簡易檢索 / 詳目顯示

研究生: Gebregziabher Brhane Berhe
Gebregziabher Brhane Berhe
論文名稱: Designing and characterization of sulfurized carbon anode and modification of spinel based cathode materials for lithium-ion batteries
Designing and characterization of sulfurized carbon anode and modification of spinel based cathode materials for lithium-ion batteries
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 吳恆良
Heng-Laing Wu
吳溪煌
She-Huang Wu
鄧熙聖
Hsisheng Teng
王迪彥
Di-Yan Wang
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 157
中文關鍵詞: 鋰離子電池S-C(PAN)陽極高容量; 儲能電紡絲PVDF @ LGLZNO纖維膜錳溶解氟化電解質固態電解質界面高壓陰極(LiNi0.5Mn1.5O4)
外文關鍵詞: S-C(PAN) anode, PVDF@LGLZNO fibrous film, Mn dissolution, fluorinated electrolyte, high voltage cathode (LiNi0.5Mn1.5O4).
相關次數: 點閱:243下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發一種新的系統和電池設計,是當今非常迫切需要的,以使其具有更高的容量及能量密度、成本效益、環境友好和安全性。本研究設計了一種電池,以硫複合材料為陽極,及尖晶石型陰極的新型電池系統,使具有高能量密度、低成本和安全性,同時克服了鋰金屬陽極相關的安全問題,及石墨陽極的低理論電容量的問題。
    與目前用於提高鋰離子電池能量密度的材料相比,鋰金屬被認為是具有潛力的陽極材料。 然而,鋰金屬陽極受限於會產生破壞性枝晶構造,其會導致安全上的隱患,因此亟需具有高電容量和高安全性的陽極。由聚丙烯腈(S-C(PAN))合成出的硫化碳陽極已被用作於鋰硫電池的陰極。 在本研究的第一部分中,相反地,將S-C(PAN)當作陽極並與LMO組成電池時,在C-rate為1,工作電位在1到3.2V範圍內時,其全電池的能量密度為185 Wh kg-1(SC(PAN)+ LMO)。全電池(S-C(PAN)|| LMO)的特色在於充放電速率為0.1 C和2 C時,其可逆放電電容量分別為1378 mAh g-1s和868 mAh g-1s。 速率為1 C時,電池循環400圈後,電容量乃然保有807 mAh g-1s,平均衰減率為 0.7 mAh g-1s* cycle-1,平均庫侖效率為99.5%。 S-C(PAN)陽極的界面化學被特別地研究,並證明了S-C(PAN)是一種有趣的陽極材料,可以是鋰金屬的安全替代材料,因為硫具有很高的理論電容量(1675 mAh g-1)、對環境友好、低成本及能量密度高。
    鋰錳氧(LMO)是鋰離子電池中最具潛力的正極材料之一。 然而,錳的溶解及其在陽極表面上的沉積導致較差的循環穩定性。為了緩解這些問題,本論文的第二部份,以電紡織方式將聚偏二氟乙烯(PVDF)和石榴石狀之Li5.6Ga0.26La2.9Zr1.87Nb0.05O12組成的纖維膜(PVDF @ LGLZNO)直接塗覆在LMO電極上,作為有潛力的人造陰極/電解質界面層(CEI),其膜厚度可藉由電紡織處理時間來優化。為了實現在惡劣條件下(如高溫或高速率),我們將覆膜的LMO陰極與新型S-C(PAN)陽極結合,電池可具有良好的電容量保持能力、出色的速率能力。與普通的電極相比,塗有PVDF @ LGLZNO複合材料的電極(LMO-30min),在室溫(25°C)和高溫(55°C)下,都具有出色的循環穩定性、速率性能以及電容量保持能力。在XPS的輔助下,展示出在高C-rates和55°C時,PVDF @ LGLZNO纖維膜成功抑制了錳的溶解,而單只有PVDF塗層及普通的LMO陰極無法防止其自身劣化。纖維膜顯著抑制了陰極/電解質界面處的不良副反應,並降低了電荷轉移阻力。具有PVDF @ LGLZNO(LMO-30min)修飾陰極和S-C(PAN)陽極的電池在1 C下經過1000次循環後,仍有77%的電容量保持率,相當於每次循環僅有0.023%的容量衰減。
    在本論文的最後部分,通過將(S-C(PAN))陽極與LiNi0.5Mn1.5O4(LNMO)陰極的結合,設計出了一種新型高壓鋰離子電池。然而,一般由1M之六氟磷酸鋰(LiPF6)溶於碳酸亞乙酯(ethylene carbonate)和碳酸二乙酯(diethyl carbonate)(1:1)做為電池之電解液時,會因電解液的氧化分解而引起高容量衰退。為了減緩這種容量衰減,開發出1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether),碳酸氟亞乙酯(fluoroethylene carbonate)和碳酸甲乙酯(ethyl methyl carbonate)(體積比例3:2:5),作為新型高電壓鋰離子電池的最佳電解質。所開發出的電解質相對於對照的電解質,提升了半電池(Li || S-C(PAN)和 Li || LiNi0.5Mn1.5O4)和全電池(S-C(PAN)|| LiNi0.5Mn1.5O4)的循環穩定性和速率性能。用1 M LiPF6於FEC / EMC / TTE(3:2:5)電解質所製備的全電池,在速率為2C下,放電電容量為688 mAh g-1 s,相較於對照電解液僅有 19 mAh g-1 s 的放電電容量。XPS結果證實,所採用的電解質有效地穩定了全電池中(S-C(PAN))陽極和LiNi0.5Mn1.5O4陰極的表面。


    Developing a new battery design to enable rechargeable lithium batteries with higher capacity, energy density as well as cost efficiency, environmental friendliness, and safety is quite urgent. Designed a cell that overcomes the safety problems associated with lithium metal anode and the low theoretical capacity of graphite anode. The new battery system designed by using sulfur composite as anode and spinel-type as cathode provides high energy density, low cost, and no safety concern.

    In the first part of this study, we designed a new cell by coupling S-C(PAN) as anode and paired with lithium manganese oxide ( LiMn2O4, LMO) cathode for the first time. The full cell delivers an energy density of 185 Wh kg-1(S-C(PAN)+LMO) at 1 C within the voltage range from 1 to 3.2 V. The full cell (S-C(PAN)||LMO) is characterized by a reversible discharge capacity of 1378 mAh g-1S and 868 mAh g-1S at 0.1 C and 2 C, respectively. At 1 C, a retention capacity of 807 mAh g-1S is achieved at the 400th cycle with an average decay rate of 0.7 mAh g-1S*cycle-1 and an average Coulombic efficiency of 99.5%. Interfacial chemistry of S-C(PAN) anode is particularly investigated and S-C(PAN) is demonstrated as one interesting anode material, an alternative to lithium metal, due to its high theoretical capacity of sulfur (1675 mAh g-1), environmental friendliness, low cost, and high energy density.

    Secondly, the dissolution of manganese and its deposition on the anode surface cause poor for the high capacity fading special at 55 oC and 1 C-rate. To alleviate these issues, a fibrous film composed of polyvinylidene difluoride (PVDF) and Li5.6Ga0.26La2.9Zr1.87Nb0.05O12 type garnet (PVDF@LGLZNO) is coated directly on the LiMn2O4 (LMO) electrode and it functions as a promising artificial cathode-electrolyte interphase (CEI). To realize a cell with good capacity retention, excellent rate capability and resilience under harsher conditions (e.g. elevated temperature or high rates), the coated LMO cathode is coupled with the new anode which consists of sulfurized carbon derived from polyacrylonitrile (S-C(PAN)). The electrode (LMO-30min) coated with PVDF@LGLZNO composite material shows outstanding cycling stability and rate capability, as well as capacity retention when compared to bare electrode both at room temperature (25 °C) and elevated temperature (55 °C). The PVDF@LGLZNO fibrous coating suppresses the dissolution of manganese both at high C-rates and 55 °C, as supported by XPS, whereas PVDF coated and bare LMO cathodes are not able to prevent themselves from further deterioration. The fibrous film significantly inhibits undesirable side reactions at the cathode-electrolyte interface and reduces charger transfer resistance. The cell with PVDF@LGLZNO (LMO-30min) modified cathode and S-C(PAN) anode delivers capacity retention of 77% after 1000 cycles at 1 C-rate, corresponding to the average capacity decay of 0.023% per cycle.

    In the final part of this dissertation, a new high voltage lithium-ion battery is designed by coupling sulfurized carbon anode from polyacrylonitrile (S-C(PAN)) and LiNi0.5Mn1.5O4 (LNMO) cathode. However, a high capacity fading was originated when the cell made with 1M lithium hexafluorophosphate (LiPF6) in ethylene carbonate (EC) and diethyl carbonate (DEC) (1:1) due to oxidative decomposition of solvents. To mitigate this capacity fading, 1, 1, 2, 2-Tetrafluoroethyl-2, 2, 3, 3-tetrafluoropropyl ether (TTE), fluoroethylene carbonate (FEC), and ethyl methyl carbonate (EMC) (3:2:5) was introduced as the best electrolyte for new developed high voltage lithium-ion battery. The best electrolyte developed enhanced the cyclic stability and rate capability of both half-cells (Li||S-C(PAN and Li||LiNi0.5Mn1.5O4) and S-C(PAN)||LiNi0.5Mn1.5O4 full-cells relative to control electrolyte. The discharge capacity of full-cell made with 1M lithium hexafluorophosphate (LiPF6) in FEC/EMC/TTE (3:2:5) electrolyte reaches 688 mAh g-1 S a rate of 2 C, while 19 mAh g-1 S for the control electrolyte. The adopted electrolyte can effectively stabilize the surfaces of both sulfurized carbon anodes from polyacrylonitrile (S-C(PAN)) and LiNi0.5Mn1.5O4 cathode within the full cell as the X-ray photoelectron spectroscopy (XPS) results confirmed.

    摘要 i Abstract iv Acknowledgments vii Table of contents ix List of figure xiii List of tables xxi List of abbreviations and units xxiii Chapter 1: Background 1 1.1. Types of energy storage devices 1 1.2. Principle of typical lithium-ion battery 5 1.3. Electrodes of lithium-ion batteries 7 1.3.1. Cathode materials for lithium-ion battery 7 1.3.2. Anode materials for lithium-ion battery 10 1.4. Electrolytes for Li-ion batteries 14 1.4.1. Liquid electrolyte 15 1.4.2. Solid electrolyte 17 1.5. Solid electrolyte interphase (SEI) 18 1.6. Cathode electrolyte interphase (CEI) 19 1.7. Lithium-Sulfur battery 19 1.7.1. Principle of Li-S battery 21 1.7.2. Limitation of lithium-sulfur battery 21 Chapter 2: Challenges and issues of lithium-ion batteries 25 2.1. Spinel type cathode materials 25 2.1.1. Surface modifications of cathode materials (spinel-type) 28 2.1.2. Electrolyte for high voltage cathode materials 33 2.2. Sulfurized carbon from polyacrylonitrile SPAN electrode 35 2.3. Lithium Metal Batteries 37 2.4. Sulfur anode for lithium-ion battery (Li-ion/S) 38 2.5. Motivation and objectives of the study 40 2.5.1. Motivations 40 2.5.2. Objectives 40 Chapter 3: Experimental section and characterization 43 3.1. General experimental section 43 3.1.1. Chemical and reagents 43 3.1.2. Synthesis procedure of S-C(PAN) composite 44 3.1.3. Synthesis of PVDF@LGLZNO fibrous film and coated commercial electrode 44 3.1.4. Electrolyte preparation 46 3.1.5. Electrode fabrications and electrochemical measurement 46 3.2. Physical characterization techniques (XRD, ICP-AES, TGA, Raman, SEM, EDS, AFM, and XPS) 48 Chapter 4: A new class of lithium-ion battery using sulfurized carbon anode from polyacrylonitrile and lithium manganese oxide cathode 51 4.1. Overview 51 4.2. Working principle of the newly designed batteries 53 4.3. Results and discussion 54 4.3.1. Material characterization of as-prepared S-C(PAN) 54 4.3.2. Electrochemical performance 57 4.3.3. X-ray photoelectron spectroscopy (XPS) measurement of full cells 68 4.3.4. Electrochemical impedance spectroscopy (EIS) of half and full-cells 74 4.3.5. Morphology characterization of full-cells 77 4.3.6. Summary 79 Chapter 5: PVDF@LGLZNO fibrous film modified lithium manganese oxide cathode and sulfurized carbon anode from polyacrylonitrile for Li-ion battery 81 5.1. Overview 81 5.2. Results and discussion 83 5.2.1. Compositional analysis and surface characterization 83 5.2.2. Electrochemical characterization of both half and Full-cells 87 5.2.3. Morphology characterization of full-cells 94 5.2.4. X-ray photoelectron spectroscopy (XPS) and Raman measurement of full cells 96 5.2.5. Electrochemical impedance spectroscopy (EIS) of full-cells 102 5.2.6. Summary 105 Chapter 6: Partially fluorinated electrolyte for high-voltage cathode with sulfurized carbon anode from polyacrylonitrile for lithium-ion battery 107 6.1. Overview 107 6.2. Result and discussion 109 6.2.1 Physicochemical properties of electrolytes 109 6.2.2. Electrochemical characterization of both half and full-cells 111 6.2.3. X-ray photoelectron spectroscopy (XPS) measurement of full cells 117 6.2.4. Morphology characterization of full-cells 119 6.2.5. Electrochemical impedance spectroscopy (EIS) of half and full-cells 121 6.2.6. Summary 123 Chapter 7:Conclusion and future outlooks 125 7.1. Conclusions 125 7.2. Future outlooks 126 A. Supporting data for Approach-I (Chapter 4) 128 B. Supporting data for Approach-II (Chapter 5) 129 References 132

    [1] N. Panwar, S. Kaushik, S. Kothari, Role of renewable energy sources in environmental protection: A review, Renewable and Sustainable Energy Reviews, 15 (2011) 1513-1524.
    [2] M.M. Thackeray, C. Wolverton, E.D. Isaacs, Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries, Energy & Environmental Science, 5 (2012) 7854-7863.
    [3] H. Zhou, New energy storage devices for post lithium-ion batteries, Energy & Environmental Science, 6 (2013) 2256-2256.
    [4] A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries, Chemical reviews, 114 (2014) 11751-11787.
    [5] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chemical reviews, 111 (2011) 3577-3613.
    [6] N.S. Choi, Z. Chen, S.A. Freunberger, X. Ji, Y.K. Sun, K. Amine, G. Yushin, L.F. Nazar, J. Cho, P.G. Bruce, Challenges facing lithium batteries and electrical double-layer capacitors, Angew Chem Int Ed Engl, 51 (2012) 9994-10024.
    [8] M.R. Palacin, Recent advances in rechargeable battery materials: a chemist’s perspective, Chemical Society Reviews, 38 (2009) 2565-2575.
    [9] A. Bernardes, D.C.R. Espinosa, J.S. Tenório, Recycling of batteries: a review of current processes and technologies, Journal of Power Sources, 130 (2004) 291-298.
    [10] D. Pavlov, Lead-acid batteries: science and technology, Elsevier2011.
    [11] J. Li, C. Daniel, D.L. Wood III, Cathode Manufacturing for Lithium‐Ion Batteries, Handbook of Battery Materials, (2011) 939-960.
    [12] B.J. Landi, M.J. Ganter, C.D. Cress, R.A. DiLeo, R.P. Raffaelle, Carbon nanotubes for lithium ion batteries, Energy & Environmental Science, 2 (2009) 638-654.
    [13] B. Scrosati, Recent advances in lithium ion battery materials, Electrochimica Acta, 45 (2000) 2461-2466.
    [14] J. Vetter, P. Novák, M.R. Wagner, C. Veit, K.C. Möller, J.O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, Ageing mechanisms in lithium-ion batteries, Journal of Power Sources, 147 (2005) 269-281.
    [15] M.-C. Yang, Strategies to Improve the Electrochemical Performance of Electrodes for Li-ion Batteries, Citeseer, 2012.
    [16] D. Linden, T.B. Reddy, Handbook of batteries, 3 ed.: McGraw-Hill Professional2002.
    [17] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical energy storage for the grid: a battery of choices, Science, 334 (2011) 928-935.
    [18] M.S. Whittingham, Lithium batteries and cathode materials, Chemical reviews, 104 (2004) 4271-4302.
    [19] J. Taracson, M. Armand, Issues and challenges facing lithium ion batteries, nature, 414 (2001) 359-367.
    [20] B.P. Miller, Automotive Lithium-Ion Batteries, Johnson Matthey Technology Review, 59 (2015) 4-13.
    [21] J.-K. Park, Principles_and_Applications_of_Lithium_Secondar(z-lib.org).pdf>, John Wiley & Sons, 2012.
    [22] J.B. Goodenough, Design considerations, Solid State Ionics, 69 (1994) 184-198.
    [23] C. Julien, A. Mauger, K. Zaghib, H. Groult, Comparative issues of cathode materials for Li-ion batteries, Inorganics, 2 (2014) 132-154.
    [24] N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: present and future, Materials Today, 18 (2015) 252-264.
    [25] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy & Environmental Science, 7 (2014) 513-537.
    [26] N. Nitta, G. Yushin, High‐capacity anode materials for lithium‐ion batteries: choice of elements and structures for active particles, Particle & Particle Systems Characterization, 31 (2014) 317-336.
    [27] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7 (2014) 513-537.
    [28] J. Ko, Y.S. Yoon, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: Is LiF the key to commercializing Li metal batteries?, Ceramics International, (2018).
    [29] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 9 (2016) 1955-1988.
    [30] D. Deng, Li-ion batteries: basics, progress, and challenges, Energy Science & Engineering, 3 (2015) 385-418.
    [31] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nature nanotechnology, 12 (2017) 194.
    [32] A. Casimir, H. Zhang, O. Ogoke, J.C. Amine, J. Lu, G. Wu, Silicon-based anodes for lithium-ion batteries: Effectiveness of materials synthesis and electrode preparation, Nano Energy, 27 (2016) 359-376.
    [33] H.X. Dang, K.C. Klavetter, M.L. Meyerson, A. Heller, C.B. Mullins, Tin microparticles for a lithium ion battery anode with enhanced cycling stability and efficiency derived from Se-doping, Journal of Materials Chemistry A, 3 (2015) 13500-13506.
    [34] M. Obrovac, L. Christensen, D.B. Le, J.R. Dahn, Alloy design for lithium-ion battery anodes, Journal of The Electrochemical Society, 154 (2007) A849-A855.
    [35] W.-J. Zhang, A review of the electrochemical performance of alloy anodes for lithium-ion batteries, Journal of Power Sources, 196 (2011) 13-24.
    [36] Z. Zhang, L. Hu, H. Wu, W. Weng, M. Koh, P.C. Redfern, L.A. Curtiss, K. Amine, Fluorinated electrolytes for 5 V lithium-ion battery chemistry, Energy & Environmental Science, 6 (2013) 1806-1810.
    [37] K. Xu, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chemical reviews, 104 (2004) 4303-4418.
    [38] T.R. Jow, K. Xu, O. Borodin, M. Ue, Electrolytes for lithium and lithium-ion batteries, Springer2014.
    [39] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries†, Chem. Mat., 22 (2010) 587-603.
    [40] J.-K. Park, Principles and applications of lithium secondary batteries, John Wiley & Sons2012.
    [41] B. Flamme, G.R. Garcia, M. Weil, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, A. Chagnes, Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties, Green Chemistry, 19 (2017) 1828-1849.
    [42] Q. Liu, Z. Geng, C. Han, Y. Fu, S. Li, Y.-b. He, F. Kang, B. Li, Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries, Journal of Power Sources, 389 (2018) 120-134.
    [43] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet‐type Li7La3Zr2O12, Angewandte Chemie International Edition, 46 (2007) 7778-7781.
    [44] H. Buschmann, J. Dölle, S. Berendts, A. Kuhn, P. Bottke, M. Wilkening, P. Heitjans, A. Senyshyn, H. Ehrenberg, A. Lotnyk, Structure and dynamics of the fast lithium ion conductor “Li 7 La 3 Zr 2 O 12”, Physical Chemistry Chemical Physics, 13 (2011) 19378-19392.
    [45] V. Thangadurai, S. Narayanan, D. Pinzaru, Garnet-type solid-state fast Li ion conductors for Li batteries: critical review, Chemical Society Reviews, 43 (2014) 4714-4727.
    [46] L. Chen, Y. Li, S.-P. Li, L.-Z. Fan, C.-W. Nan, J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy, 46 (2018) 176-184.
    [47] J. Zheng, M. Tang, Y.Y. Hu, Lithium ion pathway within Li7La3Zr2O12‐polyethylene oxide composite electrolytes, Angewandte Chemie International Edition, 55 (2016) 12538-12542.
    [48] X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.-W. Nan, Y. Shen, Synergistic coupling between Li6. 75La3Zr1. 75Ta0. 25O12 and poly (vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes, Journal of the American Chemical Society, 139 (2017) 13779-13785.
    [49] T. Yang, J. Zheng, Q. Cheng, Y.-Y. Hu, C.K. Chan, Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology, ACS applied materials & interfaces, 9 (2017) 21773-21780.
    [50] C.-Y. Chiang, M.J. Reddy, P.P. Chu, Nano-tube TiO2 composite PVdF/LiPF6 solid membranes, Solid State Ionics, 175 (2004) 631-635.
    [51] E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, 126 (1979) 2047-2051.
    [52] A. Zaban, E. Zinigrad, D. Aurbach, Impedance Spectroscopy of Li Electrodes. 4. A General Simple Model of the Li−Solution Interphase in Polar Aprotic Systems, The Journal of Physical Chemistry, 100 (1996) 3089-3101.
    [53] V.A. Agubra, J.W. Fergus, The formation and stability of the solid electrolyte interface on the graphite anode, Journal of Power Sources, 268 (2014) 153-162.
    [54] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews, 47 (2018) 736--851.
    [55] J. Cabana, B.J. Kwon, L. Hu, Mechanisms of degradation and strategies for the stabilization of cathode–electrolyte interfaces in Li-ion batteries, Accounts of chemical research, 51 (2018) 299-308.
    [56] Y. Liu, A.K. Haridas, K.-K. Cho, Y. Lee, J.-H. Ahn, Highly Ordered Mesoporous Sulfurized Polyacrylonitrile Cathode Material for High-Rate Lithium Sulfur Batteries, The Journal of Physical Chemistry C, 121 (2017) 26172-26179.
    [57] Z. Wang, Y. Chen, V. Battaglia, G. Liu, Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder, Journal of materials research, 29 (2014) 1027-1033.
    [58] L. Hencz, H. Chen, H.Y. Ling, Y. Wang, C. Lai, H. Zhao, S. Zhang, Housing Sulfur in Polymer Composite Frameworks for Li–S Batteries, Nano-Micro Letters, 11 (2019).
    [59] J. Li, K. Li, M. Li, D. Gosselink, Y. Zhang, P. Chen, A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability, Journal of Power Sources, 252 (2014) 107-112.
    [60] X. Ji, L.F. Nazar, Advances in Li–S batteries, Journal of Materials Chemistry, 20 (2010) 9821-9826.
    [61] D. Moy, S. Narayanan, Mixed conduction membranes suppress the polysulfide shuttle in lithium-sulfur batteries, Journal of The Electrochemical Society, 164 (2017) A560-A566.
    [62] M.R. Busche, P. Adelhelm, H. Sommer, H. Schneider, K. Leitner, J. Janek, Systematical electrochemical study on the parasitic shuttle-effect in lithium-sulfur-cells at different temperatures and different rates, Journal of power sources, 259 (2014) 289-299.
    [63] X. Yang, X. Li, K. Adair, H. Zhang, X. Sun, Structural Design of Lithium–Sulfur Batteries: From Fundamental Research to Practical Application, Electrochemical Energy Reviews, 1 (2018) 239-293.
    [64] X. Ji, K.T. Lee, L.F. Nazar, A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries, Nature materials, 8 (2009) 500.
    [65] T.A. Zegeye, C.-F.J. Kuo, A.S. Wotango, C.-J. Pan, H.-M. Chen, A.M. Haregewoin, J.-H. Cheng, W.-N. Su, B.-J. Hwang, Hybrid nanostructured microporous carbon-mesoporous carbon doped titanium dioxide/sulfur composite positive electrode materials for rechargeable lithium-sulfur batteries, Journal of Power Sources, 324 (2016) 239-252.
    [66] T.A. Zegeye, M.-C. Tsai, J.-H. Cheng, M.-H. Lin, H.-M. Chen, J. Rick, W.-N. Su, C.-F.J. Kuo, B.-J. Hwang, Controllable embedding of sulfur in high surface area nitrogen doped three dimensional reduced graphene oxide by solution drop impregnation method for high performance lithium-sulfur batteries, Journal of Power Sources, 353 (2017) 298-311.
    [67] H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability, Nano letters, 11 (2011) 2644-2647.
    [68] H. Sun, J. Zhu, D. Baumann, L. Peng, Y. Xu, I. Shakir, Y. Huang, X. Duan, Hierarchical 3D electrodes for electrochemical energy storage, Nature Reviews Materials, (2018) 1.
    [69] W. Zhou, C. Wang, Q. Zhang, H.D. Abruña, Y. He, J. Wang, S.X. Mao, X. Xiao, Tailoring pore size of nitrogen‐doped hollow carbon nanospheres for confining sulfur in lithium–sulfur batteries, Advanced Energy Materials, 5 (2015) 1401752.
    [70] S.K. Park, J.K. Lee, Y.C. Kang, Yolk–Shell Structured Assembly of Bamboo‐Like Nitrogen‐Doped Carbon Nanotubes Embedded with Co Nanocrystals and Their Application as Cathode Material for Li–S Batteries, Advanced Functional Materials, 28 (2018) 1705264.
    [71] J. Yan, X. Liu, X. Wang, B. Li, Long-life, high-efficiency lithium/sulfur batteries from sulfurized carbon nanotube cathodes, Journal of Materials Chemistry A, 3 (2015) 10127-10133.
    [72] X. Li, Q. Sun, J. Liu, B. Xiao, R. Li, X. Sun, Tunable porous structure of metal organic framework derived carbon and the application in lithium–sulfur batteries, Journal of Power Sources, 302 (2016) 174-179.
    [73] S. Choudhury, B. Krüner, P. Massuti-Ballester, A. Tolosa, C. Prehal, I. Grobelsek, O. Paris, L. Borchardt, V. Presser, Microporous novolac-derived carbon beads/sulfur hybrid cathode for lithium-sulfur batteries, Journal of Power Sources, 357 (2017) 198-208.
    [74] Z. Li, X. Li, Y. Liao, X. Li, W. Li, Sulfur loaded in micropore-rich carbon aerogel as cathode of lithium-sulfur battery with improved cyclic stability, Journal of Power Sources, 334 (2016) 23-30.
    [75] X. Li, M. Rao, W. Li, Sulfur encapsulated in porous carbon nanospheres and coated with conductive polyaniline as cathode of lithium–sulfur battery, Journal of Solid State Electrochemistry, 20 (2016) 153-161.
    [76] L. Xiao, Y. Cao, J. Xiao, B. Schwenzer, M.H. Engelhard, L.V. Saraf, Z. Nie, G.J. Exarhos, J. Liu, A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life, Adv Mater, 24 (2012) 1176-1181.
    [77] Y. Fu, A. Manthiram, Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries, RSC Advances, 2 (2012) 5927.
    [78] B. Chen, L. Ben, H. Yu, Y. Chen, X. Huang, Understanding Surface Structural Stabilization of the High-Temperature and High-Voltage Cycling Performance of Al(3+)-Modified LiMn2O4 Cathode Material, ACS Appl Mater Interfaces, 10 (2018) 550-559.
    [79] R. Gummow, A. De Kock, M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells, Solid State Ionics, 69 (1994) 59-67.
    [80] K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, Preparation and electrochemical investigation of LiMn2− xMexO4 (Me: Ni, Fe, and x= 0.5, 1) cathode materials for secondary lithium batteries, Journal of Power Sources, 68 (1997) 604-608.
    [81] D. Liu, W. Zhu, J. Trottier, C. Gagnon, F. Barray, A. Guerfi, A. Mauger, H. Groult, C. Julien, J.B. Goodenough, Spinel materials for high-voltage cathodes in Li-ion batteries, Rsc Advances, 4 (2014) 154-167.
    [82] A. Manthiram, Materials Challenges and Opportunities of Lithium Ion Batteries, The Journal of Physical Chemistry Letters, 2 (2011) 176-184.
    [83] N.-S. Choi, J.-G. Han, S.-Y. Ha, I. Park, C.-K. Back, Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries, RSC Advances, 5 (2015) 2732-2748.
    [84] F. Lai, X. Zhang, H. Wang, S. Hu, X. Wu, Q. Wu, Y. Huang, Z. He, Q. Li, Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries, ACS Appl Mater Interfaces, 8 (2016) 21656-21665.
    [85] T. Aoshima, K. Okahara, C. Kiyohara, K. Shizuka, Mechanisms of manganese spinels dissolution and capacity fade at high temperature, Journal of Power Sources, 97 (2001) 377-380.
    [86] X. Xu, S. Deng, H. Wang, J. Liu, H. Yan, Research Progress in Improving the Cycling Stability of High-Voltage LiNi0.5Mn1.5O4 Cathode in Lithium-Ion Battery, Nanomicro Lett, 9 (2017) 22.
    [87] Y. Xia, Q. Zhang, H. Wang, H. Nakamura, H. Noguchi, M. Yoshio, Improved cycling performance of oxygen-stoichiometric spinel Li1+ xAlyMn2− x− yO4+ δ at elevated temperature, Electrochimica acta, 52 (2007) 4708-4714.
    [88] I.-S. Jeong, J.-U. Kim, H.-B. Gu, Electrochemical properties of LiMgyMn2− yO4 spinel phases for rechargeable lithium batteries, Journal of power sources, 102 (2001) 55-59.
    [89] C. Jones, E. Rossen, J. Dahn, Structure and electrochemistry of LixCryCo1− yO2, Solid State Ionics, 68 (1994) 65-69.
    [90] J. Molenda, J. Marzec, K. Świerczek, D. Pałubiak, W. Ojczyk, M. Ziemnicki, The effect of 3d substitutions in the manganese sublattice on the electrical and electrochemical properties of manganese spinel, Solid State Ionics, 175 (2004) 297-304.
    [91] B. Hwang, R. Santhanam, D. Liu, Y. Tsai, Effect of Al-substitution on the stability of LiMn2O4 spinel, synthesized by citric acid sol–gel method, Journal of power sources, 102 (2001) 326-331.
    [92] B. Hwang, R. Santhanam, S. Hu, Synthesis and characterization of multidoped lithium manganese oxide spinel, Li1. 02Co0. 1Ni0. 1Mn1. 8O4, for rechargeable lithium batteries, Journal of power sources, 108 (2002) 250-255.
    [93] Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song, T. Liu, Tunable morphology synthesis of LiFePO4 nanoparticles as cathode materials for lithium ion batteries, ACS applied materials & interfaces, 6 (2014) 9236-9244.
    [94] T.-F. Yi, Y.-R. Zhu, X.-D. Zhu, J. Shu, C.-B. Yue, A.-N. Zhou, A review of recent developments in the surface modification of LiMn2O4 as cathode material of power lithium-ion battery, Ionics, 15 (2009) 779-784.
    [95] J. Gnanaraj, V. Pol, A. Gedanken, D. Aurbach, Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method, Electrochemistry Communications, 5 (2003) 940-945.
    [96] S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro, N. Kumagai, Role of alumina coating on Li− Ni− Co− Mn− O particles as positive electrode material for lithium-ion batteries, Chemistry of Materials, 17 (2005) 3695-3704.
    [97] Y. Fan, J. Wang, Z. Tang, W. He, J. Zhang, Effects of the nanostructured SiO2 coating on the performance of LiNi0. 5Mn1. 5O4 cathode materials for high-voltage Li-ion batteries, Electrochimica Acta, 52 (2007) 3870-3875.
    [98] M. Murakami, H. Yamashige, H. Arai, Y. Uchimoto, Z. Ogumi, Association of paramagnetic species with formation of LiF at the surface of LiCoO2, Electrochimica Acta, 78 (2012) 49-54.
    [99] H.J. Lee, Y.J. Park, Interface characterization of MgF2-coated LiCoO2 thin films, Solid State Ionics, 230 (2013) 86-91.
    [100] K.-S. Lee, S.-T. Myung, D.-W. Kim, Y.-K. Sun, AlF3-coated LiCoO2 and Li [Ni1/3Co1/3Mn1/3] O2 blend composite cathode for lithium ion batteries, Journal of Power Sources, 196 (2011) 6974-6977.
    [101] F. Lai, X. Zhang, H. Wang, S. Hu, X. Wu, Q. Wu, Y. Huang, Z. He, Q. Li, Three-dimension hierarchical Al2O3 nanosheets wrapped LiMn2O4 with enhanced cycling stability as cathode material for lithium ion batteries, ACS applied materials & interfaces, 8 (2016) 21656-21665.
    [102] X.-W. Gao, Y.-F. Deng, D. Wexler, G.-H. Chen, S.-L. Chou, H.-K. Liu, Z.-C. Shi, J.-Z. Wang, Improving the electrochemical performance of the LiNi 0.5 Mn 1.5 O 4 spinel by polypyrrole coating as a cathode material for the lithium-ion battery, Journal of Materials Chemistry A, 3 (2015) 404-411.
    [103] H. Dong, Y. Zhang, S. Zhang, P. Tang, X. Xiao, M. Ma, H. Zhang, Y. Yin, D. Wang, S. Yang, Improved High Temperature Performance of a Spinel LiNi0.5Mn1.5O4 Cathode for High-Voltage Lithium-Ion Batteries by Surface Modification of a Flexible Conductive Nanolayer, ACS Omega, 4 (2019) 185-194.
    [104] M. Kim, S. Kim, V. Aravindan, W. Kim, S.-Y. Lee, Y. Lee, Ultrathin polyimide coating for a spinel LiNi0. 5Mn1. 5O4 cathode and its superior lithium storage properties under elevated temperature conditions, Journal of The Electrochemical Society, 160 (2013) A1003-A1008.
    [105] K.H. Jung, H.-G. Kim, Y.J. Park, Effects of protecting layer [Li, La] TiO3 on electrochemical properties of LiMn2O4 for lithium batteries, Journal of Alloys and Compounds, 509 (2011) 4426-4432.
    [106] H. Şahan, H. Göktepe, Ş. Patat, A. Ülgen, Improvement of the electrochemical performance of LiMn2O4 cathode active material by lithium borosilicate (LBS) surface coating for lithium-ion batteries, Journal of Alloys and Compounds, 509 (2011) 4235-4241.
    [107] Z. Liu, W. Fu, E.A. Payzant, X. Yu, Z. Wu, N.J. Dudney, J. Kiggans, K. Hong, A.J. Rondinone, C. Liang, Anomalous high ionic conductivity of nanoporous β-Li3PS4, Journal of the American Chemical Society, 135 (2013) 975-978.
    [108] G. Sahu, Z. Lin, J. Li, Z. Liu, N. Dudney, C. Liang, Air-stable, high-conduction solid electrolytes of arsenic-substituted Li 4 SnS 4, Energy & Environmental Science, 7 (2014) 1053-1058.
    [109] E. Rangasamy, G. Sahu, J.K. Keum, A.J. Rondinone, N.J. Dudney, C. Liang, A high conductivity oxide–sulfide composite lithium superionic conductor, Journal of Materials Chemistry A, 2 (2014) 4111-4116.
    [110] Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, Effect of temperature of Li2O–Al2O3–TiO2–P2O5 solid-state electrolyte coating process on the performance of LiNi0. 5Mn1. 5O4 cathode materials, Journal of Power Sources, 296 (2015) 261-267.
    [111] K. Xu, Electrolytes and interphases in Li-ion batteries and beyond, Chem Rev, 114 (2014) 11503-11618.
    [112] N. Nanbu, M. Takehara, S. Watanabe, M. Ue, Y. Sasaki, Polar effect of successive fluorination of dimethyl carbonate on physical properties, Bulletin of the Chemical Society of Japan, 80 (2007) 1302-1306.
    [113] H. Zheng, X. Zhou, S. Cheng, R. Xia, S. Nie, X. Liang, Y. Sun, H. Xiang, High-Voltage LiNi0.5Mn1.5O4 Cathode Stability of Fluorinated Ether Based on Enhanced Separator Wettability, Journal of The Electrochemical Society, 166 (2019) A1456-A1462.
    [114] J. Li, K. Li, M. Li, D. Gosselink, Y. Zhang, P. Chen, A sulfur–polyacrylonitrile/graphene composite cathode for lithium batteries with excellent cyclability, Journal of Power Sources, 252 (2014) 107-112.
    [115] S. Zhang, Understanding of Sulfurized Polyacrylonitrile for Superior Performance Lithium/Sulfur Battery, Energies, 7 (2014) 4588-4600.
    [116] J. Wang, J. Yang, J. Xie, N. Xu, A novel conductive polymer–sulfur composite cathode material for rechargeable lithium batteries, Advanced materials, 14 (2002) 963-965.
    [117] M.A. Weret, C.-F.J. Kuo, T.S. Zeleke, T.T. Beyene, M.-C. Tsai, C.-J. Huang, G.B. Berhe, W.-N. Su, B.-J. Hwang, Mechanistic understanding of the Sulfurized-Poly (acrylonitrile) cathode for lithium-sulfur batteries, Energy Storage Materials, (2019).
    [118] M. Yoshio, R.J. Brodd, A. Kozawa, Lithium-ion batteries, Springer2009.
    [119] B. Liu, J.-G. Zhang, W. Xu, Advancing Lithium Metal Batteries, Joule, 2 (2018) 833-845.
    [120] J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High-Performance Anode Materials for Rechargeable Lithium-Ion Batteries, Electrochemical Energy Reviews, 1 (2018) 35-53.
    [121] X.-B. Cheng, R. Zhang, C.-Z. Zhao, Q. Zhang, Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review, Chemical Reviews, 117 (2017) 10403-10473.
    [122] Z.W. Seh, J.H. Yu, W. Li, P.-C. Hsu, H. Wang, Y. Sun, H. Yao, Q. Zhang, Y. Cui, Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes, Nature communications, 5 (2014) 5017.
    [123] Y.-S. Su, Y. Fu, T. Cochell, A. Manthiram, A strategic approach to recharging lithium-sulphur batteries for long cycle life, Nature communications, 4 (2013) 2985.
    [124] X. Shen, Y. Li, T. Qian, J. Liu, J. Zhou, C. Yan, J.B. Goodenough, Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery, Nature communications, 10 (2019) 900.
    [125] C. Yang, L. Suo, O. Borodin, F. Wang, W. Sun, T. Gao, X. Fan, S. Hou, Z. Ma, K. Amine, K. Xu, C. Wang, Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility, Proc Natl Acad Sci U S A, 114 (2017) 6197-6202.
    [126] Y. Liu, W. Wang, A. Wang, Z. Jin, H. Zhao, Y. Yang, A polysulfide reduction accelerator – NiS2-modified sulfurized polyacrylonitrile as a high performance cathode material for lithium–sulfur batteries, J. Mater. Chem. A, 5 (2017) 22120-22124.
    [127] Y. Li, Q. Zeng, I.R. Gentle, D.-W. Wang, Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries, Journal of Materials Chemistry A, 5 (2017) 5460-5465.
    [128] C.-H. Lee, G.-J. Park, J.-H. Choi, C.-H. Doh, D.-S. Bae, J.-S. Kim, S.-M. Lee, Low temperature synthesis of garnet type solid electrolyte by modified polymer complex process and its characterization, Materials Research Bulletin, 83 (2016) 309-315.
    [129] L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, Y.-W. Yang, B.-J. Hwang, Li7La2.75Ca0.25Zr1.75Nb0.25O12@LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery, Electrochimica Acta, 325 (2019).
    [130] Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid, Chem Rev, 111 (2011) 3577-3613.
    [131] A.M. Tripathi, W.N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chem Soc Rev, 47 (2018) 736-851.
    [132] G.J. May, A. Davidson, B. Monahov, Lead batteries for utility energy storage: A review, Journal of Energy Storage, 15 (2018) 145-157.
    [133] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects, Adv Sci (Weinh), 4 (2017) 1600539.
    [134] Y. Sun, G. Zheng, Zhi W. Seh, N. Liu, S. Wang, J. Sun, Hye R. Lee, Y. Cui, Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries, Chem, 1 (2016) 287-297.
    [135] X. Sun, P.V. Radovanovic, B. Cui, Advances in spinel Li4Ti5O12 anode materials for lithium-ion batteries, New Journal of Chemistry, 39 (2015) 38-63.
    [136] T.-F. Yi, S.-Y. Yang, Y. Xie, Recent advances of Li4Ti5O12 as a promising next generation anode material for high power lithium-ion batteries, Journal of Materials Chemistry A, 3 (2015) 5750-5777.
    [137] J. Luo, J. Zhou, D. Lin, Y. Ren, K. Tang, LiFeP: A new anode material for lithium ion batteries, Journal of Power Sources, 370 (2017) 14-19.
    [138] D. Lin, Y. Liu, Y. Cui, Reviving the lithium metal anode for high-energy batteries, Nat Nanotechnol, 12 (2017) 194-206.
    [139] Z. Lin, C. Liang, Lithium–sulfur batteries: from liquid to solid cells, J. Mater. Chem. A, 3 (2015) 936-958.
    [140] L. Ma, K.E. Hendrickson, S. Wei, L.A. Archer, Nanomaterials: Science and applications in the lithium–sulfur battery, Nano Today, 10 (2015) 315-338.
    [141] J. Gao, M.A. Lowe, Y. Kiya, H.D. Abruña, Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies, The Journal of Physical Chemistry C, 115 (2011) 25132-25137.
    [142] G. Xu, B. Ding, L. Shen, P. Nie, J. Han, X. Zhang, Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium–sulfur battery, Journal of Materials Chemistry A, 1 (2013) 4490.
    [143] J. Wang, F. Lin, H. Jia, J. Yang, C.W. Monroe, Y. NuLi, Towards a safe lithium-sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode, Angew Chem Int Ed Engl, 53 (2014) 10099-10104.
    [144] T.A. Zegeye, C.-F.J. Kuo, H.-M. Chen, A.M. Tripathi, M.-H. Lin, J.-H. Cheng, A.D. Duma, W.-N. Su, B.-J. Hwang, Dual-Confined Sulfur in Hybrid Nanostructured Materials for Enhancement of Lithium-Sulfur Battery Cathode Capacity Retention, ChemElectroChem, 4 (2017) 636-647.
    [145] Q. Li, Z. Zhang, Z. Guo, Y. Lai, K. Zhang, J. Li, Improved cyclability of lithium–sulfur battery cathode using encapsulated sulfur in hollow carbon nanofiber@nitrogen-doped porous carbon core–shell composite, Carbon, 78 (2014) 1-9.
    [146] B. Zhang, X. Qin, G. Li, X. Gao, Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres, Energy & Environmental Science, 3 (2010) 1531-1537.
    [147] F. Lee, M.-C. Tsai, M.-H. Lin, Y.L. Ni'mah, S. Hy, C.-Y. Kuo, J.-H. Cheng, J. Rick, W.-N. Su, B.-J. Hwang, Capacity retention of lithium sulfur batteries enhanced with nano-sized TiO2-embedded polyethylene oxide, Journal of Materials Chemistry A, 5 (2017) 6708-6715.
    [148] T.N.L. Doan, M. Ghaznavi, Y. Zhao, Y. Zhang, A. Konarov, M. Sadhu, R. Tangirala, P. Chen, Binding mechanism of sulfur and dehydrogenated polyacrylonitrile in sulfur/polymer composite cathode, Journal of Power Sources, 241 (2013) 61-69.
    [149] R. Kumar, J. Liu, J.-Y. Hwang, Y.-K. Sun, Recent research trends in Li–S batteries, Journal of Materials Chemistry A, 6 (2018) 11582-11605.
    [150] J.-S. Kim, T.H. Hwang, B.G. Kim, J. Min, J.W. Choi, A Lithium-Sulfur Battery with a High Areal Energy Density, Advanced Functional Materials, 24 (2014) 5359-5367.
    [151] T.J. Xue, M.A. McKinney, C.A. Wilkie, The thermal degradation of polyacrylonitrile, Polym Degrad Stabil, 58 (1997) 193-202.
    [152] T.H. Hwang, D.S. Jung, J.-S. Kim, B.G. Kim, J.W. Choi, One-Dimensional Carbon–Sulfur Composite Fibers for Na–S Rechargeable Batteries Operating at Room Temperature, Nano Letters, 13 (2013) 4532-4538.
    [153] S. Wei, L. Ma, K.E. Hendrickson, Z. Tu, L.A. Archer, Metal-Sulfur Battery Cathodes Based on PAN-Sulfur Composites, J Am Chem Soc, 137 (2015) 12143-12152.
    [154] C.F.J. Kuo, M.A. Weret, H.Y. Hung, M.C. Tsai, C.J. Huang, W.N. Su, B.J. Hwang, Sulfurized−poly(acrylonitrile) wrapped carbon sulfur composite cathode material for high performance rechargeable lithium sulfur batteries, Journal of Power Sources, 412 (2019) 670-676.
    [155] X.-g. Yu, J.-y. Xie, J. Yang, H.-j. Huang, K. Wang, Z.-s. Wen, Lithium storage in conductive sulfur-containing polymers, Journal of Electroanalytical Chemistry, 573 (2004) 121-128.
    [156] J.M. Pope, T. Sato, E. Shoji, N. Oyama, K.C. White, D.A. Buttry, Organosulfur/conducting polymer composite cathodes II. Spectroscopic determination of the protonation and oxidation states of 2, 5-dimercapto-1, 3, 4-thiadiazole, Journal of the Electrochemical Society, 149 (2002) A939-A952.
    [157] N. Colthup, L. Daly, S. Wiberley, Carbonyl compounds, Introduction to infrared and Raman spectroscopy, 3 (1990) 289-325.
    [158] L. Yin, J. Wang, F. Lin, J. Yang, Y. Nuli, Polyacrylonitrile/graphene composite as a precursor to a sulfur-based cathode material for high-rate rechargeable Li–S batteries, Energy & Environmental Science, 5 (2012).
    [159] Y. Zhang, Y. Zhao, Z. Bakenov, A. Konarov, P. Chen, Preparation of novel network nanostructured sulfur composite cathode with enhanced stable cycle performance, Journal of Power Sources, 270 (2014) 326-331.
    [160] Y. Zhang, Y. Zhao, Z. Bakenov, M.R. Babaa, A. Konarov, C. Ding, P. Chen, Effect of Graphene on Sulfur/Polyacrylonitrile Nanocomposite Cathode in High Performance Lithium/Sulfur Batteries, Journal of the Electrochemical Society, 160 (2013) A1194-A1198.
    [161] Y. Zhang, Y. Zhao, A. Yermukhambetova, Z. Bakenov, P. Chen, Ternary sulfur/polyacrylonitrile/Mg 0.6 Ni 0.4 O composite cathodes for high performance lithium/sulfur batteries, Journal of Materials Chemistry A, 1 (2013) 295-301.
    [162] K. Jeddi, M. Ghaznavi, P. Chen, A novel polymer electrolyte to improve the cycle life of high performance lithium–sulfur batteries, Journal of Materials Chemistry A, 1 (2013) 2769-2772.
    [163] Y. Zhang, Y. Zhao, Z. Bakenov, M.-R. Babaa, A. Konarov, C. Ding, P. Chen, Effect of graphene on sulfur/polyacrylonitrile nanocomposite cathode in high performance lithium/sulfur batteries, Journal of The Electrochemical Society, 160 (2013) A1194-A1198.
    [164] H. Chen, C. Wang, C. Hu, J. Zhang, S. Gao, W. Lu, L. Chen, Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium–sulfur batteries, Journal of Materials Chemistry A, 3 (2015) 1392-1395.
    [165] L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, Thin, Flexible Secondary Li-Ion Paper Batteries, ACS Nano, 4 (2010) 5843-5848.
    [166] N. Li, Z. Chen, W. Ren, F. Li, H.M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates, Proc Natl Acad Sci U S A, 109 (2012) 17360-17365.
    [167] X. Sun, P.V. Radovanovic, B. Cui, Advances in spinel Li 4 Ti 5 O 12 anode materials for lithium-ion batteries, New Journal of Chemistry, 39 (2015) 38-63.
    [168] H. Yu, X. Dong, Y. Pang, Y. Wang, Y. Xia, High Power Lithium-ion Battery based on Spinel Cathode and Hard Carbon Anode, Electrochimica Acta, 228 (2017) 251-258.
    [169] J. Lach, K. Wróbel, J. Wróbel, P. Podsadni, A. Czerwiński, Applications of carbon in lead-acid batteries: a review, Journal of Solid State Electrochemistry, 23 (2019) 693-705.
    [170] K. Bi, S.-X. Zhao, C. Huang, C.-W. Nan, Improving low-temperature performance of spinel LiNi0.5Mn1.5O4 electrode and LiNi0.5Mn1.5O4/Li4Ti5O12 full-cell by coating solid-state electrolyte Li-Al-Ti-P-O, Journal of Power Sources, 389 (2018) 240-248.
    [171] A.S. Wotango, W.N. Su, E.G. Leggesse, A.M. Haregewoin, M.H. Lin, T.A. Zegeye, J.H. Cheng, B.J. Hwang, Improved Interfacial Properties of MCMB Electrode by 1-(Trimethylsilyl)imidazole as New Electrolyte Additive To Suppress LiPF6 Decomposition, ACS Appl Mater Interfaces, 9 (2017) 2410-2420.
    [172] J. Zheng, M.H. Engelhard, D. Mei, S. Jiao, B.J. Polzin, J.-G. Zhang, W. Xu, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nature Energy, 2 (2017).
    [173] Felix, J.-H. Cheng, S. Hy, J. Rick, F.-M. Wang, B.-J. Hwang, Mechanistic Basis of Enhanced Capacity Retention Found with Novel Sulfate-Based Additive in High-Voltage Li-Ion Batteries, The Journal of Physical Chemistry C, 117 (2013) 22619-22626.
    [174] E. Radvanyi, E. De Vito, W. Porcher, S. Jouanneau Si Larbi, An XPS/AES comparative study of the surface behaviour of nano-silicon anodes for Li-ion batteries, J. Anal. At. Spectrom., 29 (2014) 1120-1131.
    [175] Z. Xing, Z. Ju, Y. Zhao, J. Wan, Y. Zhu, Y. Qiang, Y. Qian, One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries, Sci Rep, 6 (2016) 26146.
    [176] A.L. Michan, B.S. Parimalam, M. Leskes, R.N. Kerber, T. Yoon, C.P. Grey, B.L. Lucht, Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation, Chemistry of Materials, 28 (2016) 8149-8159.
    [177] N. Treuil, C. Labrugère, M. Menetrier, J. Portier, G. Campet, A. Deshayes, J.-C. Frison, S.-J. Hwang, S.-W. Song, J.-H. Choy, Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various Particle Sizes:  “Electrochemical Grafting” Concept, The Journal of Physical Chemistry B, 103 (1999) 2100-2106.
    [178] A. Abdul Razzaq, Y. Yao, R. Shah, P. Qi, L. Miao, M. Chen, X. Zhao, Y. Peng, Z. Deng, High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes, Energy Storage Materials, 16 (2019) 194-202.
    [179] S. Ranganatha, N. Munichandraiah, γ-MnS nanoparticles anchored reduced graphene oxide: Electrode materials for high performance supercapacitors, Journal of Science: Advanced Materials and Devices, 3 (2018) 359-365.
    [180] J. Li, L. Xing, R. Zhang, M. Chen, Z. Wang, M. Xu, W. Li, Tris(trimethylsilyl)borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte, Journal of Power Sources, 285 (2015) 360-366.
    [181] K.M. Shaju, K.V. Ramanujachary, S.E. Lofland, G.V. Subba Rao, B.V.R. Chowdari, Spectral, magnetic and electrochemical studies of layered manganese oxides with P2 and O2 structure, Journal of Materials Chemistry, 13 (2003).
    [182] V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, D. Aurbach, Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes, Langmuir, 28 (2011) 965-976.
    [183] J. Wang, Q. Zhang, X. Li, Z. Wang, H. Guo, D. Xu, K. Zhang, Sputtering graphite coating to improve the elevated-temperature cycling ability of the LiMn 2 O 4 electrode, Physical Chemistry Chemical Physics, 16 (2014) 16021-16029.
    [184] Z. Guo, L. Chen, Y. Wang, C. Wang, Y. Xia, Aqueous Lithium-Ion Batteries Using Polyimide-Activated Carbon Composites Anode and Spinel LiMn2O4 Cathode, ACS Sustainable Chemistry & Engineering, 5 (2017) 1503-1508.
    [185] F. Lai, X. Zhang, Q. Wu, J. Zhang, Q. Li, Y. Huang, Z. Liao, H. Wang, Effect of Surface Modification with Spinel NiFe2O4 on Enhanced Cyclic Stability of LiMn2O4 Cathode Material in Lithium Ion Batteries, ACS Sustainable Chemistry & Engineering, 6 (2017) 570-578.
    [186] G.B. Berhe, W.-N. Su, C.-J. Huang, T.M. Hagos, T.T. Hagos, H.K. Bezabh, M.A. Weret, L.H. Abrha, Y.-W. Yang, B.-J. Hwang, A new class of lithium-ion battery using sulfurized carbon anode from polyacrylonitrile and lithium manganese oxide cathode, Journal of Power Sources, 434 (2019) 126641.
    [187] J. Guo, Y. Cai, S. Zhang, S. Chen, F. Zhang, Core-Shell Structured o-LiMnO2@Li2CO3 Nanosheet Array Cathode for High-Performance, Wide-Temperature-Tolerance Lithium-Ion Batteries, ACS Appl Mater Interfaces, 8 (2016) 16116-16124.
    [188] L. Ben, H. Yu, Y. Wu, B. Chen, W. Zhao, X. Huang, Ta2O5 Coating as an HF Barrier for Improving the Electrochemical Cycling Performance of High-Voltage Spinel LiNi0.5Mn1.5O4 at Elevated Temperatures, ACS Applied Energy Materials, (2018).
    [189] U. Nisar, R. Amin, R. Essehli, R.A. Shakoor, R. Kahraman, D.K. Kim, M.A. Khaleel, I. Belharouak, Extreme fast charging characteristics of zirconia modified LiNi0.5Mn1.5O4 cathode for lithium ion batteries, Journal of Power Sources, 396 (2018) 774-781.
    [190] G.H. Waller, P.D. Brooke, B.H. Rainwater, S.Y. Lai, R. Hu, Y. Ding, F.M. Alamgir, K.H. Sandhage, M.L. Liu, Structure and surface chemistry of Al2O3 coated LiMn2O4 nanostructured electrodes with improved lifetime, Journal of Power Sources, 306 (2016) 162-170.
    [191] P. Guan, L. Zhou, Z. Yu, Y. Sun, Y. Liu, F. Wu, Y. Jiang, D. Chu, Recent progress of surface coating on cathode materials for high-performance lithium-ion batteries, Journal of Energy Chemistry, (2019).
    [192] A. Mentbayeva, A. Belgibayeva, N. Umirov, Y. Zhang, I. Taniguchi, I. Kurmanbayeva, Z. Bakenov, High performance freestanding composite cathode for lithium-sulfur batteries, Electrochimica Acta, 217 (2016) 242-248.
    [193] X. Li, J. Liu, M.N. Banis, A. Lushington, R. Li, M. Cai, X. Sun, Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application, Energy & Environmental Science, 7 (2014) 768-778.
    [194] Y.-F. Deng, S.-X. Zhao, Y.-H. Xu, C.-W. Nan, Effect of temperature of Li 2 O–Al 2 O 3 –TiO 2 –P 2 O 5 solid-state electrolyte coating process on the performance of LiNi 0.5 Mn 1.5 O 4 cathode materials, Journal of Power Sources, 296 (2015) 261-267.
    [195] X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu, Y. Lin, B. Xu, L. Li, C.W. Nan, Y. Shen, Synergistic Coupling between Li6.75La3Zr1.75Ta0.25O12 and Poly(vinylidene fluoride) Induces High Ionic Conductivity, Mechanical Strength, and Thermal Stability of Solid Composite Electrolytes, J Am Chem Soc, 139 (2017) 13779-13785.
    [196] X.Q. Zhang, X.B. Cheng, X. Chen, C. Yan, Q. Zhang, Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries, Advanced Functional Materials, 27 (2017) 1605989.
    [197] Z. Gao, S. Zhang, Z. Huang, Y. Lu, W. Wang, K. Wang, J. Li, Y. Zhou, L. Huang, S. Sun, Protection of Li metal anode by surface-coating of PVDF thin film to enhance the cycling performance of Li batteries, Chinese Chemical Letters, 30 (2019) 525-528.
    [198] Y. Li, I.R. Gentle, D.-W. Wang, Carboxymethyl cellulose binders enable high-rate capability of sulfurized polyacrylonitrile cathodes for Li–S batteries, Journal of Materials Chemistry A, 5 (2017) 5460-5465.
    [199] T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, B.-J. Hwang, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries, Electrochimica Acta, 316 (2019) 52-59.
    [200] C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. von Cresce, M.S. Ding, O. Borodin, J. Vatamanu, M.A. Schroeder, N. Eidson, C. Wang, K. Xu, 4.0 V Aqueous Li-Ion Batteries, Joule, 1 (2017) 122-132.
    [201] Q. Liu, T. Zhao, Z. Kang, Preparation and characterization of triazinedithiol nanofilm on surface of sintered NdFeB permanent magnet, Journal of Coatings Technology and Research, 12 (2015) 1165-1172.
    [202] R. Vinoth, S.G. Babu, D. Bahnemann, B. Neppolian, Nitrogen Doped Reduced Graphene Oxide Hybrid Metal Free Catalyst for Effective Reduction of 4-Nitrophenol, Science of Advanced Materials, 7 (2015) 1443-1449.
    [203] A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon, Physical review B, 61 (2000) 14095.
    [204] D.P. Shaik, P. Rosaiah, K.S. Ganesh, Y. Qiu, O. Hussain, Improved electrochemical performance of Mn3O4 thin film electrodes for supercapacitors, Materials Science in Semiconductor Processing, 84 (2018) 83-90.
    [205] B. Zhu, X. Wang, P. Yao, J. Li, J. Zhu, Towards the high energy density lithium battery anodes: Silicon and Lithium, Chemical Science, (2019).
    [206] A.M. Tripathi, W.-N. Su, B.J. Hwang, In situ analytical techniques for battery interface analysis, Chemical Society Reviews, 47 (2018) 736-851.
    [207] S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent Progress in Research on High‐Voltage Electrolytes for Lithium‐Ion Batteries, ChemPhysChem, 15 (2014) 1956-1969.
    [208] X. Zheng, Y. Liao, Z. Zhang, J. Zhu, F. Ren, H. He, Y. Xiang, Y. Zheng, Y. Yang, Exploring high-voltage fluorinated carbonate electrolytes for LiNi0.5Mn1.5O4 cathode in Li-ion batteries, Journal of Energy Chemistry, 42 (2020) 62-70.
    [209] H. Kawasoko, S. Shiraki, T. Suzuki, R. Shimizu, T. Hitosugi, Extremely Low Resistance of Li3PO4 Electrolyte/Li(Ni0.5Mn1.5)O4 Electrode Interfaces, ACS Appl Mater Interfaces, 10 (2018) 27498-27502.
    [210] M. He, C.C. Su, Z. Feng, L. Zeng, T. Wu, M.J. Bedzyk, P. Fenter, Y. Wang, Z. Zhang, High Voltage LiNi0. 5Mn0. 3Co0. 2O2/Graphite Cell Cycled at 4.6 V with a FEC/HFDEC‐Based Electrolyte, Advanced Energy Materials, 7 (2017) 1700109.
    [211] L. Chen, X. Fan, E. Hu, X. Ji, J. Chen, S. Hou, T. Deng, J. Li, D. Su, X. Yang, C. Wang, Achieving High Energy Density through Increasing the Output Voltage: A Highly Reversible 5.3 V Battery, Chem, 5 (2019) 896-912.
    [212] L. Xia, L. Yu, D. Hu, G.Z. Chen, Electrolytes for electrochemical energy storage, Materials Chemistry Frontiers, 1 (2017) 584-618.
    [213] M.A. Teshager, S.D. Lin, B.J. Hwang, F.M. Wang, S. Hy, A.M. Haregewoin, In Situ DRIFTS Analysis of Solid‐Electrolyte Interphase Formation on Li‐Rich Li1. 2Ni0. 2Mn0. 6O2 and LiCoO2 Cathodes during Oxidative Electrolyte Decomposition, ChemElectroChem, 3 (2016) 337-345.
    [214] M. Egashira, H. Takahashi, S. Okada, J.-i. Yamaki, Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode, Journal of power sources, 92 (2001) 267-271.
    [215] A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy & Environmental Science, 9 (2016) 1955-1988.
    [216] J. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nature communications, 7 (2016) 12032.
    [217] A. Tornheim, S. Sharifi-Asl, J.C. Garcia, J. Bareño, H. Iddir, R. Shahbazian-Yassar, Z. Zhang, Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds, Nano Energy, 55 (2019) 216-225.
    [218] C.-C. Su, M. He, P.C. Redfern, L.A. Curtiss, I.A. Shkrob, Z. Zhang, Oxidatively stable fluorinated sulfone electrolytes for high voltage high energy lithium-ion batteries, Energy & Environmental Science, 10 (2017) 900-904.
    [219] B. Flamme, M. Haddad, P. Phansavath, V. Ratovelomanana‐Vidal, A. Chagnes, Anodic Stability of New Sulfone‐Based Electrolytes for Lithium‐Ion Batteries, ChemElectroChem, 5 (2018) 2279-2287.
    [220] C.C. Su, M. He, P. Redfern, L.A. Curtiss, C. Liao, L. Zhang, A.K. Burrell, Z. Zhang, Alkyl Substitution Effect on Oxidation Stability of Sulfone‐Based Electrolytes, ChemElectroChem, 3 (2016) 790-797.
    [221] B. Gélinas, T. Bibienne, M. Dollé, D. Rochefort, Electroactive ionic liquids based on 2, 5-ditert-butyl-1, 4-dimethoxybenzene and triflimide anion as redox shuttle for Li4Ti5O12/LiFePO4 lithium-ion batteries, Journal of Power Sources, 372 (2017) 212-220.
    [222] L. Xia, Y. Xia, C. Wang, H. Hu, S. Lee, Q. Yu, H. Chen, Z. Liu, 5 V-Class Electrolytes Based on Fluorinated Solvents for Li-Ion Batteries with Excellent Cyclability, ChemElectroChem, 2 (2015) 1707-1712.
    [223] L. Xia, S. Lee, Y. Jiang, S. Li, Z. Liu, L. Yu, D. Hu, S. Wang, Y. Liu, G.Z. Chen, Physicochemical and Electrochemical Properties of 1,1,2,2‐Tetrafluoroethyl‐2,2,3,3‐Tetrafluoropropyl Ether as a Co‐Solvent for High‐Voltage Lithium‐Ion Electrolytes, ChemElectroChem, 6 (2019) 3747-3755.
    [224] M.A. Weret, Sulfurized− poly (acrylonitrile) wrapped carbonsulfur composite cathode material for high performance rechargeable lithiumsulfur batteries, Journal of Power Sources, 412 (2019) 670-676.
    [225] Y.-C. Yen, S.-C. Chao, H.-C. Wu, N.-L. Wu, Study on solid-electrolyte-interphase of Si and C-coated Si electrodes in lithium cells, Journal of The Electrochemical Society, 156 (2009) A95-A102.
    [226] T.T. Hagos, B. Thirumalraj, C.J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.F. Chiu, W.N. Su, B.J. Hwang, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries, ACS Appl Mater Interfaces, 11 (2019) 9955-9963.
    [227] V. Winkler, T. Hanemann, M. Bruns, Comparative surface analysis study of the solid electrolyte interphase formation on graphite anodes in lithium‐ion batteries depending on the electrolyte composition, Surface and Interface Analysis, 49 (2017) 361-369.
    [228] J. Maibach, I. Källquist, M. Andersson, S. Urpelainen, K. Edström, H. Rensmo, H. Siegbahn, M. Hahlin, Probing a battery electrolyte drop with ambient pressure photoelectron spectroscopy, Nature communications, 10 (2019) 1-7.
    [229] L. Cheng, S. Jandhyala, G. Mordi, A.T. Lucero, J. Huang, A. Azcatl, R. Addou, R.M. Wallace, L. Colombo, J. Kim, Partially fluorinated graphene: structural and electrical characterization, ACS applied materials & interfaces, 8 (2016) 5002-5008.

    無法下載圖示 全文公開日期 2023/01/20 (校內網路)
    全文公開日期 2027/01/20 (校外網路)
    全文公開日期 2027/01/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE