簡易檢索 / 詳目顯示

研究生: 陳定緯
Ting-Wei Chen
論文名稱: 鋰離子電池添加劑(雙馬來醯亞胺/5,5-雙甲基巴比妥酸)用於改善鎳鈷鋁陰極材料之研究
Study of Lithium-ion Battery Additive (BMI/5,5-BTA) Ameliorating NCA Cathode Material
指導教授: 王復民
Fu-Ming Wang
口試委員: 楊長榮
Chang-Rong Yang
謝芳吉
Fang-Ji Xie
潘金平
Jin-Ping Pan
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 90
中文關鍵詞: 鋰離子電池富鎳正極材料電極添加劑
外文關鍵詞: Lithium-ion battery, Nickel-rich cathode materials, Electrode additives
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,使用一種正極添加劑在電池混漿過程中混入,該添加劑是以雙馬來醯亞胺/5,5-雙甲基巴比妥酸在137℃進聚合而成的寡聚物作為電極添劑使用,並且以兩種比列添加於富鎳的二元正極材料(NCA)中,探討對於LiNi8.5Co1.0Al0.5O2正極材料的影響,再利用正極半電池,進行充放電(C/DC)、交流阻抗圖譜(EIS) 、X射線衍射(XRD)以及循環伏安(CV)以上測試,分析這兩種比例添加至正極材料後,對於電池性能、電池內部阻抗以及電化學性質的影響,並對經過充放電後的極片通過掃描式電子顯微鏡(SEM)、感應耦合電漿光學發射光譜(ICP)、X射線光電子能譜儀(XPS) 、差示掃描量熱法(DSC) 、同步輻射臨場硬吸收光譜(In-situ Hard XAS),了解經充放電後的電極極片表面型態及元素組成、電極材料的熱穩定性、電子價態的轉變。
    本研究的實驗結果,在正極材料中添加0.5wt%的NCA添加劑可以最有效改善正極半電池於常溫電池循環壽命衰退以及電化學反應性質,而高溫環境的充放電測則是添加1 %的NCA添加劑表現最為優異,在加入添加劑後電極材料的熱穩定性也有所提升,也發現添加0.5%的添加劑BMI/5,5BTA可以有效的抑制鋰雜質的生成及降低Ni2+轉變為Ni3+影響陽離子插排混和效應。


    In the research, a type of cathode additive is being introduced into the mixing process of the cathode fabrication, which is BMI/5,5-BTA. The oligomer additive is polymerized at the exact temperature of 137oC and being used as addictive. Upon it, 2 different ratio of the additive is being added into nickel rich binary cathode material (NCA) to investigate the effects towards LiNi8.5Co1.0Al0.5O2. The cathode half-cell, undergoes charge-discharge procedure (C/DC), electrochemical impedance spectroscopy (EIS) analysis, X-Ray Diffraction (XRD) and Cyclic Voltammetry (CV)analysis, to analyze the performance, Impedance and electrochemical effects of the 2 different ratio of additive, comparing to pristine. Scanning Electron Microscopy (SEM), Inductively coupled plasma (ICP), X-ray photoelectron spectroscopy (XPS), Differential scanning calorimetry (DSC), Hard X-ray absorption spectroscopy (HXAS), analysis are conducted towards after cycled cathode electrode, to determine the surface morphology, elemental composition, thermos stability, and valence change of electrons. Conclusion of this research is by adding 0.5wt% of the additive into NCA cathode, effectively improves its cycle retention and electrochemical performance under room temperature, however by adding 1wt% shows better performance at high temperature. Furthermore, by adding the additive could increase the cathode’s thermos stability, on the other hand, by adding 0.5wt% of additive (BMI/5,5-BTA) could effectively restrain production of lithium composite impurities, and decrease Ni2+ to Ni3+ cation mixing effects.

    目錄 致謝 V 摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 IX 第1章 緒論 1 1.1 鋰離子電池的發展簡史 1 1.2 正極材料 2 1.3 隔離膜 3 1.4 電解液 3 1.5 負極材料 4 第2章 研究動機 5 第3章 研究介紹 8 第4章 文獻回顧 10 4.1 鋰離子電池的基本原理 10 4.2二元正極材料鎳鈷鋁 13 4.3二元正極材料鎳鈷鋁的改善 14 4.4富鎳層狀材料的降解機制 18 第5章 實驗藥品和設備 20 第6章 實驗樣品製備 22 6.1 NCA添加劑製備 22 6.1.1 5,5-BTA (5,5-dimethylbarbituric acid) 清洗 22 6.1.2 NCA添加劑合成 22 6.2 電極漿料製備 23 6.2.1 [ PVDF (polyvinylidene difluoride) - 6% 製備] 23 6.2.2[ LiNi8.5Co1.0Al0.5O2 ] 23 6.2.3 [NCA添加劑 BMI / 5,5-BTA - 0.5% / LiNi8.5Co1.0Al0.5O2] 23 6.2.4 [ NCA添加劑 BMI / 5,5-BTA - 1% / LiNi8.5Co1.0Al0.5O2] 23 6.3 電極極片製備 24 6.4 鈕扣型電池(coin cell)組裝 25 6.5.1 [ NCA_BK] 26 6.5.2 [ NCA_IW_0.5% ] 26 6.5.3 [ NCA_IW_1% ] 26 6.6 SEM樣品製備 27 6.6.1 [ NCA_BK_Fresh] 27 6.6.2 [ NCA_BK_Aging] 27 6.6.3 [ NCA_IW_0.5%_Fresh ] 27 6.6.4 [ NCA_IW_0.5%_Aging ] 27 6.7 TEM樣品製備 28 6.7.1 [ NCA_BK_Fresh] 28 6.7.2 [ NCA_BK_Aging] 28 6.7.3 [ NCA_IW_0.5%_Fresh ] 28 6.7.4 [ NCA_IW_0.5%_Aging ] 28 6.8 XPS樣品製備 29 6.8.1 [ NCA_BK_Fresh] 29 6.8.2 [ NCA_BK_Aging] 29 6.8.3 [ NCA_IW_0.5%_Fresh ] 29 6.8.4 [ NCA_IW_0.5%_Aging ] 29 6.8 XRD樣品製備 30 6.8.1 [ NCA_BK_Fresh] 30 6.8.2 [ NCA_BK_Aging] 30 6.8.3 [ NCA_IW_0.5%_Fresh ] 30 6.8.4 [ NCA_IW_0.5%_Aging ] 30 6.9 ICP樣品製備 31 6.9.1 [ NCA_BK_Fresh] 31 6.9.2 [ NCA_BK_Aging] 31 6.9.3 [ NCA_IW_0.5%_Fresh ] 31 6.9.4 [ NCA_IW_0.5%_Aging ] 31 第7章 結果與討論 32 7.1第一圈充放電曲線分析 32 7.2常溫(1~100圈)充放電曲線分析 34 7.3常溫充放電循環壽命圖及正規化 37 7.4常溫充放電(1~100圈)交流阻抗圖譜分析 39 7.5常溫0.1c 80圈充放電循環壽命圖 43 7.6高溫(55°C)0.2c充放電循環壽命圖 44 7.7倍率性能測試 45 7.8循環伏安(CV)分析 46 7.9XRD分析 50 7.10.1 [ NCA_BK_Fresh & NCA_BK_100cycle] 52 7.10.2 [ NCA_IW_Fresh & NCA_IW_100cycle] 54 7.11XPS分析 57 7.12ICP分析 62 7.13DSC分析 63 7.14同步輻射臨場電化學硬吸收光譜分析 64 第8章 結論 69 參考文獻 71

    參考文獻
    [1] " Lithium-ion battery " Wikipedia, The Free Encyclopedia. 19 June 2019, 06:32 UTC. Wikimedia Foundation, Inc. 3 December. 2013.
    [2] "Rechargeable Li-Ion OEM Battery Products". Panasonic.com. Archived from the original on 13 April 2010. Retrieved 23 April 2010.
    [3] Thomas Woehrle.” Lithium-ion cell” Lithium-Ion Batteries: Basics and Applications pp 101–111
    [4] Thackeray, M. M., et al. "Lithium insertion into manganese spinels." Materials Research Bulletin 18.4 (1983): 461-472.
    [5] Padhi, Akshaya K., Kirakodu S. Nanjundaswamy, and John B. Goodenough. "Phospho‐olivines as positive‐electrode materials for rechargeable lithium batteries." Journal of the electrochemical society 144.4 (1997): 1188-1194.
    [6] 一文看懂鋰電池正極材料2018-10-12 由集邦新能源網 發表于資訊
    [7] 解析我國鋰電池四大關鍵材料的發展水平 https://media-tianneng.todayir.com/20160419144154217932722_tc.pdf
    [8] 鋰電池材料(新聞稿)MoneyDJ理財網
    [9] Da Deng ’’Li-ion batteries: basics, progress, and challenge’’ Energy Science and Engineering 2015; 3(5):385–418
    [10] 《21世紀諾貝爾化學獎2001-2021》:「鋰離子電池」的發明如何改變電器使用生態?(新聞稿). The News Lens關鍵評論,科學.2022/05/29
    [11] IEA 2022 Global EV Outlook
    [12] 特斯拉 V3 超級充電真的很快嗎?Model 3 實測揭曉真正答案(新聞稿).DDCAR,Marco Hu. 2019-11-13
    [13] Liang, Ji, Feng Li, and Hui-Ming Cheng. "High-capacity lithium ion batteries: bridging future and current." (2016): A1-A2.
    [14] Wang, Qingsong, et al. "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect." Nano Energy(2018).
    [15] Wang, Qingsong, et al. "Progress of enhancing the safety of lithium ion battery from the electrolyte aspect." Nano Energy(2018).
    [16] 鋰電池為什麼會爆炸?防爆發明在台灣(新聞稿).天下雜誌,嚴珮華. 2016-09-21
    [17] Da Deng.”Li-ion batteries: basics, progress, and challenges” Energy science & engineering, Volume 3, Issue 5(2015): 385-497
    [18] The working principle of the lithium-ion battery! E-lyte-innovations.2022
    [19] Xianxia Yuan,Hansan Liu,Jiujun Zhang.”Lithium-Ion Batteries: Advanced Materials and Technologies.”CRC Press.(2011)
    [20] Q.T. Pham, J.M. Hsu, F.M. Wang, X.C. Huang, M. Tesemma, C.S. Chern, "Kinetics of nucleation-controlled polymerization of N,N′- bismaleimide-4,4′- diphenylmethane/barbituric acid," Thermochimica Acta, Vol. 641, 10 October 2016, Pages 1-7
    [21] https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/batt.202100046 acid,"Polym Eng. Sci., 51 (2011), pp. 1188-1197
    [22] Jianlin Yu, Haohua Li, Guoqing Zhang, Xinxi Li*, Jin Huang*, Chengfei Li, Chao Wei,Changren Xiao.” Carbon Nanotubes Coating on LiNi0.8Co0.15Al0.05O2 as Cathode Materials for Lithium Battery.” International Journal of Electrochemical Science (2017):11892 – 11903
    [23] Tsai, Ping-Chun, et al. "Single-particle measurements of electrochemical kinetics in NMC and NCA cathodes for Li-ion batteries." Energy & Environmental Science 11.4 (2018): 860-871.
    [24] Yao Lu, Shuai Hu, Lijun Xiong, Lishan Yang*, Jun Wang*, Yuanhui Pan, Shuangshuang Zhao, Yahui Yang, Chenghuan Huang, Jian Zhu, Wen-Yi Zhou*, and Youyuan Zhou.” Insights on the Activation and Stabilization of NCA Cathode Interface: Surface Chemical State Modulations of Aluminum-Mediated Li0.73CoO2 Coatings” ACS Sustainable Chemistry & Engineering(2020):14975–14984
    [25] Yusaku F.Nishimura,Hideaki Oka,Takamasa Nonaka,Yoshinari Makimura,Kazuhiko Dohmae.” Hard X-ray spectroscopic methods using emitted X-ray to understand charge compensation in positive electrode materials for lithium-ion batteries.” Journal of Power Sources,Volume 434(2019):226721
    [26] Münir M. Besli,Alpesh Khushalchand Shukla, Chenxi Wei,d Michael Metzger,Judith Alvarado,Julian Boell,Dennis Nordlund,Gerhard Schneider,Sondra Hellstrom,Christina Johnston,Jake Christensen, Marca M. Doeff,Yijin Liu,Saravanan Kuppan.” Thermally-driven mesopore formation and oxygen release in delithiated NCA cathode particles.” Journal of Materials Chemistry A(2019):12593-12603
    [27] Agus Purwanto,Cornelius Satria Yudha,U Ubaidillah,Hendri Widiyandari,Takashi Ogi,Hery Haerudin.” NCA cathode material: synthesis methods and performance enhancement efforts.” Materials Research Express, Volume 5, Number 12(2018): 122001
    [28] Weihan Li,Minsi Li,Yongfeng Hu,Jun Lu,Andrew Lushington,Ruying Li,Tianpin Wu,Tsun-Kong Sham,Xueliang Sun.” Synchrotron-Based X-ray Absorption Fine Structures, X-ray Diffraction, and X-ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries.” Small methods,Special Issue:Lithium-Ion Batteries and Beyond,Volume2, Issue8(2018):1700341
    [29] Weihan Li,Minsi Li,Yongfeng Hu,Jun Lu,Andrew Lushington,Ruying Li,Tianpin Wu,Tsun-Kong Sham,Xueliang Sun.” Synchrotron-Based X-ray Absorption Fine Structures, X-ray Diffraction, and X-ray Microscopy Techniques Applied in the Study of Lithium Secondary Batteries.” Small methods,Special Issue:Lithium-Ion Batteries and Beyond,Volume2, Issue8(2018):1700341
    [30] Yusaku F.Nishimura, et al. "Hard X-ray spectroscopic methods using emitted X-ray to understand charge compensation in positive electrode materials for lithium-ion batteries"The Journal of Power Sources,Volume 434, 15 September 2019, 226721
    [31] Wang, Wei, et al. "Silicon decorated cone shaped carbon nanotube clusters for lithium ion battery anodes." Small 10.16 (2014): 3389-3396.
    [32] Wang, Wei, et al. "Monodisperse porous silicon spheres as anode materials for lithium ion batteries." Scientific reports 5 (2015): 8781.
    [33] Favors, Zachary, et al. "Scalable synthesis of nano-silicon from beach sand for long cycle life Li-ion batteries." Scientific reports4 (2014): 5623.
    [34] Brug, G. J., et al. "The analysis of electrode impedances complicated by the presence of a constant phase element." Journal of electroanalytical chemistry and interfacial electrochemistry 176.1-2 (1984): 275-295.
    [35] Favors, Zachary, et al. "Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO 2 nanofibers." Scientific reports 5 (2015): 8246.
    [36] Gaberscek, Miran, et al. "The importance of interphase contacts in Li ion electrodes: the meaning of the high-frequency impedance arc." Electrochemical and Solid-State Letters 11.10 (2008): A170-A174.
    [37] Dees, Dennis, et al. "Alternating current impedance electrochemical modeling of lithium-ion positive electrodes." Journal of The Electrochemical Society 152.7 (2005): A1409-A1417.
    [38] iu, Chueh, et al. "Template free and binderless NiO nanowire foam for Li-ion battery anodes with long cycle life and ultrahigh rate capability." Scientific reports 6 (2016): 29183.
    [39] Lago, Nicolo, et al. "A physical-based equivalent circuit model for an organic/electrolyte interface." Organic Electronics 35 (2016): 176-185.

    [40] Amol M. Hengne, et al. " Ni−Sn-Supported ZrO2Catalysts Modified by Indium for SelectiveCO2Hydrogenation to Methanol"ACS Omega 2018, 3, 3688−3701
    [41] ShuaiHu, et al. "An epitaxial coating with preferred orientation stabilizing High-Energy Ni-Rich NCA cathodes"Applied Surface Science,Volume 579, 30 March 2022, 152183
    [42] Niloufar Afzali , et al. " Multifunctional approach to improve water oxidation performance with MOF-based photoelectrodes" Applied materialstoday 2021, 101159.
    [43] Wangda Li,Steven Lee,Arumugam Manthiram, et al. " High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries" Advanced Materials 2020,2002718
    [44] Yukihiro Kato1, Akiko Nagahara1, Naren Gerile1, Shota Fujinaka1, Nishiki Hamamoto1, Hitoshi Nishimura1 and Hideki Nakai1" Investigation of Water-Washing Effect on Electrochemical Properties of Ni-Rich NCA Cathode Material for Lithium-Ion Batteries" Journal of The Electrochemical Society, 2022 J. Electrochem. Soc. 169 060543
    [45] 鋰電池電解液產業在兩岸的發展現況由呂學隆/工研院產經中心發表於工業材料雜誌289期
    [46] Liu, H.; Yang, Y.;Zhang, J. Investigation and improve-ment on the storage property of LiNi0.8Co0.2O2 as a cathode material for lithium-ion batteries. J. Power Sources 2006, 162, 644–650.
    [47] Liu, H. S.; Zhang, Z. R.; Gong Z. L.; Yang. Y. Origin of Deterioration for LiNiO2 Cathode Material during Storage in Air. Electrochem. Solid-State Lett. 2004, 7, A190
    [48] M. G. Kim, C. H. Yo, J. Phys. Chem. B 1999, 103, 6457.
    [49] M. G. Kim, H. J. Shin, J. H. Kim, S. H. Park, Y. K. Sun, J. Electrochem. Soc. 2005, 152, A1320.
    [50] A. Y. Ignatov, N. Ali, S. Khalid, Phys. Rev. B 2001, 64, 014413.

    [51] Kyung-Wan Nam,Seong-Min Bak,Enyuan Hu,Xiqian Yu,Youngning Zhou,Xiaojian Wang,Lijun Wu,Yimei Zhu,Kyung-Yoon Chung,Xiao-Qing Yang “Combining In Situ Synchrotron X-Ray Diffraction and Absorption Techniques with Transmission Electron Microscopy to Study the Origin of Thermal Instability in Overcharged Cathode Materials for Lithium-Ion Batteries”Advanced Functional Materials ,Volume23, Issue8 Pages 1047-1063
    [52] Jung, R.; Metzger, M.; Maglia, F.; Stinner, C.; Gastei-ger. H. A. Oxygen Release260 and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries. J. Electrochem. Soc. 2017, 164, A1361–A1377.
    [53] Ryu, H. H.; Park, N. Y.; Yoon, D. R.; Kim, U. H.; Yoon, C. S.; Sun. Y. K. New class of Ni-rich cathode materials Li[NixCoyB1-x-y]O2 for next lithium batteries. Adv. Energy Mater. 2020, 10, 2000495.
    [54] Controlling Ni2+ from the Surface to the Bulk by a New Cathode Electrolyte Interphase Formation on a Ni-Rich Layered Cathode in High-Safe and High-Energy-Density Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 2021, 13, 6, 7355–7369
    [55] Nickel‐rich layered lithium transition‐metal oxide for high‐ energy lithium‐ion batteries,Liu Wen, et al. Angewandte Chemie International Edition 54.15 (2015): 4440-4457
    [56] Structural Degradations in the Bulk of Cathode Particles for Li-ion Batteries,Hanlei Zhang, Microsc. Microanal. 24 (Suppl 1), 2018
    [57] Degradation mechanism and performance enhancement strategies of LiNixCoyAl1−x−yO2 (x ≥ 0.8) cathodes for rechargeable lithium-ion batteries: a review, Rui Fang, Ionics volume 26, pages3199–3214 (2020)

    無法下載圖示 全文公開日期 2024/09/29 (校內網路)
    全文公開日期 2024/09/29 (校外網路)
    全文公開日期 2024/09/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE