簡易檢索 / 詳目顯示

研究生: Hailemariam
Hailemariam Kassa Bezabh
論文名稱: 從量子與第一原理分子動力學了解鋰離子電池的電解質特性
Understanding electrolyte property of lithium-ion battery from quantum and ab initio molecular dynamics
指導教授: 黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
口試委員: 黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
郭錦龍
Chin-Lung Kuo
吳恆良
Heng-Liang Wu
江志強
Jyh-Chiang Jiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 170
中文關鍵詞: 關鍵字電解質吸附能溶劑能傳輸性能相穩定性氧化穩定性雙摻雜空氣穩定性缺陷能量第一原理分子動力學(AIMD)密度泛函理論(DFT)
外文關鍵詞: Solvation energy, Oxidation stability, Dual-dopant, Defect energy, Ab initio molecular dynamics (AIMD), Density functional theory (DFT)
相關次數: 點閱:268下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高能量密度和安全性是開發下一代存儲材料的關鍵因素。為了滿足這些要求,鋰金屬被認為是鋰金屬電池中最有希望的負極材料,因為它的最高理論容量(3860 mAh/g)和最低還原電位(-3.04 V)對Li / Li +(V)。為了實現鋰金屬可充電二次電池,付出了令人難以置信的努力,並且已經取得了顯著的進展。然而,金屬鋰的反應性以及高壓陰極材料的催化性質極大地阻礙了它們的實際應用。鋰電池中的電解質研究表明,電解質的化學成分會極大地影響電池性能,進而導致無限的體積膨脹、電解質分解、隔膜滲透和電池短路。為了克服這些問題,在這項工作中,對液體電解質中實施了新的策略,例如穩定的SEI層形成添加劑、溶劑比例改性和氟化醚基電解質。還詳細理解了電解液和鋰陽極表面電解液的化學性質。此外,引入固態電解質也被認為是解決液態電解質中存在的問題的替代解決方案,此方法可以提供安全性,穩定性和高耐壓性。在這項工作中還重點研究了基於石榴石的電解質(LLZO)的固態,以解決水分/空氣穩定性並增強離子傳導性。為了實現這些目標,應用了量子和全始算分子動力學(AIMD)和試驗技術。
    我們的策略可減少安全性的問題,提供空氣/水分的穩定性並提高工作電壓,並滿足存儲材料的要求,從而使其易於擴大規模,提高安全性以及通往潛在市場的手段,從而在電動汽車和電網儲能中獲得廣泛認可。
    在我們的第一項工作中,報告了溶劑化結構對少量Li +氟代碳酸亞乙酯(FEC)/碳酸亞乙酯(EC)n, Li+(EC)n (n=1-4),然後使用密度泛函理論(DFT)設計濃縮的Li+FEC(EC)n(PF6-) (n=0-3)電解質。儘管Li+(EC)4的溶合能是理論計算中最低的團簇,但團簇的穩定性不能完全由溶合能決定,因此,吉布斯自由能團簇預測了在溶劑化結構中形成的最有利的團簇,發現Li+(EC) 4團簇是最穩定的結構。儘管稀溶液和濃電解質中純碳酸亞乙酯溶劑化的Li+離子物種的吉布斯自由能簇更穩定,但純碳酸亞乙酯溶劑化的Li +離子物種對Li +的吸附能陽極表面比碳酸亞乙酯和氟代碳酸亞乙酯共溶的Li +離子弱在稀釋和濃縮電解質中都可以使用。Li+FEC(EC)3和Li+FEC(EC)2PF6-稀釋和濃縮電解質也分別在鋰陽極表面上占主導地位。與不含陰離子的吸附物質相比,建議濃縮電解質中富陰離子的吸附物質,可分解形成更好的SEI,可以穩定鋰陽極。
    第二項工作重點於在FEC:TTE:EMC(以體積比為3:5:2)中以1 M LiPF6溶液開發含氟電解質的不易燃和高壓耐受性,以解決實際中引起的相不穩定性在1 M LiPF6中與FEC:TTE(按體積比為3:7)進行比較。選擇碳酸乙基甲酯(EMC)來解決相不穩定性。通過包含碳酸乙基甲酯,可以大大提高LiPF6中TTE的溶劑化能,並提高熱力學穩定性。在新設計的電解液中添加EMC(FEC:TTE:EMC中的1 M LiPF6(體積比為3:5:2))後,溶劑化結構從Li+(FEC)2(PF6-) to Li+(FEC)(EMC)(PF6-)並通過拉曼光譜法證實。正如理論和實驗技術所證實的,改進的電解質中Li +的轉移數也明顯增加。另外,新設計的電解質表現出大於5.3 V(vs. Li / Li +)的高氧化電勢,並顯著提高了Li || Li對稱電池中Li +的轉移數。分解後的電解液可為LIB的實際應用提供具有高氧化電位的穩定相。
    在最後的工作中,由於鋰離子電池(LIB)中有機電解質的化學不穩定性和安全性問題,固態石榴石(Li7La3Zr2O12)電解質目前是克服顯著問題的有前途的候選。然而,Li7La3Zr2O12的離子電導率仍然低於常見的電解質,並且在暴露於空氣中的Li+ / H +離子交換也阻礙了實際應用。因此引入了一種雙摻雜策略,通過使用Li(7-3x-y)Al3xLa3NbyZr2 yO12化學計量法,通過用Al + 3替代Li +和用Nb + 5替代Zr + 4來改善LIB和減少Li + / H +離子交換。Li6.42Al0.16La3Nb0.1Zr1.9O12 ((Al, Nb)-LLZO)立方結構的組成是在x = 0.16和y = 0.1時具有低活化能(0.216 eV)和高Li +遷移率的情況下實現的。 (Al, Nb)-LLZO的離子電導率達到4.16×10-3 S cm-1,比未摻雜的LLZO離子電導率還要好。另外, (Al, Nb)-LLZO幾乎不與潮濕空氣反應,而未摻雜的-LLZO容易反應並形成熱力學穩定。石榴石表面的雜質(LiOH,Li2CO3)在製備和暴露於空氣中(7天)的實驗性特徵也是如此。未摻雜對潮濕空氣的穩定性較差,而發現低雜質的 (Al, Nb)-LLZO具有較低的界面電阻。


    High energy density and safety are the key parameters for the development of
    next-generation storage materials. In fulfilling these requirements lithium metal is considered the most promising anode material in lithium metal battery due to its highest theoretical capacity (3860 mAh/g) and lowest reduction potential (-3.04 V) vs Li/Li+ (V). To realize lithium metal rechargeable secondary battery, incredible efforts are employed and notable progress has been made. However, the reactivity of metallic lithium as well as the catalytic nature of high-voltage cathode materials largely prevents their practical application. Electrolytes in lithium-based battery cells have shown that the chemical composition of electrolytes extremely affects the cell performance that induces infinite volume expansion, electrolyte decomposition, penetration of separator, and short-circuiting cell. To overcome these issues, in this work, new strategies in liquid electrolytes such as stable SEI layer forming additives, solvent ratio modification, and fluorinated ether-based electrolytes are implemented. Understanding the chemistry of the electrolyte in bulk and on the Li-anode surface also explores in detail. Besides, the introduction of solid-state electrolytes is also considered as the alternative solution for the issues that exist in liquid electrolytes which can offer safety, stability, and high voltage tolerance. This work also emphasizes solid-state specifically on the garnet based electrolyte(LLZO) to address moisture/air stability and enhance ionic conductivity. To achieve these aims, quantum and ab initio molecular dynamics (AIMD) and experimental techniques were applied. Our strategy allows us to alleviate the safety issue, air/moisture stability and enhance the operating voltage, and meets storage materials to gain widespread acceptance in electric vehicles and grid energy storage, as a result of its simplicity to scale up, increase safety, and a means to the potential market.
    In our first work, we report the effect of solvation structure on bulk electrolyte and adsorbed species on the Li-anode surface of diluted [Li+ fluoroethylene carbonate (FEC)/ethylene carbonate(EC)n, Li+(EC) n (n=1-4)], and concentrated (Li+FEC(EC)n(PF6-) (n=0-3) electrolyte design using density functional theory (DFT). Although the solvation energy of Li+(EC)4 is the lowest one among the calculated clusters the stability of the clusters cannot be exactly determined by the solvation energy. Hence, Gibbs free energy cluster predicts the most favored cluster formed in the solvation structure and it is found that Li+(EC)4 cluster is the most stable structure in the bulk phase of the diluted electrolyte. Though the Gibbs free energy cluster of pure EC solvated Li+-ion species in both dilute and concentrated electrolytes in bulk solution is more stable, the adsorption energy of pure EC-solvated Li+-ion species on Li+-anode surface was found weaker than EC and FEC co-solvated Li+-ion species in both diluted and concentrated electrolytes. Li+FEC(EC)3 and Li+FEC(EC)2PF-6 diluted and concentrated electrolyte, respectively also found the dominant species on the Li-anode surface. The decomposition of the anion-rich adsorbed species in the concentrated electrolyte is suggested to form a better SEI to stabilize Li-anode compared to anion-free adsorbed species.
    The second work is focused on the development of non-flammable and high-voltage tolerance of fluorine-containing electrolytes in 1 M LiPF6 in FEC: TTE: EMC (3:5:2 by vol. ratio) to resolve phase separation that causes in practical applications and made the comparison with FEC: TTE (3:7, by vol. ratio) in 1 M LiPF6. Ethyl methyl carbonate (EMC) is selected to resolve the phase separation. The solvation energy of TTE in LiPF6 can be greatly increased by the inclusion of EMC and achieve improved thermodynamic stability. Upon adding EMC in the newly designed electrolyte (1 M LiPF6 in FEC: TTE: EMC (3:5:2 by vol. ratio)), the solvation structure is altered from Li+(FEC)2(PF6-) to Li+(FEC)(EMC)(PF6-) and confirmed by Raman spectroscopy result. The transference number of Li+ in the improved electrolyte also evidently increases, as confirmed both theoretically and experimentally techniques. In addition, the new designed electrolyte exhibits high oxidation potential > 5.3 V (vs. Li/Li+) and significantly enhances the transference number of Li+ in Li||Li symmetric cell. The devolved electrolyte offers a stable phase with high oxidation potential for LIB’s practical application.
    In the final work, owing to the chemical instability and safety problem of organic electrolytes in a lithium-ion battery(LIB), a solid-state electrolyte such as garnet base (Li7La3Zr2O12) electrolyte is currently a promising candidate to overcome the notable problems. However, the ionic conductivity of Li7La3Zr2O12 remains lower than conventional electrolytes, and Li+/H+ ion-exchange during air exposure also hinders practical application. Introduced a dual-dopant strategy to improve LIB and to reduce the Li+/H+ ion exchange through replacing of Li+ with Al+3, and Zr+4 with Nb+5, using Li(7-3x-y)Al3xLa3NbyZr2yO12 stoichiometry The optimal composition of Li6.42Al0.16La3Nb0.1Zr1.9O12 ((Al, Nb)-LLZO) cubic structure is achieved with low activation energy (0.216 eV) and high Li+ mobility at x = 0.16 and y = 0.1. Ionic conductivity of the (Al, Nb)-LLZO) is achieved 4.16  10-3 S cm-1 which is one order greater than the undoped-LLZO. Additionally, (Al, Nb)-LLZO hardly reacts with humid air while undoped-LLZO is readily reacted and forms thermodynamically stable. Impurities (LiOH, Li2CO3) on the surface of garnet are also characterizing experimentally as prepared and after exposure to air (7-day). The undoped has poor stability against the humid air whereas (Al, Nb)-LLZO found low impurity provides low interfacial resistance.

    中文摘要 i Abstract v Acknowledgment ix Table of contents xi Index of figures xv Index of tables xxi Index of units and abbreviations xxiii Chapter 1: Introduction 1 1.1 Background of the study 1 1.2 Lithium rechargeable battery 3 1.3 Working principle of secondary battery: 4 1.4 Electrolyte 6 1.4.1 Liquid electrolyte 7 1.4.2 All solid-state electrolyte(ASSE) 13 1.5 Solid electrolyte interface (SEI) 14 Chapter 2: Challenges and approach to alleviating issues in lithium-ion battery 17 2.1 Issues in lithium metal batteries 17 2.2 Approach to mitigating the issues in lithium metal battery 18 2.2.1 Electrolyte additives 19 2.2.2 Concentrated electrolyte 22 2.2.3 Diluent high concentrated electrolyte 26 2.3 All solid -state electrolyte (ASSE) 30 2.3.1 Garnet type solid-state electrolyte 30 2.4 Motivation and objectives of the study 32 2.4.1 Motivation 32 2.4.2 Objectives of the study 33 Chapter 3: Theoretical background and methods 35 3.1 Introduction 35 3.2 Born-Oppenheimer approximation 35 3.3 Density functional theory 37 3.3.1 Thomas-Fermi-Dirac model 37 3.3.2 Hohenberg-Kohn theory 38 3.3.3 Kohn-Sham Ansatz 39 3.4 Approximations to the exchange-correlation functional 41 3.4.1 Local density approximation(LDA) 41 3.4.2 Generalized gradient approximation (GGA) 42 3.5 Hybrid functional 43 3.5.1 PBE0 functional 44 3.5.2 B3LYP 44 3.6 Ab initio molecular dynamics (AIMD) 46 3.7 Theoretical and experimental details 46 3.7.1 Quantum calculation 46 3.7.2. AIMD for liquid electrolyte 49 3.7.3 AIMD for a solid-state electrolyte 52 3.7.4 Experimental details 54 Chapter 4: Roles of film-forming additives in diluted and concentrated electrolytes for Lithium metal batteries: a density functional theory-based approach 57 4.1 Introduction 57 4.2 Result and discussion 59 4.2.1. Estimation of electrochemical potential 59 4.2.2. Li+-ion solvation in diluted electrolytes 60 4.2.4. Calculation of adsorption energy 66 4.3 Summary 70 Chapter 5: Bridging role of ethyl methyl carbonate in fluorinated electrolyte on ionic transport and phase stability for lithium-ion batteries 71 5.1 Introduction 71 5.2 Results and Discussion 73 5.2.1 Solvation structure 79 5.2.2 Raman spectroscopy measurements 83 5.2.3 Temperature effect on pair correlation 84 5.2.4 Transport properties 86 5.3. Summary 89 Chapter 6: Dual-doping effects to boost lithium-ion mobility and air stability in the garnet based Li7La3Zr2O12 electrolyte 91 6.1 Introduction 91 6.2 Result and discussion 93 6.2.1 Dopant stability 93 6.2.2 Activation energy 94 6.2.3. Lithium distribution 97 6.2.4 Air stability 99 6.3 Summary 105 Chapter 7: Conclusion and future outlook 107 7.1 Conclusions 107 7.2 Future outlook 108 Reference 111 List of publication 139 Conference presentation 140

    Poizot, P.; Dolhem, F.; Science, E., Clean energy new deal for a sustainable world: from non-CO 2 generating energy sources to greener electrochemical storage devices. Energy & Environmental Science 2011, 4 (6), 2003-2019.
    2. Panwar, N.; Kaushik, S.; Kothari, S., Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews 2011, 15 (3), 1513-1524.
    3. Thackeray, M. M.; Wolverton, C.; Isaacs, E. D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries. Energy Environmental Science 2012, 5 (7), 7854-7863.
    4. Zhou, H., New energy storage devices for post lithium-ion batteries. Energy Environmental Science 2013, 6 (8), 2256-2256.
    5. Choi, N. S.; Chen, Z.; Freunberger, S. A.; Ji, X.; Sun, Y. K.; Amine, K.; Yushin, G.; Nazar, L. F.; Cho, J.; Bruce, P. G., Challenges facing lithium batteries and electrical double‐layer capacitors. Angewandte Chemie International Edition 2012, 51 (40), 9994-10024.
    6. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J., Electrochemical energy storage for green grid. Chemical reviews 2011, 111 (5), 3577-3613.
    7. Scrosati, B., Recent advances in lithium ion battery materials. Electrochimica Acta 2000, 45 (15–16), 2461-2466.
    8. Vetter, J.; Novák, P.; Wagner, M. R.; Veit, C.; Möller, K. C.; Besenhard, J. O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.; Hammouche, A., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources 2005, 147 (1–2), 269-281.
    9. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    10. Palacin, M. R., Recent advances in rechargeable battery materials: a chemist’s perspective. Chemical Society Reviews 2009, 38 (9), 2565-2575.
    11. Liu, J.; Zhang, J. G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J., Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Advanced Functional Materials 2013, 23 (8), 929-946.
    12. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Physical Chemistry Chemical Physics 2015, 17 (7), 4799-4844.
    13. Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gröting, M.; Albe, K.; Hess, C.; Jaegermann, W., Fundamental degradation mechanisms of layered oxide Li-ion battery cathode materials: Methodology, insights and novel approaches. Materials Science and Engineering 2015, 192, 3-25.
    14. Bruce, P. G., Solid state electrochemistry. Cambridge university press: 1997; Vol. 5.
    15. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews 2004, 104 (10), 4303-4418.
    16. Li, Q.; Chen, J.; Fan, L.; Kong, X.; Lu, Y., Progress in electrolytes for rechargeable Li-based batteries and beyond. Green Energy & Environment 2016, 1 (1), 18-42.
    17. Cheng, X.-B.; Yan, C.; Zhang, X.-Q.; Liu, H.; Zhang, Q., Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Letters 2018, 3 (7), 1564-1570.
    18. Takada, K., Progress in solid electrolytes toward realizing solid-state lithium batteries. Journal of Power Sources 2018, 394, 74-85.
    19. Zhang, X.-Q.; Zhao, C.-Z.; Huang, J.-Q.; Zhang, Q., Recent advances in energy chemical engineering of next-generation lithium batteries. Engineering 2018, 4 (6), 831-847.
    20. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
    21. Zhang, X.; Cheng, X.; Zhang, Q., Nanostructured energy materials for electrochemical energy conversion and storage: a review. Journal of energy chemistry 2016, 25 (6), 967-984.
    22. Verma, P.; Maire, P.; Novák, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochimica Acta 2010, 55 (22), 6332-6341.
    23. Saito, T.; Ikeda, H.; Matsuda, Y.; Tamura, H., The properties of some mixed organic electrolyte solutions and their effects on the anodic performances of Mg electrodes. Journal of Applied Electrochemistry 1976, 6 (1), 85-88.
    24. Matsuda, Y.; Satake, H., Mixed electrolyte solutions of propylene carbonate and dimethoxyethane for high energy density batteries. JElS 1980, 127, 877-879.
    25. Nowak, S.; Winter, M., Chemical analysis for a better understanding of aging and degradation mechanisms of non-aqueous electrolytes for lithium ion batteries: method development, application and lessons learned. Journal of The Electrochemical Society 2015, 162 (14), A2500.
    26. Matsuda, Y.; Morita, M.; Kosaka, K., Conductivity of the Mixed Organic Electrolyte Containing Propylene Carbonate and 1, 2‐Dimethoxyethane. Journal of the Electrochemical Society 1983, 130 (1), 101.
    27. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical reviews 2014, 114 (23), 11503-11618.
    28. Gnanaraj, J. S.; Levi, M. D.; Gofer, Y.; Aurbach, D.; Schmidt, M., LiPF3 (  CF 2 CF 3 ) 3 :  A Salt for Rechargeable Lithium Ion Batteries. Journal of The Electrochemical Society 2003, 150 (4), A445-A454.
    29. Membreño, N.; Park, K.; Goodenough, J. B.; Stevenson, K. J., Electrode/Electrolyte Interface of Composite α-Li3V2(PO4)3 Cathodes in a Nonaqueous Electrolyte for Lithium Ion Batteries and the Role of the Carbon Additive. Chemistry of Materials 2015, 27 (9), 3332-3340.
    30. Wotango, A. S.; Su, W.-N.; Leggesse, E. G.; Haregewoin, A. M.; Lin, M.-H.; Zegeye, T. A.; Cheng, J.-H.; Hwang, B.-J., Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF6 Decomposition. ACS Applied Materials & Interfaces 2017, 9 (3), 2410-2420.
    31. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard investigations of LiClO4/dioxolane electrolyte. Journal of The Electrochemical Society 1980, 127 (9), 2025-2027.
    32. Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H.-J., Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochimica Acta 2004, 50 (2–3), 247-254.
    33. Jow, T. R.; Xu, K.; Borodin, O.; Makoto, U., Electrolytes for lithium and lithium-ion batteries. Springer: 2014; Vol. 58.
    34. Manthiram, A.; Yu, X., Wang, Shaofei, Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
    35. Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M., New horizons for inorganic solid state ion conductors. Energy Environmental Science 2018, 11 (8), 1945-1976.
    36. Zhu, Y.; He, X.; Mo, Y.; interfaces, Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. Applied Materials & Interfaces 2015, 7 (42), 23685-23693.
    37. Han, F.; Zhu, Y.; He, X.; Mo, Y.; Wang, C., Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes. Advanced Energy Materials 2016, 6 (8), 1501590.
    38. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46 (41), 7778-7781.
    39. Han, X.; Gong, Y.; Fu, K. K.; He, X.; Hitz, G. T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G., Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature materials 2017, 16 (5), 572-579.
    40. Cao, S.; Song, S.; Xiang, X.; Hu, Q.; Zhang, C.; Xia, Z.; Xu, Y.; Zha, W.; Li, J.; Gonzale, P. M., Modeling, Preparation, and Elemental Doping of Li 7 La 3 Zr 2 O 12 Garnet-Type Solid Electrolytes: A Review. Journal of the Korean Ceramic Society 2019, 56 (2), 111-129.
    41. Yu, S.; Siegel, D., Grain boundary contributions to Li-ion transport in the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials 2017, 29 (22), 9639-9647.
    42. Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model. Journal of The Electrochemical Society 1979, 126 (12), 2047.
    43. Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Wei, F.; Zhang, J. G.; Zhang, Q., A review of solid electrolyte interphases on lithium metal anode. Advanced Science 2016, 3 (3), 1500213.
    44. Qian, Y.; Hu, S.; Zou, X.; Deng, Z.; Xu, Y.; Cao, Z.; Kang, Y.; Deng, Y.; Shi, Q.; Xu, K.; Deng, Y., How electrolyte additives work in Li-ion batteries. Energy Storage Materials 2018.
    45. Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Björefors, F.; Edström, K.; Younesi, R., SEI Formation and Interfacial Stability of a Si Electrode in a LiTDI-Salt Based Electrolyte with FEC and VC Additives for Li-Ion Batteries. ACS Applied Materials & Interfaces 2016, 8 (24), 15758-15766.
    46. Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L., Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation. Chemistry of Materials 2016, 28 (22), 8149-8159.
    47. Yu, X.; Manthiram, A., Electrode–electrolyte interfaces in lithium-based batteries. Energy Environmental Science 2018, 11 (3), 527-543.
    48. Zuo, T. T.; Wu, X. W.; Yang, C. P.; Yin, Y. X.; Ye, H.; Li, N. W.; Guo, Y. G., Graphitized carbon fibers as multifunctional 3D current collectors for high areal capacity Li anodes. Advanced materials 2017, 29 (29), 1700389.
    49. Fu, K. K.; Gong, Y.; Hitz, G. T.; McOwen, D. W.; Li, Y.; Xu, S.; Wen, Y.; Zhang, L.; Wang, C.; Pastel, G., Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal–sulfur batteries. Energ Environmental Science 2017, 10 (7), 1568-1575.
    50. Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.-b.; Kang, F.; Li, B., Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. Journal of Power Sources 2018, 389, 120-134.
    51. Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J.-G.; Xu, W., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy 2017, 2 (3), 1-8.
    52. Zhou, K.; Hu, M.; He, Y.-b.; Yang, L.; Han, C.; Lv, R.; Kang, F.; Li, B., Transition metal assisted synthesis of tunable pore structure carbon with high performance as sodium/lithium ion battery anode. Carbon 2018, 129, 667-673.
    53. Basile, A.; Bhatt, A. I.; O’Mullane, A. P., Stabilizing lithium metal using ionic liquids for long-lived batteries. Nature communications 2016, 7 (1), 1-11.
    54. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy & Environmental Science 2016, 9 (6), 1955-1988.
    55. Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q., Toward safe lithium metal anode in rechargeable batteries: a review. Chemical reviews 2017, 117 (15), 10403-10473.
    56. Lu, J.; Chen, Z.; Pan, F.; Cui, Y.; Amine, K., High-performance anode materials for rechargeable lithium-ion batteries. Electrochemical Energy Reviews 2018, 1 (1), 35-53.
    57. Zhao, H.; Yu, X.; Li, J.; Li, B.; Shao, H.; Li, L.; Deng, Y., Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook. Journal of Materials Chemistry A 2019, 7 (15), 8700-8722.
    58. Xue, Z.; He, D.; Xie, X., Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. Journal of Materials Chemistry A 2015, 3 (38), 19218-19253.
    59. Haregewoin, A. M.; Wotango, A. S.; Hwang, B.-J., Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environmental Science 2016, 9 (6), 1955-1988.
    60. Zhang, Y.; Wang, L.; Feng, H.; Zhang, A.; Zhang, C.; Zhang, P., Effect of SO 2 and CO 2 additives on the cycle performances of commercial lithium-ion batteries. Ionics 2011, 17 (8), 677.
    61. Wrodnigg, G. H.; Besenhard, J. O.; Winter, M., Cyclic and acyclic sulfites: new solvents and electrolyte additives for lithium ion batteries with graphitic anodes? Journal of power sources 2001, 97, 592-594.
    62. Naji, A.; Ghanbaja, J.; Willmann, P.; Billaud, D., New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries. J Electrochimica acta 2000, 45 (12), 1893-1899.
    63. Wang, A.; Kadam, S.; Li, H.; Shi, S.; Qi, Y., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. Computational materials science 2018, 4 (1), 1-26.
    64. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q. J. A. F. M., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Material 2017, 27 (10), 1605989.
    65. Liu, Q. C.; Xu, J. J.; Yuan, S.; Chang, Z. W.; Xu, D.; Yin, Y. B.; Li, L.; Zhong, H. X.; Jiang, Y. S.; Yan, J. M., Artificial protection film on lithium metal anode toward long‐cycle‐life lithium–oxygen batteries. Advanced Materials 2015, 27 (35), 5241-5247.
    66. Lu, Y.; Tu, Z.; Archer, L. A., Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nature materials 2014, 13 (10), 961-969.
    67. Yamada, Y.; Yamada, A., Superconcentrated electrolytes for lithium batteries. Journal of The Electrochemical Society 2015, 162 (14), A2406.
    68. Zheng, J.; Lochala, J. A.; Kwok, A.; Deng, Z. D.; Xiao, J., Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Advanced Science 2017, 4 (8), 1700032.
    69. McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. J. E.; Science, E., Concentrated electrolytes: decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy Environmental Science 2014, 7 (1), 416-426.
    70. Zhang, C.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Moon, H.; Mandai, T.; Umebayashi, Y.; Dokko, K.; Watanabe, M., Chelate effects in glyme/lithium bis (trifluoromethanesulfonyl) amide solvate ionic liquids. I. Stability of solvate cations and correlation with electrolyte properties. The Journal of Physical Chemistry B 2014, 118 (19), 5144-5153.
    71. Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. Journal of the American Chemical Society 2014, 136 (13), 5039-5046.
    72. Katon, J.; Cohen, M., The vibrational spectra and structure of dimethyl carbonate and its conformational behavior. Canadian Journal of Chemistry 1975, 53 (9), 1378-1386.
    73. Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M., Solvent activity in electrolyte solutions controls electrochemical reactions in Li-ion and Li-sulfur batteries. The Journal of Physical Chemistry C 2015, 119 (8), 3957-3970.
    74. Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A., Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nature Communications 2016, 7 (1), 1-9.
    75. Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J.-W.; Ueno, K.; Seki, S.; Serizawa, N., Solvate ionic liquid electrolyte for Li–S batteries. Journal of The Electrochemical Society 2013, 160 (8), A1304.
    76. Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A., Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy 2019, 4 (4), 269-280.
    77. Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G., High‐Voltage Lithium‐Metal Batteries Enabled by Localized High‐Concentration Electrolytes. Advanced Materials 2018, 30 (21), 1706102.
    78. Thangadurai, V.; Narayanan, S.; Pinzaru, D., Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews 2014, 43 (13), 4714-4727.
    79. Pervez, S. A.; Cambaz, M. A.; Thangadurai, V.; Fichtner, M., Interface in solid-state lithium battery: challenges, progress, and outlook. ACS applied materials interfaces 2019, 11 (25), 22029-22050.
    80. Lan, W.; Fan, H.; Lau, V. W.-h.; Zhang, J.; Zhang, J.; Zhao, R.; Chen, H.; Fuels, Realizing Li 7 La 3 Zr 2 O 12 garnets with high Li+ conductivity and dense microstructures by Ga/Nb dual substitution for lithium solid-state battery applications. Sustainable Energy 2020, 4 (4), 1812-1821.
    81. Thompson, T.; Yu, S.; Williams, L.; Schmidt, R. D.; Garcia-Mendez, R.; Wolfenstine, J.; Allen, J. L.; Kioupakis, E.; Siegel, D. J.; Sakamoto, J., Electrochemical window of the Li-ion solid electrolyte Li7La3Zr2O12. ACS Energy Letters 2017, 2 (2), 462-468.
    82. Murugan, R.; Thangadurai, V.; Weppner, W., Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angewandte Chemie International Edition 2007, 46 (41), 7778-7781.
    83. Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W. J. J., Solid garnet batteries. joule 2019, 3 (5), 1190-1199.
    84. Wang, X.; Xia, Y.; Hu, J.; Xia, Y.; Zhuang, Z.; Guo, L.; Lu, H.; Zhang, T.; Fang, Q. J. S. S. I., Phase transition and conductivity improvement of tetragonal fast lithium ionic electrolyte Li7La3Zr2O12. Solid State Ionics 2013, 253, 137-142.
    85. Li, C.; Liu, Y.; He, J.; Brinkman, K. S., Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors. Journal of Alloys and Compounds 2017, 695, 3744-3752.
    86. Huang, M.; Dumon, A.; Nan, C.-W., Effect of Si, In and Ge doping on high ionic conductivity of Li7La3Zr2O12. Electrochemistry Communications 2012, 21, 62-64.
    87. Kotobuki, M.; Kanamura, K.; Sato, Y.; Yoshida, T., Fabrication of all-solid-state lithium battery with lithium metal anode using Al2O3-added Li7La3Zr2O12 solid electrolyte. Journal of Power Sources 2011, 196 (18), 7750-7754.
    88. Allen, J. L.; Wolfenstine, J.; Rangasamy, E.; Sakamoto, J., Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. Journal of Power Sources 2012, 206, 315-319.
    89. Miara, L. J.; Richards, W. D.; Wang, Y. E.; Ceder, G., First-principles studies on cation dopants and electrolyte| cathode interphases for lithium garnets. Chemistry of Materials 2015, 27 (11), 4040-4047.
    90. .Levine, I. N., Quantum chemistry. Fifth ed.; Allyn Bacon: 2000; pp 1-11.
    91. Zettili, N., Quantum mechanics: concepts and applications. second ed.; John Wiley & Sons: 2009; pp 1-10.
    92. Born, M.; Oppenheimer, R., Zur quantentheorie der molekeln. Annalen der physik 1927, 389 (20), 457-484.
    93. Fermi, E., Statistical method to determine some properties of atoms. Rend. Accad. Naz. Lincei 1927, 6 (602-607), 5.
    94. Thomas, L. H. In The calculation of atomic fields, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press: 1927; pp 542-548.
    95. Dirac, P. A. In Note on exchange phenomena in the Thomas atom, Mathematical Proceedings of the Cambridge Philosophical Society, Cambridge University Press: 1930; pp 376-385.
    96. Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review B 1964, 136 (3B), B864.
    97. Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Physical review 1965, 140 (4A), A1133.
    98. Vosko, S. H.; Wilk, L.; Nusair, M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of physics 1980, 58 (8), 1200-1211.
    99. Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B 1992, 46 (11), 6671.
    100. Harris, J.; Jones, R., The surface energy of a bounded electron gas. Journal of Physics 1974, 4 (8), 1170.
    101. Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
    102. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model. The Journal of chemical physics 1999, 110 (13), 6158-6170.
    103. Becke, A. D., Density‐functional thermochemistry. I. The effect of the exchange‐only gradient correction. The Journal of chemical physics 1992, 96 (3), 2155-2160.
    104. Riley, K. E.; Op't Holt, B. T.; Merz, K. M.; computation, Critical assessment of the performance of density functional methods for several atomic and molecular properties. Journal of chemical theory 2007, 3 (2), 407-433.
    105. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J., General performance of density functionals. Journal of Physical Chemistry A 2007, 111 (42), 10439-10452.
    106. Cramer, C. J. I., New York, Essentials of computational chemistry: Theories and models John Wiley & Sons. 2004.
    107. Lee, C.; Yang, W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B 1988, 37 (2), 785.
    108. Frisch, M. J.; Pople, J. A.; Binkley, J. S., Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. The Journal of chemical physics 1984, 80 (7), 3265-3269.
    109. Xu, M.; Liu, Y.; Li, B.; Li, W.; Li, X.; Hu, S., Tris (pentafluorophenyl) phosphine: An electrolyte additive for high voltage Li-ion batteries. Electrochemistry communications 2012, 18, 123-126.
    110. Xing, L.; Li, W.; Xu, M.; Li, T.; Zhou, L., The reductive mechanism of ethylene sulfite as solid electrolyte interphase film-forming additive for lithium ion battery. Journal of Power Sources 2011, 196 (16), 7044-7047.
    111. Xing, L.; Zheng, X.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q.; Li, W., Deciphering the ethylene carbonate–propylene carbonate mystery in Li-ion batteries. Accounts of chemical research 2018, 51 (2), 282-289.
    112. Ding, W.; Lei, X.; Ouyang, C., Coordination of lithium ion with ethylene carbonate electrolyte solvent: a computational study. International Journal of quantum chemistry 2016, 116 (2), 97-102.
    113. Alaşalvar, C.; Öztürk, N.; Alaa, A.-M.; Gökce, H.; El-Azab, A. S.; El-Gendy, M. A.; Sert, Y., Molecular structure, Hirshfeld surface analysis, spectroscopic (FT-IR, Laser-Raman, UV–vis. and NMR), HOMO-LUMO and NBO investigations on N-(12-amino-9, 10-dihydro-9, 10-ethanoanthracen-11-yl)-4-methylbenzenesulfonamide. Journal of Molecular Structure 2018, 1171, 696-705.
    114. Bezabh, H. K.; Tsai, M.-C.; Hagos, T. T.; Beyene, T. T.; Berhe, G. B.; Hagos, T. M.; Abrha, L. H.; Chiu, S.-F.; Su, W.-N.; Hwang, B. J., Roles of film-forming additives in diluted and concentrated electrolytes for lithium metal batteries: A density functional theory-based approach. Electrochemistry Communications 2020, 113, 106685.
    115. Trasatti, S., The absolute electrode potential: an explanatory note (Recommendations 1986). Pure and Applied Chemistry 1986, 58 (7), 955-966.
    116. Isse, A. A.; Gennaro, A., Absolute potential of the standard hydrogen electrode and the problem of interconversion of potentials in different solvents. The Journal of Physical Chemistry B 2010, 114 (23), 7894-7899.
    117. Borodin, O.; Behl, W.; Jow, T. R., Oxidative stability and initial decomposition reactions of carbonate, sulfone, and alkyl phosphate-based electrolytes. The Journal of Physical Chemistry C 2013, 117 (17), 8661-8682.
    118. Aurbach, D.; Gamolsky, K.; Markovsky, B.; Gofer, Y.; Schmidt, M.; Heider, U., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica Acta 2002, 47 (9), 1423-1439.
    119. Blöchl, P. E. J. P. r. B., Projector augmented-wave method. 1994, 50 (24), 17953.
    120. Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
    121. Kresse, G.; Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational materials science 1996, 6 (1), 15-50.
    122. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics 1984, 81 (1), 511-519.
    123. Yu, S.; Schmidt, R. D.; Garcia-Mendez, R.; Herbert, E.; Dudney, N. J.; Wolfenstine, J. B.; Sakamoto, J.; Siegel, D. J., Elastic properties of the solid electrolyte Li7La3Zr2O12 (LLZO). Chemistry of Materials 2016, 28 (1), 197-206.
    124. Jalem, R.; Nakayama, M.; Manalastas Jr, W.; Kilner, J. A.; Grimes, R. W.; Kasuga, T.; Kanamura, K., Insights into the lithium-ion conduction mechanism of garnet-type cubic Li5La3Ta2O12 by ab-initio calculations. The Journal of Physical Chemistry C 2015, 119 (36), 20783-20791.
    125. Martinez-Juarez, A.; Pecharromán, C.; Iglesias, J. E.; Rojo, J. M., Relationship between activation energy and bottleneck size for Li+ ion conduction in NASICON materials of composition LiMM ‘(PO4) 3; M, M ‘= Ge, Ti, Sn, Hf. The Journal of Physical Chemistry B 1998, 102 (2), 372-375.
    126. Marcolongo, A.; Marzari, N., Ionic correlations and failure of Nernst-Einstein relation in solid-state electrolytes. Physical Review Materials 2017, 1 (2), 025402.
    127. Abrha, L. H.; Zegeye, T. A.; Hagos, T. T.; Sutiono, H.; Hagos, T. M.; Berhe, G. B.; Huang, C.-J.; Jiang, S.-K.; Su, W.-N.; Yang, Y.-W., Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochimica Acta 2019, 325, 134825.
    128. Scrosati, B., History of lithium batteries. Journal of solid state electrochemistry 2011, 15 (7-8), 1623-1630.
    129. Bhatt, M. D.; O'Dwyer, C., Recent progress in theoretical and computational investigations of Li-ion battery materials and electrolytes. Phys Chem Chem Phys 2015, 17 (7), 4799-844.
    130. Tripathi, A. M.; Su, W.-N.; Hwang, B. J., In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 2018, 47 (3), 736-851.
    131. Wotango, A. S.; Su, W.-N.; Haregewoin, A. M.; Chen, H.-M.; Cheng, J.-H.; Lin, M.-H.; Wang, C.-H.; Hwang, B. J., Designed synergetic effect of electrolyte additives to improve interfacial chemistry of MCMB electrode in propylene carbonate-based electrolyte for enhanced low and room temperature performance. ACS applied materials & interfaces 2018, 10 (30), 25252-25262.
    132. Ong, M. T.; Verners, O.; Draeger, E. W.; Van Duin, A. C.; Lordi, V.; Pask, J. E., Lithium ion solvation and diffusion in bulk organic electrolytes from first-principles and classical reactive molecular dynamics. The Journal of Physical Chemistry B 2015, 119 (4), 1535-1545.
    133. Jiang, B.; Ponnuchamy, V.; Shen, Y.; Yang, X.; Yuan, K.; Vetere, V.; Mossa, S.; Skarmoutsos, I.; Zhang, Y.; Zheng, J., The anion effect on Li+ ion coordination structure in ethylene carbonate solutions. The journal of physical chemistry letters 2016, 7 (18), 3554-3559.
    134. Seo, D. M.; Reininger, S.; Kutcher, M.; Redmond, K.; Euler, W. B.; Lucht, B. L., Role of mixed solvation and ion pairing in the solution structure of lithium ion battery electrolytes. The Journal of Physical Chemistry C 2015, 119 (25), 14038-14046.
    135. Delp, S. A.; Borodin, O.; Olguin, M.; Eisner, C. G.; Allen, J. L.; Jow, T. R., Importance of reduction and oxidation stability of high voltage electrolytes and additives. Electrochim. Acta 2016, 209, 498-510.
    136. Yan, C.; Cheng, X. B.; Tian, Y.; Chen, X.; Zhang, X. Q.; Li, W. J.; Huang, J. Q.; Zhang, Q., Dual‐layered film protected lithium metal anode to enable dendrite‐free lithium deposition. Adv. Mater. 2018, 30 (25), 1707629.
    137. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G., High rate and stable cycling of lithium metal anode. Nature communications 2015, 6, 6362.
    138. Yan, C.; Li, H.-R.; Chen, X.; Zhang, X.-Q.; Cheng, X.-B.; Xu, R.; Huang, J.-Q.; Zhang, Q., Regulating the inner Helmholtz plane for stable solid electrolyte interphase on lithium metal anodes. J. Am. Chem. Soc. 2019, 141 (23), 9422-9429.
    139. Wu, N.; Shi, Y.-R.; Jia, T.; Du, X.-N.; Yin, Y.-X.; Xin, S.; Guo, Y.-G., Green in Situ Growth Solid Electrolyte Interphase Layer with High Rebound Resilience for Long-Life Lithium Metal Anodes. ACS applied materials & interfaces 2019, 11 (46), 43200-43205.
    140. Wu, N.; Shi, Y. R.; Lang, S. Y.; Zhou, J. M.; Liang, J. Y.; Wang, W.; Tan, S. J.; Yin, Y. X.; Wen, R.; Guo, Y. G., Self‐Healable Solid Polymeric Electrolytes for Stable and Flexible Lithium Metal Batteries. Angew. Chem. Int. Ed. 2019, 58 (50), 18146-18149.
    141. Ganesh, P.; Jiang, D.-e.; Kent, P., Accurate static and dynamic properties of liquid electrolytes for Li-ion batteries from ab initio molecular dynamics. J. Phys. Chem. B 2011, 115 (12), 3085-3090.
    142. Bhatt, M. D.; Cho, M.; Cho, K., Conduction of Li+ cations in ethylene carbonate (EC) and propylene carbonate (PC): comparative studies using density functional theory. J. Solid State Electrochem. 2012, 16 (2), 435-441.
    143. Wang, Y.; Xing, L.; Borodin, O.; Huang, W.; Xu, M.; Li, X.; Li, W., Quantum chemistry study of the oxidation-induced stability and decomposition of propylene carbonate-containing complexes. PCCP 2014, 16 (14), 6560-6567.
    144. Wang, Y.; Li, D.; Yu, X.; Shang, C.; Liu, Y.; Wang, Q., Structures of FEC-containing electrolytes and the stabilization mechanism at high voltage and elevated temperature. PCCP 2018, 20 (30), 19885-19891.
    145. Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Björefors, F.; Edström, K.; Gustafsson, T. r., Improved performance of the silicon anode for Li-ion batteries: understanding the surface modification mechanism of fluoroethylene carbonate as an effective electrolyte additive. Chem. Mater. 2015, 27 (7), 2591-2599.
    146. Xu, S.-D.; Zhuang, Q.-C.; Wang, J.; Xu, Y.-Q.; Zhu, Y.-B., New insight into vinylethylene carbonate as a film forming additive to ethylene carbonate-based electrolytes for lithium-ion batteries. Int. J. Electrochem. Sci 2013, 8 (6), 8058-8076.
    147. Hou, T.; Yang, G.; Rajput, N. N.; Self, J.; Park, S.-W.; Nanda, J.; Persson, K. A., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy 2019, 64, 103881.
    148. Su, C.-C.; He, M.; Amine, R.; Rojas, T.; Cheng, L.; Ngo, A. T.; Amine, K., Solvating power series of electrolyte solvents for lithium batteries. Energy & Environmental Science 2019, 12 (4), 1249-1254.
    149. Chen, X.; Zhang, X. Q.; Li, H. R.; Zhang, Q., Cation− Solvent, Cation− Anion, and Solvent− Solvent Interactions with Electrolyte Solvation in Lithium Batteries. Batteries & Supercaps 2019, 2 (2), 128-131.
    150. Åvall, G.; Mindemark, J.; Brandell, D.; Johansson, P., Sodium‐Ion Battery Electrolytes: Modeling and Simulations. Advanced Energy Materials 2018, 8 (17), 1703036.
    151. Chen, X.; Li, H. R.; Shen, X.; Zhang, Q., The Origin of the Reduced Reductive Stability of Ion–Solvent Complexes on Alkali and Alkaline Earth Metal Anodes. Angew. Chem. Int. Ed. 2018, 57 (51), 16643-16647.
    152. Skarmoutsos, I.; Ponnuchamy, V.; Vetere, V.; Mossa, S., Li+ solvation in pure, binary, and ternary mixtures of organic carbonate electrolytes. The Journal of Physical Chemistry C 2015, 119 (9), 4502-4515.
    153. Valencia, H.; Kohyama, M.; Tanaka, S.; Matsumoto, H., Ab initio study of EMIM-BF 4 molecule adsorption on Li surfaces as a model for ionic liquid/Li interfaces in Li-ion batteries. Physical Review B 2008, 78 (20), 205402.
    154. Camacho-Forero, L. E.; Smith, T. W.; Bertolini, S.; Balbuena, P. B., Reactivity at the lithium–metal anode surface of lithium–sulfur batteries. The Journal of Physical Chemistry C 2015, 119 (48), 26828-26839.
    155. Zhu, J.; Wierzbicki, T.; Li, W., A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J. Power Sources 2018, 378, 153-168.
    156. Abada, S.; Marlair, G.; Lecocq, A.; Petit, M.; Sauvant-Moynot, V.; Huet, F., Safety focused modeling of lithium-ion batteries: A review. Journal of Power Sources 2016, 306, 178-192.
    157. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chemistry of materials 2010, 22 (3), 587-603.
    158. Tenney, C. M.; Cygan, R. T., Analysis of molecular clusters in simulations of lithium-ion battery electrolytes. The Journal of Physical Chemistry C 2013, 117 (47), 24673-24684.
    159. Golubkov, A. W.; Fuchs, D.; Wagner, J.; Wiltsche, H.; Stangl, C.; Fauler, G.; Voitic, G.; Thaler, A.; Hacker, V., Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes. Rsc Advances 2014, 4 (7), 3633-3642.
    160. Scrosati, B.; Hassoun, J.; Sun, Y.-K., Lithium-ion batteries. A look into the future. Energy & Environmental Science 2011, 4 (9), 3287-3295.
    161. Nakayama, M.; Wada, S.; Kuroki, S.; Nogami, M., Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly (ethylene oxide)-based solid polymer electrolytes. Energy & Environmental Science 2010, 3 (12), 1995-2002.
    162. Kaneko, F.; Wada, S.; Nakayama, M.; Wakihara, M.; Koki, J.; Kuroki, S., Capacity Fading Mechanism in All Solid‐State Lithium Polymer Secondary Batteries Using PEG‐Borate/Aluminate Ester as Plasticizer for Polymer Electrolytes. Advanced Functional Materials 2009, 19 (6), 918-925.
    163. Kim, C. K.; Shin, D. S.; Kim, K. E.; Shin, K.; Woo, J. J.; Kim, S.; Hong, S. Y.; Choi, N. S., Fluorinated Hyperbranched Cyclotriphosphazene Simultaneously Enhances the Safety and Electrochemical Performance of High‐Voltage Lithium‐Ion Batteries. ChemElectroChem 2016, 3 (6), 913-921.
    164. Han, J.-G.; Lee, J. B.; Cha, A.; Lee, T. K.; Cho, W.; Chae, S.; Kang, S. J.; Kwak, S. K.; Cho, J.; Hong, S. Y., Unsymmetrical fluorinated malonatoborate as an amphoteric additive for high-energy-density lithium-ion batteries. Energy & Environmental Science 2018, 11 (6), 1552-1562.
    165. Wang, L.; Ma, Y.; Li, Q.; Zhou, Z.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin, G., 1, 3, 6-Hexanetricarbonitrile as electrolyte additive for enhancing electrochemical performance of high voltage Li-rich layered oxide cathode. Journal of Power Sources 2017, 361, 227-236.
    166. Xia, L.; Yu, L.; Hu, D.; Chen, G. Z., Electrolytes for electrochemical energy storage. Materials Chemistry Frontiers 2017, 1 (4), 584-618.
    167. Tornheim, A.; Sharifi-Asl, S.; Garcia, J. C.; Bareño, J.; Iddir, H.; Shahbazian-Yassar, R.; Zhang, Z., Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds. Nano Energy 2019, 55, 216-225.
    168. Kerner, M.; Lim, D.-H.; Jeschke, S.; Rydholm, T.; Ahn, J.-H.; Scheers, J., Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality. Journal of Power Sources 2016, 332, 204-212.
    169. Su, C.-C.; He, M.; Redfern, P. C.; Curtiss, L. A.; Shkrob, I. A.; Zhang, Z., Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries. Energy & Environmental Science 2017, 10 (4), 900-904.
    170. Flamme, B.; Haddad, M.; Phansavath, P.; Ratovelomanana‐Vidal, V.; Chagnes, A., Anodic stability of new sulfone‐based electrolytes for lithium‐ion batteries. ChemElectroChem 2018, 5 (16), 2279-2287.
    171. Hu, L.; Amine, K.; Zhang, Z., Fluorinated electrolytes for 5-V Li-ion chemistry: Dramatic enhancement of LiNi0. 5Mn1. 5O4/graphite cell performance by a lithium reservoir. Electrochemistry communications 2014, 44, 34-37.
    172. Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K., Fluorinated electrolytes for 5 V lithium-ion battery chemistry. Energy & Environmental Science 2013, 6 (6), 1806-1810.
    173. Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H., Thermal stability and electrochemical properties of fluorine compounds as nonflammable solvents for lithium-ion batteries. Journal of The Electrochemical Society 2010, 157 (6), A707-A712.
    174. Hagos, T. T.; Su, W.-N.; Huang, C.-J.; Thirumalraj, B.; Chiu, S.-F.; Abrha, L. H.; Hagos, T. M.; Bezabh, H. K.; Berhe, G. B.; Tegegne, W. A.; Hwang, B.-J., Developing high-voltage carbonate-ether mixed electrolyte via anode-free cell configuration. Journal of Power Sources 2020, 461, 228053.
    175. Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S., Localized high-concentration sulfone electrolytes for high-efficiency lithium-metal batteries. Chem 2018, 4 (8), 1877-1892.
    176. Xia, L.; Lee, S.; Jiang, Y.; Li, S.; Liu, Z.; Yu, L.; Hu, D.; Wang, S.; Liu, Y.; Chen, G. Z., Physicochemical and Electrochemical Properties of 1, 1, 2, 2‐Tetrafluoroethyl‐2, 2, 3, 3‐Tetrafluoropropyl Ether as a Co‐Solvent for High‐Voltage Lithium‐Ion Electrolytes. ChemElectroChem 2019, 6 (14), 3747-3755.
    177. Fan, X.; Chen, L.; Borodin, O.; Ji, X.; Chen, J.; Hou, S.; Deng, T.; Zheng, J.; Yang, C.; Liou, S.-C., Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature nanotechnology 2018, 13 (8), 715-722.
    178. Amanchukwu, C. V.; Yu, Z.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z., A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. Journal of the American Chemical Society 2020, 142 (16), 7393-7403.
    179. Zhang, X. Q.; Cheng, X. B.; Chen, X.; Yan, C.; Zhang, Q., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 2017, 27 (10), 1605989.
    180. Hagos, T. M.; Hagos, T. T.; Bezabh, H. K.; Berhe, G. B.; Abrha, L. H.; Chiu, S.-F.; Huang, C.-J.; Su, W.-N.; Dai, H.; Hwang, B. J., Resolving the Phase Instability of a Fluorinated Ether, Carbonate-Based Electrolyte for the Safe Operation of an Anode-Free Lithium Metal Battery. ACS Applied Energy Materials 2020, 3 (11), 10722-10733.
    181. von Aspern, N.; Röschenthaler, G. V.; Winter, M.; Cekic‐Laskovic, I., Fluorine and Lithium: Ideal Partners for High‐Performance Rechargeable Battery Electrolytes. Angewandte Chemie International Edition 2019, 58 (45), 15978-16000.
    182. Xing, L.; Borodin, O., Oxidation induced decomposition of ethylene carbonate from DFT calculations–importance of explicitly treating surrounding solvent. PCCP 2012, 14 (37), 12838-12843.
    183. Borodin, O.; Jow, T. R., Quantum chemistry study of the oxidation-induced decomposition of tetramethylene sulfone (TMS) dimer and TMS/BF4. ECS Transactions 2013, 50 (26), 391.
    184. Kasnatscheew, J.; Streipert, B.; Röser, S.; Wagner, R.; Laskovic, I. C.; Winter, M., Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies. PCCP 2017, 19 (24), 16078-16086.
    185. Han, Q.; Yi, Z.; Wang, F.; Wu, Y.; Wang, L., Preparation of bamboo carbon fiber and sandwich-like bamboo carbon fiber@ SnO2@ carbon composites and their potential application in structural lithium-ion battery anodes. Journal of Alloys Compounds 2017, 709, 227-233.
    186. Su, C.-C.; He, M.; Amine, R.; Chen, Z.; Amine, K., Internally referenced DOSY-NMR: a novel analytical method in revealing the solution structure of lithium-ion battery electrolytes. The journal of physical chemistry letters 2018, 9 (13), 3714-3719.
    187. Einstein, A., On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart. Annalen Der Physik 1905, 17, 549-560.
    188. Borodin, O.; Suo, L.; Gobet, M.; Ren, X.; Wang, F.; Faraone, A.; Peng, J.; Olguin, M.; Schroeder, M.; Ding, M. S., Liquid structure with nano-heterogeneity promotes cationic transport in concentrated electrolytes. ACS nano 2017, 11 (10), 10462-10471.
    189. Chaudhari, M. I.; Nair, J. R.; Pratt, L. R.; Soto, F. A.; Balbuena, P. B.; Rempe, S. B., Scaling atomic partial charges of carbonate solvents for lithium ion solvation and diffusion. Journal of chemical theory and computation 2016, 12 (12), 5709-5718.
    190. Hayamizu, K.; Aihara, Y.; Arai, S.; Martinez, C. G., Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN (SO2CF3) 2. The Journal of Physical Chemistry B 1999, 103 (3), 519-524.
    191. Borodin, O.; Smith, G. D., Quantum chemistry and molecular dynamics simulation study of dimethyl carbonate: ethylene carbonate electrolytes doped with LiPF6. The Journal of Physical Chemistry B 2009, 113 (6), 1763-1776.
    192. Zugmann, S.; Fleischmann, M.; Amereller, M.; Gschwind, R. M.; Wiemhöfer, H. D.; Gores, H. J., Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta 2011, 56 (11), 3926-3933.
    193. Evans, J.; Vincent, C. A.; Bruce, P. G., Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28 (13), 2324-2328.
    194. Spotnitz, R.; Franklin, J., Abuse behavior of high-power, lithium-ion cells. Journal of power sources 2003, 113 (1), 81-100.
    195. Hammami, A.; Raymond, N.; Armand, M., Runaway risk of forming toxic compounds. Nature 2003, 424 (6949), 635-636.
    196. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
    197. Minami, T.; Hayashi, A.; Tatsumisago, M., Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 2006, 177 (26-32), 2715-2720.
    198. Zhu, Y.; He, X.; Mo, Y., Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces 2015, 7 (42), 23685-23693.
    199. Ohta, S.; Kobayashi, T.; Asaoka, T., High lithium ionic conductivity in the garnet-type oxide Li7− X La3 (Zr2− X, NbX) O12 (X= 0–2). Journal of Power Sources 2011, 196 (6), 3342-3345.
    200. Cheng, E. J.; Sharafi, A.; Sakamoto, J., Intergranular Li metal propagation through polycrystalline Li6. 25Al0. 25La3Zr2O12 ceramic electrolyte. Electrochimica Acta 2017, 223, 85-91.
    201. Jalem, R.; Rushton, M.; Manalastas Jr, W.; Nakayama, M.; Kasuga, T.; Kilner, J. A.; Grimes, R. W., Effects of gallium doping in garnet-type Li7La3Zr2O12 solid electrolytes. Chemistry of Materials 2015, 27 (8), 2821-2831.
    202. Thompson, T.; Sharafi, A.; Johannes, M. D.; Huq, A.; Allen, J. L.; Wolfenstine, J.; Sakamoto, J., A tale of two sites: on defining the carrier concentration in garnet‐based ionic conductors for advanced Li batteries. Advanced Energy Materials 2015, 5 (11), 1500096.
    203. Ramakumar, S.; Satyanarayana, L.; Manorama, S. V.; Murugan, R., Structure and Li+ dynamics of Sb-doped Li 7 La 3 Zr 2 O 12 fast lithium ion conductors. Physical Chemistry Chemical Physics 2013, 15 (27), 11327-11338.
    204. Du, F.; Zhao, N.; Li, Y.; Chen, C.; Liu, Z.; Guo, X., All solid state lithium batteries based on lamellar garnet-type ceramic electrolytes. Journal of Power Sources 2015, 300, 24-28.
    205. Bucheli, W.; Durán, T.; Jimenez, R.; Sanz, J. s.; Varez, A., On the Influence of the Vacancy Distribution on the Structure and Ionic Conductivity of A-Site-Deficient Li x Sr x La2/3–x TiO3 Perovskites. Inorganic chemistry 2012, 51 (10), 5831-5838.
    206. Bernstein, N.; Johannes, M.; Hoang, K., Origin of the structural phase transition in Li 7 La 3 Zr 2 O 12. Physical review letters 2012, 109 (20), 205702.
    207. Xie, H.; Alonso, J. A.; Li, Y.; Fernández-Díaz, M. T.; Goodenough, J. B., Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chemistry of Materials 2011, 23 (16), 3587-3589.
    208. Brugge, R. H.; Hekselman, A. O.; Cavallaro, A.; Pesci, F. M.; Chater, R. J.; Kilner, J. A.; Aguadero, A., Garnet electrolytes for solid state batteries: visualization of moisture-induced chemical degradation and revealing its impact on the Li-ion dynamics. Chemistry of Materials 2018, 30 (11), 3704-3713.
    209. Hofstetter, K.; Samson, A. J.; Dai, J.; Gritton, J. E.; Hu, L.; Wachsman, E. D.; Thangadurai, V., Electrochemical Stability of Garnet-Type Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12 with and without Atomic Layer Deposited-Al2O3 under CO2 and Humidity. Journal of The Electrochemical Society 2019, 166 (10), A1844-A1852.
    210. Xia, W.; Xu, B.; Duan, H.; Tang, X.; Guo, Y.; Kang, H.; Li, H.; Liu, H., Reaction mechanisms of lithium garnet pellets in ambient air: The effect of humidity and CO2. Journal of the American Ceramic Society 2017, 100 (7), 2832-2839.
    211. Sharafi, A.; Yu, S.; Naguib, M.; Lee, M.; Ma, C.; Meyer, H. M.; Nanda, J.; Chi, M.; Siegel, D. J.; Sakamoto, J., Impact of air exposure and surface chemistry on Li–Li 7 La 3 Zr 2 O 12 interfacial resistance. Journal of Materials Chemistry A 2017, 5 (26), 13475-13487.
    212. Chen, J.; Lu, T.; Xu, Y.; Xu, A.; Chen, D., Ab initio study of a charged vacancy in yttrium aluminum garnet (Y3Al5O12). Journal of Physics: Condensed Matter 2008, 20 (32), 325212.
    213. Meesala, Y.; Liao, Y.-K.; Jena, A.; Yang, N.-H.; Pang, W. K.; Hu, S.-F.; Chang, H.; Liu, C.-E.; Liao, S.-C.; Chen, J.-M., An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li 7 La 3 Zr 2 O 12. Journal of materials chemistry A 2019, 7 (14), 8589-8601.
    214. Jalem, R.; Yamamoto, Y.; Shiiba, H.; Nakayama, M.; Munakata, H.; Kasuga, T.; Kanamura, K., Concerted migration mechanism in the Li ion dynamics of garnet-type Li7La3Zr2O12. Chemistry of Materials 2013, 25 (3), 425-430.
    215. Adams, S.; Rao, R. P., Ion transport and phase transition in Li 7− x La 3 (Zr 2− x M x) O 12 (M= Ta 5+, Nb 5+, x= 0, 0.25). Journal of Materials Chemistry 2012, 22 (4), 1426-1434.
    216. Awaka, J.; Takashima, A.; Kataoka, K.; Kijima, N.; Idemoto, Y.; Akimoto, J., Crystal structure of fast lithium-ion-conducting cubic Li7La3Zr2O12. Chemistry letters 2011, 40 (1), 60-62.
    217. Larraz, G.; Orera, A.; Sanjuan, M., Cubic phases of garnet-type Li 7 La 3 Zr 2 O 12: the role of hydration. Journal of Materials Chemistry A 2013, 1 (37), 11419-11428.
    218. Boulant, A.; Bardeau, J. F.; Jouanneaux, A.; Emery, J.; Buzare, J.-Y.; Bohnke, O., Reaction mechanisms of Li 0.30 La 0.57 TiO 3 powder with ambient air: H+/Li+ exchange with water and Li 2 CO 3 formation. Dalton Transactions 2010, 39 (16), 3968-3975.

    無法下載圖示 全文公開日期 2026/02/05 (校內網路)
    全文公開日期 2026/02/05 (校外網路)
    全文公開日期 2026/02/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE