD-DFT)計算出其UV-VIS吸收光譜,分析其吸收光譜並搭配其電子軌域分布圖表(molecular orbitals, transition tables)。藉此了解在不同波長之電子轉移的模式。在詳細分析其激發態及電子軌域圖表後,我發現了輔助配位基(ancillary ligands)以及固著配位基(anchoring ligands)影響其光電性質之關鍵。為了增加電子的分離程度,當基態時,增加電子在NCS配位基及釕金屬上的比率;在激發態時,增加電子在固著配位基的比率,我藉由修飾固著配位基,使得有效貢獻增加。新型染料的吸收光譜整體紅位移,而在可見光範圍內的強度明顯增強,非常符合理想染料特性,吸收能力大幅提升。再經DOS(Density of states)的分析,確定了電子傳遞有效貢獻大幅增加,此結論顯示,經過我們設計的分子能使光捕獲能力大幅提升。
    此研究使用第一原理Vienna Ab-initio Simulation Package (VASP) 進一步探討釕金屬染料吸附於半導體二氧化鈦上,關於常用的羧酸基(-cooh)其吸附模式並無定論,經由回顧文獻後,我選擇吸附後影響結構變化最少的兩種吸附模式進行模擬。其結果顯示,無論是從結構以及能量觀點來看,monodentate 相較於bidentate模式穩定。接著我們使用PDOS(Partial Density of states)分析修飾前後染料與半導體之介面中電子轉移的變化,修飾後的染料能與半導體二氧化鈦有更強的耦合,更進一步顯示新型染料之優勢。


    Dye-sensitized solar cell (DSSC) devices have attracted broad attention in the search of environmentally friendly alternatives for energy production. To achieve the maximum efficiency in DSSCs, it is important to find a suitable sensitizer which has optimal spectral properties.
    In this work, we proposed a new strategy to modify the Ru-sensitizers. We started by using computational chemistry-approaches to design a novel anchoring ligand, namely 4,4’-di(2-carboxy-2-nitrovinyl)-2,2’-bypyridinyl (designated –CNB ligand). This –CNB anchoring ligand was then utilized to modify the molecular structure of the selected heteroleptic Ru-sensitizers, namely C101, C106, and CYC-B11, and to form their corresponding analogue-sensitizers, termed C101-2, C106-2, and CYC-B11-2, respectively. Here density functional theory (DFT) at B3LYP functional with 6-31G* basis set was used to optimize geometric structures; and time dependent DFT (TDDFT) at BHanDHLYP functional with 6-31+G* basis set was used to simulated UV-Vis spectra of selected sensitizers. We show the detailed analyses such as molecular geometries, absorption spectral properties, energy levels, and density of states (DOS). These analyses briefly show that the novel sensitizers have remarkable improvement in light harvesting ability.
    Consequently, the improvement based on the atomistic understanding is crucial for further breakthroughs. We present a detailed investigation of N3, C101, C101-2 adsorbed on TiO2 surface to give deeper insights into their electronic properties and electron coupling between sensitizers and TiO2 surface. The calculation is performed with the VASP code with the exchange functional GGA-B3LYP. First, we focus on the comparison of adsorption modes of these sensitizers to verify the stability. Second, we show the distinction of PDOS with three sensitizers adsorbed on TiO2 in different modes. Overall, our study clarifies the role of functionalized anchoring ligand that acts as efficient “electron-acceptor” and its superiority on the absorption properties of the Ru-sensitizers.

    致謝 I Abstract II 摘要 IV Contents VI Index of Figures VII Index of Tables IX Chapter 1 Introduction 1 1.1 Energy, Solar cells. 1 1.2 Operational Principles 1 1.3 Overview of the Ruthenium Dyes Histories. 4 1.4 Outline 10 Chapter 2 Computational Details 14 2.1 Dye 14 2.2 Dye/TiO2 System 15 Chapter 3 Results and Discussion 19 3.1 Dye 19 3.1.1 Benchmark 19 3.1.2 Geometrical Parameters 21 3.1.3 Absorption Spectra 23 3.1.4 Frontier Molecular Orbitals 28 3.1.5 Density of States 31 3.2 Dye-TiO2 System 34 3.2.1 Adsorption Models and Geometries of the Ru-Dye on Anatase (101) Surface. 36 3.2.2 Electronic Structures 42 Chapter 4 Conclusion 48 Reference 50 Appendixes 53

    (1) Brohan, P.; Kennedy, J. J.; Harris, I.; Tett, S. F. B.; Jones, P. D. J Geophys Res-Atoms 2006, 111.
    (2) Lewis, N. S.; Nocera, D. G. Proc. Natl. Acad. Sci. 2006, 103, 43.
    (3) O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
    (4) Gratzel, M. Nature 2001, 414, 338.
    (5) Gratzel, M. J. Photochem. Photobiol. C 2003, 4, 145.
    (6) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Chem. Rev. 2010, 110, 6595.
    (7) C., V. G.; I., P. A.; Thomas, S.; Polycarpos, F. Coord. Chem. Rev 2011, 255, 2602.
    (8) Qin, Y.; Peng, Q. Int J Photoenergy. 2012, 2012, 1.
    (9) Hagfeldtt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49.
    (10) Gratzel, M. Curr. Opin. Colloid Interface Sci. 1999, 4, 314.
    (11) O'Regan, B. C.; Durrant, J. R. Acc. Chem. Res. 2009, 42.
    (12) Hagfeldtt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269.
    (13) Kalyanasundaram, K.; Gratzel, M. Coord. Chem. Rev 1998, 77, 347.
    (14) Kohle, O.; Gratzel, M.; Meyer, A. F.; Meyer, T. B. Adv. Mater. 1997, 9, 904.
    (15) R, E.; L, G.; S, F.; W, S.; R, E.; F, W. J. Phys. Chem. B 2006, 110, 25383.
    (16) L, G.; R, E.; F, W. J. Phys. Chem. C 2007, 111, 13586.
    (17) L, G.; R, E.; F, W. Prog. Surf. Sci. 2007, 82, 355.
    (18) Karthikeyan, C. S.; Wietasch, H.; Thelakkat, M. Adv. Mater. 2007, 19, 1091.
    (19) Gao, F.; Wang, Y.; Shi, D.; Zhang, J.; Wang, M.; Jing, X.; Humphry-Baker, R.; Wang, P.; Zakeeruddin, S. M.; Gratzel, M. J. Am. Chem. Soc. 2008, 130, 10720.
    (20) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; tzel, C. G.; Wu, C.-G.; Zakeeruddin, S. M.; Gratzel, M. Acsnano 2009, 3, 3103.
    (21) Cao, Y.; Bai, Y.; Yu, Q.; Cheng, Y.; Liu, S.; Shi, D.; Gao, F.; Wang, P. J. Phys. Chem. C 2009, 113, 6290.
    (22) Wu, S.-J.; Chen, C.-Y.; Chen, J.-G.; Li, J.-Y.; Tung, Y.-L.; Ho, K.-C.; Wu, C.-G. Dyes Pigments 2010, 84, 95.
    (23) Nazeeruddin, M. K. P., P. Gratzel, M. Chem. Commun. 1997, 1705.
    (24) Nazeeruddin, M. K.; Pe’chy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Pascal Comte, P. L.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    (25) Nazeeruddin, M. K.; Gratzel, M. J. Photochem. Photobiol., A 2001, 145, 79.
    (26) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; N.Vlachopoulos; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
    (27) Nazeeruddin, M. K.; Zakeeruddin, S. M.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Gratzel, M. Inorg. Chem. 1999, 38, 6298.
    (28) Wang, P.; Zakeeruddin, S. M.; Humphry-Baker, R.; Moser, J. E.; Gratzel, M. Adv. Mater. 2003, 15, 2101.
    (29) Zakeeruddin, S. M.; Nazeeruddin, M. K.; Humphry-Baker, R.; Pe’chy, P.; Quagliotto, P.; Barolo, C.; Viscardi, G.; Gratzel, M. Langmuir 2002, 18, 952.
    (30) Liu, K. Y.; Hsu, C. L.; Ni, J. S.; Ho, K. C.; Lin, K. F. J. Colloid Interface Sci. 2012, 372, 73.
    (31) Ni, J. S.; Hung, C. Y.; Liu, K. Y.; Chang, Y. H.; Ho, K. C.; Lin, K. F. J. Colloid Interface Sci. 2012, 386, 359.
    (32) Chen, C. Y.; Wu, S. J.; Wu, C. G.; Chen, J. G.; Ho, K. C. Angew. Chem. Int. Ed. 2006, 45, 5822.
    (33) Wu, K. L.; Hsu, H. C.; Chen, K.; Chi, Y.; Chung, M. W.; Liu, W. H.; Chou, P. T. Chem. Commun. 2010, 46, 5124.
    (34) Guo, P.; Ma, R.; Guo, L.; Yang, L.; Liu, J.; Zhang, X.; Pan, X.; Dai, S. J. Mol. Graphics Modell. 2010, 29, 498.
    (35) Lu, X.; Wei, S.; Lawrence Wu, C.-M.; Guo, W.; Zhao, L. J. Organomet. Chem. 2011, 696, 1632.
    (36) Zhan, C.-G.; Nichols, J. A.; Dixon, D. A. J. Phys. Chem. A 2003, 107, 4184.
    (37) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. G. R. A. G. I. W., CT, USA (http://www. gaussian.com).
    (38) Becke, A. D. J. Chern. Phys. 1993, 98, 5648.
    (39) Pourtois, G.; Beljonne, D.; Moucheron, C. c.; Schumm, S.; Mesmaeker, A. e. K.-D.; Lazzaroni, R.; Bre’das, J.-L. J. Am. Chem. Soc. 2004, 126, 653.
    (40) VITALY A. RASSOLOV; Ratner, M. A.; Pople, J. A.; Paul C. Redfern; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976.
    (41) Gorelsky, S. I. A. P. f. M. O. A. Y. U. T., 1997. http://www.sg-chem.net/.
    (42) Becke, A. D. J. Chem. Phys. 1993, 98, 1372.
    (43) Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; DeFrees, D. J.; Pople, J. A. J. Chem. Phys. 1982, 77, 3654.
    (44) Kresse, G.; Hafner, J. Phys. Rev. B: Condens. Matter 1993, 47, 558.
    (45) Kresse, G.; Furthmiiller, J. Comput. Mater. Sci. 1996, 6, 15.
    (46) Hafner, J. J. Comput. Chem. 2008, 29, 2044.
    (47) Devlin, P. J. S. J. J. Phys. Chem. 1994, 98, 11623.
    (48) Martsinovich, N.; Jones, D. R.; Troisi, A. J. Phys. Chem. C 2010, 114, 22659.
    (49) Burdett, J. K.; Hughbanks, T.; Miller, G. J.; James W. Richardson, J.; Smith, J. V. J . Am. Chem. Soc 1987, 109, 3639.
    (50) Fantacci, S.; Angelis, F. D.; Selloni, A. J. Am. Chem. Soc. 2003, 125, 4381.
    (51) Yin, J.-F.; Bhattacharya, D.; Hsu, Y.-C.; Tsai, C.-C.; Lu, K.-L.; Lin, H.-C.; Chen, J.-G.; Ho, K.-C. J. Mater. Chem. 2009, 19, 7036.
    (52) Yin, J.-F.; Chen, J.-G.; Lu, Z.-Z.; Ho, K.-C.; Lin, H.-C.; Lu, K.-L. Chem. Mater. 2010, 22, 4392.
    (53) Murakoshi, K.; Kano, G.; Wada, Y.; Yanagida, S.; Miyazaki, H.; Matsumoto, M.; Murasawa, S. J. Electroanal. Chem. 1995, 396, 27.
    (54) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gratzel, M. J. Phys. Chem. B 2003, 107, 8981.
    (55) Finnie, K. S.; Bartlett, J. R.; Woolfrey, J. L. Langmuir 1998, 14, 2744.
    (56) Fillinger, A.; Parkinson, B. A. J. Electrochem. Soc 1999, 146, 4559.
    (57) Persson, P.; Lunell, S.; Bruhwiler, P. A.; Schnadt, J.; Sodergren, S.; O’Shea, J. N.; Karis, O.; Siegbahn, H.; Martensson, N.; Bassler, M.; Patthey, L. J. Chern. Phys. 2000, 112, 3945.
    (58) De Angelis, F.; Vitillaro, G.; Kavan, L.; Nazeeruddin, M. K.; Gratzel, M. J. Phys. Chem. C 2012, 116, 18124.
    (59) Labat, F. d. r.; Ciofini, I.; Hratchian, H. P.; Frisch, M. J.; Raghavachari, K.; Adamo, C. J. Phys. Chem. C 2011, 115, 4297.
    (60) Labat, F.; Bahers, T. L.; Ciofini, I.; Adamo, C. Acc.Chem.Res. 2012, 45, 1268.
    (61) Labat, F.; Ciofini, I.; Adamo, C. J. Mater. Chem. 2012, 22, 12205.
    (62) Sodeyama, K.; Sumita, M.; O’Rourke, C.; Terranova, U.; Islam, A.; Han, L.; Bowler, D. R.; Tateyama, Y. J. Phys. Chem.Lett. 2012, 3, 472.
    (63) Perdew, J.; Levy, M. Phys. Rev. Lett. 1983, 51, 1884.
    (64) Terranova, U.; Bowler, D. R. J. Phys. Chem. C 2010, 114, 6491.

    QR CODE