簡易檢索 / 詳目顯示

研究生: 葉宗鎰
Tsung-I Yeh
論文名稱: 透過多元工藝設計次世代硫化物與高分子固態電解質薄膜
Developing Next-Generation Sulfide Based Solid State Electrolyte and Polymer Thin Sheet by Diversified Processes
指導教授: 邱昱誠
Yu-Cheng Chiu
黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 邱昱誠
Yu-Cheng Chiu
黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 126
中文關鍵詞: 硫化物高分子聚合物複合電解質膜離子電導率鋰離子電池全固態電池
外文關鍵詞: sulfide, polymer, composite electrolyte membrane, ionic conductivity, lithium-ion battery, all-solid-state battery
相關次數: 點閱:392下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為發展全固態鋰離子電池中電解質層之製程,包括其製程改良與電化學分析系統建立,並以硫化物材料Li6-xPS5-xCl1+x作為主體,因硫化物具有極佳的鋰離子電導率能幫助鋰離子在電解質中傳遞,並透過不同類型的工藝製程將固體顆粒材料製成薄膜狀電解質材料,其添加高分子材料後所提升之良好的應力以及應變可減少固態顆粒間接觸產生的界面阻抗,並可減緩鋰枝晶刺穿造成短路的現象,增加循環壽命,使其同時具有高鋰離子電導率與高機械強度的電解質複合膜。
    在此研究中分成三階段漸進式的進行研究,依序為:高離子電導率硫化物粉末合成、不同種工藝的電解質膜製程確立以及薄膜電化學特性分析。首先為因應製膜工藝上所需大量的高離子電導率硫化物粉末,進而研究硫化物合成之放大製程,改善球磨時間與掌控鍛燒製程上持溫時間,取得多量合成下仍維持純相之硫化物粉末,以最簡化的方式供給製膜上需求。第二階段則是以各項工藝製程製膜,包含利用溶液法以塗佈方式製膜;無溶劑法以高分子(PTFE)特性透過高分子拉絲形成交聯。透過兩種不同本質的工藝去解決現有的困難,像是溶液法所使用的溶劑會造成溶脹的現象,使表面產生空隙,影響其鋰離子電導率與電化學性能,另外,透過無溶劑法工藝成功達到其鋰離子電導率達10-3 (S/cm) 條件。第三階段為此研究主要核心:薄膜的性質分析與建立薄膜系統測量基準,透過結構分析如XRD、Raman與EIS等儀器,確立硫化物與高分子材料間無產生副反應影響,並克服電池組裝使用薄膜系統中鋰金屬於薄膜系統上容易造成應力不均以及短路問題,以穩定之電極側做電解質薄膜電化學性質量測基準。


    To develop the process for the electrolyte layer in an all-solid-state lithium-ion battery, including process improvements and the establishment of an electrochemical analysis system, the sulfide material Li6-xPS5-xCl1+x is the main component. Sulfides have excellent lithium-ion conductivity, which helps facilitate the transfer of lithium ions in the electrolyte. Different processing techniques are employed to coat the solid particles and form thin electrolyte sheets. Adding polymer materials enhances the stress and strain properties, reducing the interface impedance between solid particles and mitigating the occurrence of lithium dendrite penetration and short circuits. This increases the cycle life of the battery and allows for a composite electrolyte membrane with high lithium-ion conductivity and mechanical strength.
    The research is divided into three progressive stages: synthesis of high lithium-ion conductivity sulfide powders, establishing electrolyte sheet processes using different methods, and analyzing thin sheet electrochemical properties. Firstly, a large amount of high lithium-ion conductivity sulfide powder is required for the sheet fabrication process. Thus, research on the scaling-up synthesis process of sulfides is conducted to improve the ball milling and control the sintering process's holding time, obtaining a significant amount of sulfide powder while maintaining phase purity. This ensures a supply of sulfide powder for the sheet fabrication process.
    The second stage involves sheet fabrication using various processing techniques, including solution method coating by Polyisoprene and solvent-free method by PTFE fibrillation. These two different processes are employed to address existing challenges. For instance, solvents used in the solution process cause swelling, leading to surface voids affecting ionic conductivity and electrochemical performance. However, the solvent-free process successfully achieves the desired lithium-ionic conductivity of 10-3 (S/cm).
    The third stage is the core focus of this research: the property analysis of the thin sheet and the establishment of the measurement benchmark of the thin sheet system. Structural studies such as XRD, Raman, EIS, and other instruments confirm no side reaction between the sulfide and the polymer material. Common issues in assembling thin film and lithium metal batteries, including uneven stresses, short circuit, etc, have been overcome. Fabricating a uniform and stable cathode allows us to effectively study and evaluate the properties of sheet-type electrolytes.

    目錄 摘要 i Abstract iii 致謝 v 目錄 ix 圖目錄 xiii 表目錄 xxi 第 1 章 鋰離子電池緒論 23 1.1 鋰離子電池展望 23 1.2 鋰離子電池內部機制與組成 25 1.2.1 鋰離子電池組成元件 25 1.2.2 鋰離子電池內部機制 26 1.3 固態電解質 27 1.3.1 固態電解質種類 27 1.3.2 固態電解質傳導機制 28 1.3.3 固態電解質之全電池組裝型態 30 1.3.4 固態電解質電化學性能 31 1.4 高分子聚合物 32 1.4.1 SEBS 32 1.4.2 Polyisoprene 32 1.4.3 PTFE 33 1.5 全固態電解質膜挑戰與突破 35 1.5.1 材料間之相容性 36 1.5.2 固態硫化物與高分子複合電解質膜 37 1.5.3 薄膜厚度的掌握 38 第 2 章 硫化物固態電解質 39 2.1 硫銀鍺礦固態電解質(Argyrodite) 39 2.2 硫化物電解質薄膜化發展 41 2.2.1 溶液法製程 41 2.2.2 無溶劑法製程 46 2.2.3 Roadmap 51 第 3 章 實驗儀器及方法 53 3.1 實驗設備 53 3.2 實驗藥品 55 3.3 硫化物合成實驗步驟 56 3.3.1 Li6-xPS5-xCl1+x (X=0.6)固態電解質合成 56 3.3.2 製備錠狀硫化物固態電解質 57 3.4 製作電解質膜實驗步驟 57 3.4.1 製備Free-standing可脫式基材(OTMS) 57 3.4.2 溶液法硫化物電解質膜製備 57 3.4.3 無溶劑法硫化物電解質膜製備 59 3.5 KP-cell型電池組裝 60 3.5.1 量測阻抗分析之電池組裝 60 3.5.2 鋰對稱電池組裝 60 3.5.3 固態全膜狀全電池組裝 61 3.6 材料物理性質分析及原理 62 3.6.1 熱重力分析(TGA) 62 3.6.2 非臨場X射線繞射分析(Ex-situ XRD) 62 3.6.3 場發射型掃描式電子顯微鏡(FE-SEM) 63 3.6.4 拉曼散射光譜分析儀(Raman Spectrometer) 64 3.6.5 拉伸試驗(Tensile testing) 64 3.6.6 空氣穩定性測試 65 3.7 材料電化學特性分析 66 3.7.1 電化學阻抗分析 66 3.7.2 充放電測試 66 3.8 系統性分析 67 第 4 章 結果與討論 69 4.1 氯摻雜於硫銀鍺礦 69 4.1.1 製程放大建立 69 4.1.2 電導率之量測 69 4.1.3 表面形態特徵 73 4.1.4 晶體結構之鑑定 74 4.2 溶液法製程 75 4.2.1 高分子加工溫度確立 75 4.2.2 電導率分析 76 4.2.3 表面形態特徵 78 4.2.4 晶體結構鑑定 81 4.2.5 主體結構分析 84 4.2.6 拉伸試驗 85 4.2.7 水氧穩定性測試 87 4.2.8 極限電流密度測試 89 4.2.9 全電池組裝 92 4.3 無溶劑法製程 98 4.3.1 高分子加工溫度確立 98 4.3.2 電導率分析 99 4.3.3 表面形態特徵 102 4.3.4 晶體結構鑑定 104 4.3.5 主體結構分析 107 4.3.6 拉伸試驗 108 4.3.7 極限電流密度測試 109 4.3.8 全電池組裝 112 4.4 晶體結構偏移解析及討論 114 第 5 章 結論 115 第 6 章 未來展望 117 參考文獻 119

    (1) Liang, Y.; Zhao, C.-Z.; Yuan, H.; Chen, Y.; Zhang, W.; Huang, J.-Q.; Yu, D.; Liu, Y.; Titirici, M.-M.; Chueh, Y.-L.; et al. A review of rechargeable batteries for portable electronic devices. InfoMat 2019, 1 (1), 6-32.
    (2) Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414 (6861), 359-367.
    (3) Goodenough, J. B.; Park, K.-S. The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society 2013, 135 (4), 1167-1176.
    (4) Asghar, M. R.; Anwar, M. T.; Naveed, A.; Zhang, J. A Review on Inorganic Nanoparticles Modified Composite Membranes for Lithium-Ion Batteries: Recent Progress and Prospects. Membranes (Basel) 2019, 9 (7). From NLM.
    (5) Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 16030.
    (6) Zhang, T.; He, W.; Zhang, W.; Wang, T.; Li, P.; Sun, Z.; Yu, X. Designing composite solid-state electrolytes for high performance lithium ion or lithium metal batteries. Chemical Science 2020, 11 (33), 8686-8707, 10.1039/D0SC03121F.
    (7) Zhao, N.; Khokhar, W.; Bi, Z.; Shi, C.; Guo, X.; Fan, L.-Z.; Nan, C.-W. Solid Garnet Batteries. Joule 2019, 3 (5), 1190-1199.
    (8) Nolan, A. M.; Zhu, Y.; He, X.; Bai, Q.; Mo, Y. Computation-Accelerated Design of Materials and Interfaces for All-Solid-State Lithium-Ion Batteries. Joule 2018, 2 (10), 2016-2046.
    (9) Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X. All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619, 10.1039/D1EE00551K.
    (10) Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G. Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chemistry of Materials 2017, 29 (7), 3029-3037.
    (11) Li, W.; Bao, Z.; Wang, J.; Du, Q.; Jiao, K. Comparative simulation of thin-film and bulk-type all-solid-state batteries under adiabatic and isothermal conditions. Applied Thermal Engineering 2023, 223, 119957.
    (12) Polat, K.; Orujalipoor, I.; İde, S.; Şen, M. Nano and microstructures of SEBS/PP/wax blend membranes: SAXS and WAXS analyses. 2015, 35 (2), 151-157. (acccessed 2023-06-15).
    (13) Ricci, G.; Leone, G.; Boglia, A.; Boccia, A. C.; Zetta, L. cis-1,4-alt-3,4 Polyisoprene: Synthesis and Characterization. Macromolecules 2009, 42 (23), 9263-9267.
    (14) Miyamoto, Y.; Yamao, H.; Sekimoto, K. Crystallization and Melting of Polyisoprene Rubber under Uniaxial Deformation. Macromolecules 2003, 36 (17), 6462-6471.
    (15) Lee, D. J.; Jang, J.; Lee, J.-P.; Wu, J.; Chen, Y.-T.; Holoubek, J.; Yu, K.; Ham, S.-Y.; Jeon, Y.; Kim, T.-H.; et al. Physio-Electrochemically Durable Dry-Processed Solid-State Electrolyte Films for All-Solid-State Batteries. Advanced Functional Materials 2023, 33 (28), 2301341. (acccessed 2023/07/13).
    (16) Dhanumalayan, E.; Joshi, G. M. Performance properties and applications of polytetrafluoroethylene (PTFE)—a review. Advanced Composites and Hybrid Materials 2018, 1 (2), 247-268.
    (17) Ranjbarzadeh-Dibazar, A.; Barzin, J.; Shokrollahi, P. Microstructure crystalline domains disorder critically controls formation of nano-porous/long fibrillar morphology of ePTFE membranes. Polymer 2017, 121, 75-87.
    (18) Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M. Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
    (19) Choi, J. W.; Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nature Reviews Materials 2016, 1 (4), 16013.
    (20) Kasemchainan, J.; Zekoll, S.; Spencer Jolly, D.; Ning, Z.; Hartley, G.; Marrow, T.; Bruce, P. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nature Materials 2019, 18, 1.
    (21) Barai, P.; Ngo, A. T.; Narayanan, B.; Higa, K.; Curtiss, L. A.; Srinivasan, V. The Role of Local Inhomogeneities on Dendrite Growth in LLZO-Based Solid Electrolytes. Journal of The Electrochemical Society 2020, 167 (10), 100537.
    (22) Deiseroth, H.-J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
    (23) Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F. Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angewandte Chemie International Edition 2019, 58 (26), 8681-8686.
    (24) Yamamoto, M.; Terauchi, Y.; Sakuda, A.; Takahashi, M. Binder-free sheet-type all-solid-state batteries with enhanced rate capabilities and high energy densities. Sci. Rep. 2018, 8 (1), 1212.
    (25) Tan, D. H. S.; Banerjee, A.; Deng, Z.; Wu, E. A.; Nguyen, H.; Doux, J.-M.; Wang, X.; Cheng, J.-h.; Ong, S. P.; Meng, Y. S.; et al. Enabling Thin and Flexible Solid-State Composite Electrolytes by the Scalable Solution Process. ACS Applied Energy Materials 2019, 2 (9), 6542-6550.
    (26) Hippauf, F.; Schumm, B.; Doerfler, S.; Althues, H.; Fujiki, S.; Shiratsuchi, T.; Tsujimura, T.; Aihara, Y.; Kaskel, S. Overcoming binder limitations of sheet-type solid-state cathodes using a solvent-free dry-film approach. Energy Storage Materials 2019, 21, 390-398.
    (27) Zhang, Z.; Wu, L.; Zhou, D.; Weng, W.; Yao, X. Flexible Sulfide Electrolyte Thin Membrane with Ultrahigh Ionic Conductivity for All-Solid-State Lithium Batteries. Nano Letters 2021, 21 (12), 5233-5239.
    (28) Wang, C.; Yu, R.; Duan, H.; Lu, Q.; Li, Q.; Adair, K. R.; Bao, D.; Liu, Y.; Yang, R.; Wang, J.; et al. Solvent-Free Approach for Interweaving Freestanding and Ultrathin Inorganic Solid Electrolyte Membranes. ACS Energy Lett. 2022, 7 (1), 410-416.
    (29) Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    (30) Nam, Y. J.; Cho, S.-J.; Oh, D. Y.; Lim, J.-M.; Kim, S. Y.; Song, J. H.; Lee, Y.-G.; Lee, S.-Y.; Jung, Y. S. Bendable and Thin Sulfide Solid Electrolyte Film: A New Electrolyte Opportunity for Free-Standing and Stackable High-Energy All-Solid-State Lithium-Ion Batteries. Nano Lett. 2015, 15 (5), 3317-3323. DOI: 10.1021/acs.nanolett.5b00538.
    (31) Komilian, S. Investigation into Device Optimisation of Organic Solar Cells Using Narrow Bandgap Polymer and the Role of Acceptor Material. 2019.
    (32) Park, K. H.; Bai, Q.; Kim, D. H.; Oh, D. Y.; Zhu, Y.; Mo, Y.; Jung, Y. S. Design Strategies, Practical Considerations, and New Solution Processes of Sulfide Solid Electrolytes for All-Solid-State Batteries. Advanced Energy Materials 2018, 8 (18), 1800035. (acccessed 2023/07/10).
    (33) Peng, L.; Yu, C.; Zhang, Z.; Ren, H.; Zhang, J.; He, Z.; Yu, M.; Zhang, L.; Cheng, S.; Xie, J. Chlorine-rich lithium argyrodite enabling solid-state batteries with capabilities of high voltage, high rate, low-temperature and ultralong cyclability. Chemical Engineering Journal 2022, 430, 132896.
    (34) Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F. Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chemistry of Materials 2021, 33 (1), 146-157.
    (35) Rajagopal, R.; Subramanian, Y.; Jung, Y. J.; Kang, S.; Ryu, K.-S. Rapid Synthesis of Highly Conductive Li6PS5Cl Argyrodite-Type Solid Electrolytes Using Pyridine Solvent. ACS Applied Energy Materials 2022, 5 (8), 9266-9272.
    (36) Choi, S.; Ann, J.; Do, J.; Lim, S.; Park, C.; Shin, D. Application of Rod-Like Li6PS5Cl Directly Synthesized by a Liquid Phase Process to Sheet-Type Electrodes for All-Solid-State Lithium Batteries. Journal of The Electrochemical Society 2019, 166 (3), A5193.
    (37) Ahmed, H. T.; Jalal, V. J.; Tahir, D. A.; Mohamad, A. H.; Abdullah, O. G. Effect of PEG as a plasticizer on the electrical and optical properties of polymer blend electrolyte MC-CH-LiBF4 based films. Results in Physics 2019, 15, 102735.
    (38) Zeng, D.; Yao, J.; Zhang, L.; Xu, R.; Wang, S.; Yan, X.; Yu, C.; Wang, L. Promoting favorable interfacial properties in lithium-based batteries using chlorine-rich sulfide inorganic solid-state electrolytes. Nature Communications 2022, 13 (1), 1909.
    (39) Hwang, S.-H.; Seo, S.-D.; Kim, D.-W. A Novel Time-Saving Synthesis Approach for Li-Argyrodite Superionic Conductor. Advanced Science 2023, n/a (n/a), 2301707, \. (acccessed 2023/06/23).
    (40) Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y.; Shen, Y.; Li, L.; Nan, C. W. High-Conductivity Argyrodite Li 6 PS 5 Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces 2018, 10.
    (41) Ren, Y.; Shen, Y.; Lin, Y.; Nan, C.-W. Direct observation of lithium dendrites inside garnet-type lithium-ion solid electrolyte. Electrochemistry Communications 2015, 57, 27-30.
    (42) Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C. Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science Advances 4 (12), eaau9245. (acccessed 2023/07/04).
    (43) Su, Y.; Ye, L.; Fitzhugh, W.; Wang, Y.; Gil-González, E.; Kim, I.; Li, X. A more stable lithium anode by mechanical constriction for solid state batteries. Energy & Environmental Science 2020, 13 (3), 908-916, 10.1039/C9EE04007B.
    (44) Lee, J.; Choi, S. H.; Im, G.; Lee, K.-J.; Lee, T.; Oh, J.; Lee, N.; Kim, H.; Kim, Y.; Lee, S.; et al. Room-Temperature Anode-Less All-Solid-State Batteries via the Conversion Reaction of Metal Fluorides. Advanced Materials 2022, 34 (40), 2203580. (acccessed 2023/07/10).
    (45) Lu, B.; Bao, W.; Yao, W.; Doux, J.-M.; Fang, C.; Meng, Y. S. Editors’ Choice—Methods—Pressure Control Apparatus for Lithium Metal Batteries. Journal of The Electrochemical Society 2022, 169 (7), 070537.
    (46) Kwak, H.; Wang, S.; Park, J.; Liu, Y.; Kim, K. T.; Choi, Y.; Mo, Y.; Jung, Y. S. Emerging Halide Superionic Conductors for All-Solid-State Batteries: Design, Synthesis, and Practical Applications. ACS Energy Letters 2022, 7 (5), 1776-1805.
    (47) Wang, C.; Liang, J.; Jiang, M.; Li, X.; Mukherjee, S.; Adair, K.; Zheng, M.; Zhao, Y.; Zhao, F.; Zhang, S.; et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 2020, 76, 105015.
    (48) Noh, H.-J.; Youn, S.; Yoon, C.; Sun, Y.-K. Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. Journal of Power Sources 2013, 233, 121–130.
    (49) Rosenbach, C.; Walther, F.; Ruhl, J.; Hartmann, M.; Hendriks, T. A.; Ohno, S.; Janek, J.; Zeier, W. G. Visualizing the Chemical Incompatibility of Halide and Sulfide-Based Electrolytes in Solid-State Batteries. Advanced Energy Materials 2023, 13 (6), 2203673. (acccessed 2023/07/04).
    (50) Chi, L.; Qian, Y.; Zhang, B.; Zhang, Z.; Jiang, Z. Surface engineering and self-cleaning properties of the novel TiO2/PAA/PTFE ultrafiltration membranes. Applied Petrochemical Research 2016, 6 (3), 225-233.
    (51) Park, J.-Y.; Lee, J.-H.; Kim, C.-H.; Kim, Y.-J. Fabrication of polytetrafluoroethylene nanofibrous membranes for guided bone regeneration. RSC Advances 2018, 8, 34359-34369.
    (52) Wang, C.; Deng, T.; Fan, X.; Zheng, M.; Yu, R.; Lu, Q.; Duan, H.; Huang, H.; Wang, C.; Sun, X. Identifying soft breakdown in all-solid-state lithium battery. Joule 2022, 6 (8), 1770-1781.

    QR CODE