簡易檢索 / 詳目顯示

研究生: 陳孝雲
Xiao-Yun Chen
論文名稱: 铜基双金属硫氧、硫硒化物的合成及氧化还原反应
Synthesis of Cu-Based Bimetal Oxysulfide and Seleno-Sulfide Catalysts for Redox Reactions
指導教授: 郭東昊
Dong-Hau Kuo
口試委員: 郭東昊
Dong-Hau Kuo
薛人愷
Ren-Kae Shiue
魏茂國
Mao-Kuo Wei
何清華
Ching-Hwa Ho
邱智瑋
Chih-Wei Chiu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 296
中文關鍵詞: 双金属硫氧化物双金属硫硒化物固溶体催化剂氧化还原反应二氧化碳还原产氢暗室反应阴离子空位机理
外文關鍵詞: Bimetal oxysulfide catalyst, bimetal seleno-sulfide catalyst, solid-solution catalyst, redox reactions, CO2 conversion, hydrogen production, darkness reaction, anion vacancy, mechanism
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 見英文部分


    Since Fujishima and Honda in 1972 discovered the photoinduced water splitting on TiO2 electrodes, semiconductor-based photocatalysis has been on application for the photodegradation of organic pollutants, photoreduction heavy metal, photocatalytic generation hydrogen, photoreduction CO2 to production methanol, ethanol and other organics, and photocatalytic sterilization. But these application almost need light (ultraviolet light, visible light, or sun light) excitation, so it only can be used in the daytime-outdoor-sunshine reached area or under the artificial light that generated by the electric-driven lamp. However, the light does not reach to all the application area and the use of electric efficiency of electric-to-light-to-electric is less than 10%. Most of electricity is released into the environment through heat, thus the application of photocatalyst has its constraint. To overcome the limitation, the exploration of catalyst for the organic degradation reaction without light has become one of the core challenges in catalysis and pollution control.
    This work we report a novel Cu-based bimetal nanoflower oxysulfide and nanosheet seleno-sulfide catalysts by a feasible method for Cr(VI) reduction, organic degradation (MB), hydrogen generation, and CO2 reduction in the normal environmental conditions. Their structures were characterized by field-emission scanning electron microscope (FE-SEM), high resolution transmission electron microscope (HR-TEM), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), ultraviolet–visible diffuse reflectance spectra (UV-Vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence emission spectrum (PL), and N2 adsorption-desorption experiments. Accordance to the structures characterization and performances analysis, the reaction kinetic mechanism was proposed. There are five parts in this thesis including CuInOS catalyst for Cr(VI) reduction, CuNiOS for MB redox reactions, CuCoOS for H2 generation, CuMnOS for CO2 conversion, and CuNiSeS for methylene blue (MB) degradation.

    Table of contents Abstract I Acknowledgements IV Table of contents V List of Figures XI List of Tables XXVII Chapter 1 Introduction 1 1.1 Background of the study 1 1.2 Wastewater treatment 2 1.3 Hydrogen production 4 1.4 CO2 conversion and utilization 6 1.5 Research objectives 7 Chapter 2 Literature review and basic theory 9 2.1 Sulfide-based catalysts 9 2.1.1 Three-dimensional CuS hierarchical architecture photocatalyst 9 2.1.2 Nanoflake CuS catalyst 11 2.1.3 Nanoflower CuS catalyst 12 2.1.4 Hierarchical wool ball-like CuS microflower catalyst 13 2.1.5 Concave polyhedral superstructure CuS catalyst 15 2.1.6 CuxSy catalyst 17 2.1.7 Hollow nanosphere CuS catalyst 18 2.1.8 Sphere-like CuS catalyst 19 2.1.9 Nanodisk Cu2-xS catalyst 21 2.1.10 Nanorods and shuttle-like bundles CuS catalyst 23 2.1.11 TiO2 layer coated-CdS spheres core−shell catalyst 24 2.1.12 Cu2S-incorporated ZnS catalyst 26 2.1.13 Nanorods Sb2S3 catalyst 27 2.1.14 CdS–Titanate nanodisk multicomponent catalyst 28 2.1.15 Core−shell nanowire ZnO/ZnS/CdS/CuInS2 catalyst 30 2.1.16 Pt-tipped CdS nanorod/CdSe nanoheterostructured catalyst 31 2.1.17 CdS−cluster-decorated graphene nanosheets catalyst 32 2.1.18 CdS-AgGaS2 diodes catalyst 33 2.2 Selenide based catalysts 34 2.2.1 Nanoflakes stacked Cu2-xSe catalyst for solar cell application 34 2.2.2 Fernwort-like CuSe catalyst for MG and RhB degradation 36 2.2.3 Cu2Se nanoparticles catalysts 38 2.2.4 Cu2-xSe nanocrystals catalyst 40 2.2.5 Cu2-xSe nanoparticles catalyst 41 2.2.6 CuSe nanocrystals for photothermal therapy 43 2.2.7 MoSe2 catalyst for Cr(VI) redction 43 2.2.8 Hollow CdSe for degradation of tetracycline hydrochloride 45 2.2.9 SnSe nanosheets catalyst 46 2.2.10 Ni3Se2 catalyst for oxygen evolution reaction 47 2.2.11 Flower-like CuSe-ZnSe for MO and MB degradation 49 2.2.12 ZnO/ZnSe and ZnO/CuSe heterostructures 50 2.3 Solid solution based catalysts 52 2.3.1 Nanowire Zn(O,S) catalyst for generation H2 52 2.3.2 Zn(O,S) nanoparticle catalyst for generation H2 54 2.3.3 In2(O,S)3 nanosheets catalyst for Cr(VI) reduction and generation H2 55 2.3.4 Band gap modification of ZnO and ZnS through solid solution formation 56 2.3.5 Tunable CuSySe1-y nanomaterials 57 2.3.6 Strong valence-band offset bowing of ZnO1-xSx 58 2.3.7 Star-shaped Cu2-xSySe1-y materials 59 2.3.8 Ternary CuSxSe1-x nanoplates materials 60 2.3.9 Hexagonal Cu2-xSySe1-y nanoplates materials 62 2.3.10 Cu2-xSeyS1-y and Cu2-xTeyS1-y photocatalyst 63 2.3.11 CuIn(S1-xSex)2 photocatalyst 65 2.3.12 BiCu1-xOS oxysulfide photocatalyst 66 2.3.13 LaCuOS oxysulfide photocatalyst 68 2.3.14 (LaO)CuS oxysulfide photocatalyst 68 2.3.15 La3CuO2S3 oxysulfide photocatalyst 70 2.3.16 CoOxSy oxysulfide photocatalyst 71 2.3.17 MoOS2 oxysulfide photocatalyst 72 2.3.18 (CoNi)OxSy oxysulfide photocatalyst 72 2.3.19 LiNiSyO2-y oxysulfide photocatalyst 73 2.3.20 In4Sn16O10S34 oxysulfide photocatalyst 74 2.3.21 Fe@ZnO0.6S0.4 photocatalytic inactivation of Escherichia coli 76 2.3.22 (Ga1-xZnx)(N1-xOx) solid solution photocatalyst 76 2.3.23 CaZnOS oxysulfide photocatalyst 77 2.3.24 Zn1-xCuxO1-ySy) alloy thin films 79 2.4 Dye degradation catalyst in the dark 80 2.4.1 Ag–In–Ni–S nanocomposites catalyst for degradation dye in the dark 80 2.4.2 CuS catalyst for degradation dye with H2O2 imposing in the dark 81 2.4.3 MoS2 for degradation dyes with ultrasonic wave imposing in the dark 83 2.4.4 Nickel sulphide nanocomposites catalyst for degradation dyes in the dark 86 2.4.5 Hybrid CuxO/TiO2 catalyst for VOCs degradation in indoor 88 2.4.6 CeGeO4 catalyst for degradation dyes in the dark 90 2.4.7 Ce(IO3)4 and CeGeO4 catalyst for degradation dyes in the dark 91 2.5 Generation H2 photocatalyst 92 2.5.1 AgPd-Hs/G catalyst for hydrogen generation 92 2.5.2 TiO2-Pt nano-wire photocatalyst 94 2.5.3 Au/Cu2ZnSnS4 core/shell NPs for hydrogen photocatlytic production 95 2.5.4 Pt/Al2O3 for hydrogen generation 96 2.5.5 CuZnGaOx catalyst generation hydrogen 97 2.5.6 ZnO/Pt/Cd1-xZnxS and ZnO/Pt/CdS1-xSex heterostructured photocatalyst 98 2.5.7 MoS2 nanosheet-coated TiO2 for photocatalytic hydrogen production 100 2.5.8 (AgIn)xZn2(1-x)S2/Pt photocatalyst 101 2.5.9 MoS2/ZnIn2S4 nanocomposites for photocatalytic hydrogen generation 102 2.5.10 Novel stannite-type complex sulfide photocatalyst 103 2.5.11 AgInZn7S9 photocatalyst 105 2.6 CO2 Conversion 106 2.6.1 Bi2S3/CdS reduction CO2 to methanol 106 2.6.2 Cu/TiO2 catalysts reduction CO2 to methanol 107 2.6.3 NixGay catalysts reduction CO2 to methanol 108 2.6.4 Cu/ZnO catalysts reduction CO2 to methanol 108 2.6.5 AlGaN/GaN conversion CO2 to HCOOH 109 2.6.6 Cu/ZnO-based catalysts reduction CO2 to methanol 110 2.6.7 Co-porphyrin/carbon nitride hybrids for CO2 reduction 110 2.6.8 Cobalt catalysts conversion CO2 to hydrocarbons 112 2.6.9 Defect-rich CeO2 nanorods catalyst for CO2 conversion 112 2.6.10 Ruthenium catalyst for conversion CO2 to methanol 114 2.6.11 CuO/ZnO/Al2O3 catalysts reduction CO2 to CH3OH 114 2.6.12 Core–shell structure CuxZn1-xOy catalyst for reduction CO2 115 2.6.13 Zinc-rich copper Cu-ZnOAl2O3 catalyst for methanol synthesis 116 2.6.14 Na–Fe3O4/HZSM-5 catalyst directly converting CO2 into gasoline fuel 117 Chapter 3 Materials and methods 119 3.1 Materials 119 3.1.1 Chemicals 119 3.1.2 Instruments 120 3.2 Sythesis of catalysts 121 3.2.1 Synthesis of CuMOS 121 3.2.2 Sythesis of CuSeS 121 3.2.3 Sythesis of CuMSeS 122 3.3 Performance evaluation 122 3.3.1 Cr(VI) reduction measurements 122 3.3.2 MB degradation measurements 123 3.3.3 Catalytic hydrogen generation 123 3.3.4 CO2 conversion to fuel measurements 124 3.3.5 Electrochemical measurements 124 3.4 Characterization of catalysts 125 3.4.1 X-ray diffractometry (XRD) 125 3.4.2 X-ray photoelectron spectroscopy (XPS) 126 3.4.3 Field emission scanning electron microscopy (FE-SEM) 127 3.4.4 High resolution transmission electron microscopy (HR-TEM) 127 3.4.5 UV-Vis Diffuse reflectance spectroscopy (UV-Vis DRS) 128 3.4.6 Photoluminescence spectroscopy (PL) 129 3.4.7 Fourier transform infrared spectroscopy (FTIR) 129 3.4.8 Adsorption/desorption isotherm (BET) 130 Chapter 4 Results and Discussion 131 4.1 Nanoflower bimetal CuInOS oxysulfide catalyst for the reduction of Cr(VI) in the dark 131 4.1.1 Introduction 131 4.1.2 Experimental methods 132 4.1.3 Results and discussion 134 4.1.4 Summary 153 4.2 The effect of the Cu+/Cu2+ ratio on the redox reactions by nanoflower CuNiOS catalysts in the dark 155 4.2.1 Introduction 155 4.2.2 Experimental 156 4.2.3 Results and discussion 158 4.2.4 Summary 176 4.3 Nonthermal dehydrogenation of liquid carrier for the hydrogen generation by inorganic catalysts at normal temperature and pressure, even in dark 178 4.3.1 Introduction 178 4.3.2 Experimental 179 4.3.3 Results and discussion 180 4.3.4 Summary 194 4.4 CuMnOS nanoflowers with different Cu+/Cu2+ ratios for the CO2-to-CH3OH and the CH3OH-to-H2 redox reactions 195 4.4.1 Introduction 195 4.4.2 Experimental 196 4.4.3 Results 198 4.4.4 Discussion 210 4.4.5 Summary 216 4.5 A novel CuNiSeS bimetal seleno-sulfide catalyst for methylene blue degradation in the dark 218 4.5.1 Introduction 218 4.5.2 Experimental 219 4.5.3 Results and discussion 220 4.5.4 Summary 233 Chapter 5 Conclutions 235 References 237 Publications and Patents 262

    References
    [1] T.R. Anderson, E. Hawkins, P.D. Jones, CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models, Endeavour, 40 (2016) 178-187.
    [2] N.A. Azzolina, W.D. Peck, J.A. Hamling, C.D. Gorecki, S.C. Ayash, T.E. Doll, D.V. Nakles, L.S. Melzer, How green is my oil? A detailed look at greenhouse gas accounting for CO2-enhanced oil recovery (CO2-EOR) sites, International Journal of Greenhouse Gas Control, 51 (2016) 369-379.
    [3] J.E. Szulejko, P. Kumar, A. Deep, K.-H. Kim, Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor, Atmospheric Pollution Research, 8 (2017) 136-140.
    [4] J. Blanco, S. Malato, P. Fernández-Ibañez, D. Alarcón, W. Gernjak, M.I. Maldonado, Review of feasible solar energy applications to water processes, Renewable and Sustainable Energy Reviews, 13 (2009) 1437-1445.
    [5] I. Fukai, S. Mishra, M.A. Moody, Economic analysis of CO2-enhanced oil recovery in Ohio: Implications for carbon capture, utilization, and storage in the Appalachian Basin region, International Journal of Greenhouse Gas Control, 52 (2016) 357-377.
    [6] I. Fechete, Y. Wang, J.C. Védrine, The past, present and future of heterogeneous catalysis, Catalysis Today, 189 (2012) 2-27.
    [7] G. Aragay, J. Pons, A. Merkoçi, Recent Trends in Macro-, Micro-, and Nanomaterial-Based Tools and Strategies for Heavy-Metal Detection, Chemical Reviews, 111 (2011) 3433-3458.
    [8] H. Li, S. Yin, Y. Wang, T. Sato, Persistent fluorescence-assisted TiO2-xNy-based photocatalyst for gaseous acetaldehyde degradation, Environmental Science & Technology, 46 (2012) 7741-7745.
    [9] Q.L. Yu, M.M. Ballari, H.J.H. Brouwers, Indoor air purification using heterogeneous photocatalytic oxidation. Part II: Kinetic study, Applied Catalysis B: Environmental, 99 (2010) 58-65.
    [10] Q.L. Yu, H.J.H. Brouwers, Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study, Applied Catalysis B: Environmental, 92 (2009) 454-461.
    [11] J. Ângelo, L. Andrade, A. Mendes, Highly active photocatalytic paint for NOx abatement under real-outdoor conditions, Applied Catalysis A: General, 484 (2014) 17-25.
    [12] J. Ângelo, L. Andrade, L.M. Madeira, A. Mendes, An overview of photocatalysis phenomena applied to NOx abatement, Journal of Environmental Management, 129 (2013) 522-539.
    [13] J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, X. Wang, Reduced graphene Oxide/ZnO composite: reusable adsorbent for pollutant management, ACS Applied Materials & Interfaces, 4 (2012) 3084-3090.
    [14] T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6 (2005) 264-273.
    [15] J. Xiao, Y. Xie, H. Cao, Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation, Chemosphere, 121 (2015) 1-17.
    [16] R. Molinari, C. Lavorato, P. Argurio, Recent progress of photocatalytic membrane reactors in water treatment and in synthesis of organic compounds. A review, Catalysis Today, 281, Part 1 (2017) 144-164.
    [17] S. Afzal, W.A. Daoud, S.J. Langford, Photostable self-cleaning cotton by a copper(II) porphyrin/TiO2 visible-light photocatalytic system, ACS Applied Materials & Interfaces, 5 (2013) 4753-4759.
    [18] K.-i. Katsumata, S. Okazaki, C.E.J. Cordonier, T. Shichi, T. Sasaki, A. Fujishima, Preparation and characterization of self-cleaning glass for vehicle with niobia nanosheets, ACS Applied Materials & Interfaces, 2 (2010) 1236-1241.
    [19] D. Ollis, Removal kinetics of stearic acid discrete deposits on photocatalytic self-cleaning surfaces: Effect of deposit initial size distribution, Applied Catalysis B: Environmental, 209 (2017) 174-182.
    [20] M. Baudys, J. Krýsa, A. Mills, Smart inks as photocatalytic activity indicators of self-cleaning paints, Catalysis Today, 280, Part 1 (2017) 8-13.
    [21] R. Kumar, S. Anandan, K. Hembram, T. Narasinga Rao, Efficient Zno-based visible-light-driven photocatalyst for antibacterial applications, ACS Applied Materials & Interfaces, 6 (2014) 13138-13148.
    [22] D.M. Tobaldi, C. Piccirillo, R.C. Pullar, A.F. Gualtieri, M.P. Seabra, P.M.L. Castro, J.A. Labrincha, Silver-modified nano-titania as an antibacterial agent and photocatalyst, Journal of Physical Chemistry C, 118 (2014) 4751-4766.
    [23] G.S. Hikku, J. K, S. Vignesh Kumar, Nanoporous MgO as self-cleaning and anti-bacterial pigment for alkyd based coating, Journal of Industrial and Engineering Chemistry. DOI: 10.1016/j.jiec.2017.03.040.
    [24] B. Liu, L. Mu, B. Han, J. Zhang, H. Shi, Fabrication of TiO2/Ag2O heterostructure with enhanced photocatalytic and antibacterial activities under visible light irradiation, Applied Surface Science, 396 (2017) 1596-1603.
    [25] G.F. Samu, Á. Veres, S.P. Tallósy, L. Janovák, I. Dékány, A. Yepez, R. Luque, C. Janáky, Photocatalytic, photoelectrochemical, and antibacterial activity of benign-by-design mechanochemically synthesized metal oxide nanomaterials, Catalysis Today, 284 (2017) 3-10.
    [26] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, A review and recent developments in photocatalytic water-splitting using for hydrogen production, Renewable and Sustainable Energy Reviews, 11 (2007) 401-425.
    [27] Y. Zhao, N. Hoivik, K. Wang, Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting, Nano Energy, 30 (2016) 728-744.
    [28] J.S. Jang, H.G. Kim, J.S. Lee, Heterojunction semiconductors: a strategy to develop efficient photocatalytic materials for visible light water splitting, Catalysis Today, 185 (2012) 270-277.
    [29] A.A. Ismail, D.W. Bahnemann, Photochemical splitting of water for hydrogen production by photocatalysis: A review, Solar Energy Materials and Solar Cells, 128 (2014) 85-101.
    [30] S. Chen, S.S. Thind, A. Chen, Nanostructured materials for water splitting - state of the art and future needs: A mini-review, Electrochemistry Communications, 63 (2016) 10-17.
    [31] S.A. Kalogirou, Seawater desalination using renewable energy sources, Progress in Energy and Combustion Science, 31 (2005) 242-281.
    [32] M.N. Chong, B. Jin, C.W.K. Chow, C. Saint, Recent developments in photocatalytic water treatment technology: A review, Water Research, 44 (2010) 2997-3027.
    [33] U.I. Gaya, A.H. Abdullah, Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 1-12.
    [34] A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 1 (2000) 1-21.
    [35] D. Chatterjee, S. Dasgupta, Visible light induced photocatalytic degradation of organic pollutants, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 6 (2005) 186-205.
    [36] K. Rajeshwar, M.E. Osugi, W. Chanmanee, C.R. Chenthamarakshan, M.V.B. Zanoni, P. Kajitvichyanukul, R. Krishnan-Ayer, Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9 (2008) 171-192.
    [37] D.W. Kolpin, E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, H.T. Buxton, Pharmaceuticals,hormones, and other organic wastewater contaminants in U.S. Streams, 1999−2000:  A national reconnaissance, Environmental Science & Technology, 36 (2002) 1202-1211.
    [38] M.A. Fox, M.T. Dulay, Heterogeneous photocatalysis, Chemical Reviews, 93 (1993) 341-357.
    [39] O. Legrini, E. Oliveros, A.M. Braun, Photochemical processes for water treatment, Chemical Reviews, 93 (1993) 671-698.
    [40] C.S. Turchi, D.F. Ollis, Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack, Journal of Catalysis, 122 (1990) 178-192.
    [41] J.-M. Herrmann, Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants, Catalysis Today, 53 (1999) 115-129.
    [42] G. Liu, N. Hoivik, K. Wang, H. Jakobsen, Engineering TiO2 nanomaterials for CO2 conversion/solar fuels, Solar Energy Materials and Solar Cells, 105 (2012) 53-68.
    [43] Y. Izumi, Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond, Coordination Chemistry Reviews, 257 (2013) 171-186.
    [44] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238 (1972) 37-38.
    [45] M. Reza Gholipour, C.-T. Dinh, F. Beland, T.-O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting, Nanoscale, 7 (2015) 8187-8208.
    [46] L. Amirav, A.P. Alivisatos, Photocatalytic hydrogen production with tunable nanorod heterostructures, Journal of Physical Chemistry Letters, 1 (2010) 1051-1054.
    [47] C. Shifu, Z. Wei, L. Wei, Z. Huaye, Y. Xiaoling, C. Yinghao, Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-Ag3VO4 under visible light irradiation, Journal of Hazardous Materials, 172 (2009) 1415-1423.
    [48] R. Bajaj, M. Sharma, D. Bahadur, Visible light-driven novel nanocomposite (BiVO4/CuCr2O4) for efficient degradation of organic dye, Dalton Transactions, 42 (2013) 6736-6744.
    [49] W. Teng, X. Tan, X. Li, Y. Tang, Novel Ag3PO4/MoO3 p-n heterojunction with enhanced photocatalytic activity and stability under visible light irradiation, Applied Surface Science, 409 (2017) 250-260.
    [50] N. Wang, Y. Pan, T. Lu, X. Li, S. Wu, J. Wu, A new ribbon-ignition method for fabricating p-CuO/n-CeO2 heterojunction with enhanced photocatalytic activity, Applied Surface Science, 403 (2017) 699-706.
    [51] M.M.-J. Li, Z. Zeng, F. Liao, X. Hong, S.C.E. Tsang, Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts, Journal of Catalysis, 343 (2016) 157-167.
    [52] K. Ohkubo, Y. Yamazaki, T. Nakashima, Y. Tamaki, K. Koike, O. Ishitani, Photocatalyses of Ru(II)–Re(I) binuclear complexes connected through two ethylene chains for CO2 reduction, Journal of Catalysis, 343 (2016) 278-289.
    [53] C. Cui, J. Han, X. Zhu, X. Liu, H. Wang, D. Mei, Q. Ge, Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode, Journal of Catalysis, 343 (2016) 257-265.
    [54] A. Tsoukalou, Q. Imtiaz, S.M. Kim, P.M. Abdala, S. Yoon, C.R. Müller, Dry-reforming of methane over bimetallic Ni–M/La2O3 (M = Co, Fe): The effect of the rate of La2O2CO3 formation and phase stability on the catalytic activity and stability, Journal of Catalysis, 343 (2016) 208-214.
    [55] Y. Chen, S. Choi, L.T. Thompson, Low temperature CO2 hydrogenation to alcohols and hydrocarbons over Mo2C supported metal catalysts, Journal of Catalysis, 343 (2016) 147-156.
    [56] R. Gaikwad, A. Bansode, A. Urakawa, High-pressure advantages in stoichiometric hydrogenation of carbon dioxide to methanol, Journal of Catalysis, 343 (2016) 127-132.
    [57] S.N. Riduan, J.Y. Ying, Y. Zhang, Solid poly-N-heterocyclic carbene catalyzed CO2 reduction with hydrosilanes, Journal of Catalysis, 343 (2016) 46-51.
    [58] M. Tamura, K. Ito, Y. Nakagawa, K. Tomishige, CeO2-catalyzed direct synthesis of dialkylureas from CO2 and amines, Journal of Catalysis, 343 (2016) 75-85.
    [59] F.D. Bobbink, P.J. Dyson, Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond, Journal of Catalysis, 343 (2016) 52-61.
    [60] M. Montandon-Clerc, A.F. Dalebrook, G. Laurenczy, Quantitative aqueous phase formic acid dehydrogenation using iron(II) based catalysts, Journal of Catalysis, 343 (2016) 62-67.
    [61] M. Firouzbakht, M. Schlangen, M. Kaupp, H. Schwarz, Mechanistic aspects of CO2 activation mediated by phenyl yttrium cation: A combined experimental/theoretical study, Journal of Catalysis, 343 (2016) 68-74.
    [62] M. Aresta, A. Dibenedetto, E. Quaranta, State of the art and perspectives in catalytic processes for CO2 conversion into chemicals and fuels: The distinctive contribution of chemical catalysis and biotechnology, Journal of Catalysis, 343 (2016) 2-45.
    [63] J.M. Caruge, J.E. Halpert, V. Wood, V. Bulovic, M.G. Bawendi, Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers, Nature Photonics, 2 (2008) 247-250.
    [64] H. Jia, W. He, X. Chen, Y. Lei, Z. Zheng, In situ fabrication of chalcogenide nanoflake arrays for hybrid solar cells: the case of In2S3/poly(3-hexylthiophene), Journal of Materials Chemistry, 21 (2011) 12824-12828.
    [65] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95 (1995) 69-96.
    [66] S.G. Kwon, T. Hyeon, Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides, Accounts of Chemical Research, 41 (2008) 1696-1709.
    [67] M. Basu, A.K. Sinha, M. Pradhan, S. Sarkar, Y. Negishi, Govind, T. Pal, Evolution of hierarchical hexagonal stacked plates of cus from liquid−liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting, Environmental Science & Technology, 44 (2010) 6313-6318.
    [68] J.A. van Delft, D. Garcia-Alonso, W.M.M. Kessels, Atomic layer deposition for photovoltaics: applications and prospects for solar cell manufacturing, Semiconductor Science and Technology, 27 (2012) 074002.
    [69] J. Gao, Q. Li, H. Zhao, L. Li, C. Liu, Q. Gong, L. Qi, One-pot synthesis of uniform Cu2O and CuS hollow spheres and their optical limiting properties, Chemistry of Materials, 20 (2008) 6263-6269.
    [70] J. Liu, D. Xue, Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor, Journal of Materials Chemistry, 21 (2011) 223-228.
    [71] J.S. Chung, H.J. Sohn, Electrochemical behaviors of CuS as a cathode material for lithium secondary batteries, Journal of Power Sources, 108 (2002) 226-231.
    [72] K.-J. Wang, G.-D. Li, J.-X. Li, Q. Wang, J.-S. Chen, Formation of single-crystalline CuS nanoplates vertically standing on flat substrate, Crystal Growth & Design, 7 (2007) 2265-2267.
    [73] G. Mao, W. Dong, D.G. Kurth, H. Möhwald, Synthesis of copper sulfide nanorod arrays on molecular templates, Nano Letters, 4 (2004) 249-252.
    [74] C. Wu, S.-H. Yu, S. Chen, G. Liu, B. Liu, Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions, Journal of Materials Chemistry, 16 (2006) 3326-3331.
    [75] P. Roy, S.K. Srivastava, Hydrothermal growth of cus nanowires from Cu−dithiooxamide, a novel single-source precursor, Crystal Growth & Design, 6 (2006) 1921-1926.
    [76] K. Tang, D. Chen, Y. Liu, G. Shen, H. zheng, Y. Qian, Shape-controlled synthesis of copper sulfide nanocrystals via a soft solution route, Journal of Crystal Growth, 263 (2004) 232-236.
    [77] L. Zhu, Y. Xie, X. Zheng, X. Liu, G.e. Zhou, Fabrication of novel urchin-like architecture and snowflake-like pattern CuS, Journal of Crystal Growth, 260 (2004) 494-499.
    [78] S. Sun, X. Song, C. Kong, S. Liang, B. Ding, Z. Yang, Unique polyhedral 26-facet CuS hollow architectures decorated with nanotwinned, mesostructural and single crystalline shells, CrystEngComm, 13 (2011) 6200-6205.
    [79] C. Wu, S.-H. Yu, M. Antonietti, Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process, Chemistry of Materials, 18 (2006) 3599-3601.
    [80] Z. Li, L. Mi, W. Chen, H. Hou, C. Liu, H. Wang, Z. Zheng, C. Shen, Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization, CrystEngComm, 14 (2012) 3965.
    [81] P. Liu, Y. Huang, J. Yan, Y. Yang, Y. Zhao, Construction of CuS nanoflakes vertically aligned on magnetically decorated graphene and their enhanced microwave absorption properties, ACS Applied Materials & Interfaces, 8 (2016) 5536-5546.
    [82] T.-Y. Ding, M.-S. Wang, S.-P. Guo, G.-C. Guo, J.-S. Huang, CuS nanoflowers prepared by a polyol route and their photocatalytic property, Materials Letters, 62 (2008) 4529-4531.
    [83] L. Mi, W. Wei, Z. Zheng, Y. Gao, Y. Liu, W. Chen, X. Guan, Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures, Nanoscale, 5 (2013) 6589-6598.
    [84] W. He, H. Jia, X. Li, Y. Lei, J. Li, H. Zhao, L. Mi, L. Zhang, Z. Zheng, Understanding the formation of CuS concave superstructures with peroxidase-like activity, Nanoscale, 4 (2012) 3501-3506.
    [85] M. Wang, F. Xie, W. Li, M. Chen, Y. Zhao, Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light, Journal of Materials Chemistry A, 1 (2013) 8616.
    [86] X. Meng, G. Tian, Y. Chen, R. Zhai, J. Zhou, Y. Shi, X. Cao, W. Zhou, H. Fu, Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties, CrystEngComm, 15 (2013) 5144.
    [87] J. Lin, F. Tao, L. Wang, L. Chen, Y. Ying, L. Zhang, H. Liu, M. Xia, Solvothermal synthesis of sphere-like CuS microcrystals and improvement as nonenzymatic glucose sensor, Journal of Materials Science, 48 (2013) 5509-5516.
    [88] S.-W. Hsu, W. Bryks, A.R. Tao, Effects of carrier density and shape on the localized surface plasmon resonances of Cu2-xS nanodisks, Chemistry of Materials, 24 (2012) 3765-3771.
    [89] X. Bu, D. Zhou, J. Li, X. Zhang, K. Zhang, H. Zhang, B. Yang, Copper sulfide self-assembly architectures with improved photothermal performance, Langmuir, 30 (2014) 1416-1423.
    [90] Z. Chen, Y.J. Xu, Ultrathin TiO2 layer coated-CdS spheres core-shell nanocomposite with enhanced visible-light photoactivity, ACS Applied Materials & Interfaces, 5 (2013) 13353-13363.
    [91] R.J. Vimal Michael, J. Theerthagiri, J. Madhavan, M.J. Umapathy, P.T. Manoharan, Cu2S-incorporated ZnS nanocomposites for photocatalytic hydrogen evolution, RSC Advances, 5 (2015) 30175-30186.
    [92] M. Sun, D. Li, W. Li, Y. Chen, Z. Chen, Y. He, X. Fu, New photocatalyst, Sb2S3, for degradation of methyl orange under visible-light irradiation, Journal of Physical Chemistry C, 112 (2008) 18076-18081.
    [93] C.-T. Dinh, M.-H. Pham, Y. Seo, F. Kleitz, T.-O. Do, Design of multicomponent photocatalysts for hydrogen production under visible light using water-soluble titanate nanodisks, Nanoscale, 6 (2014) 4819-4829.
    [94] Y.-X. Yu, W.-X. Ouyang, Z.-T. Liao, B.-B. Du, W.-D. Zhang, Construction of ZnO/ZnS/CdS/CuInS2 Core–Shell nanowire arrays via ion exchange: p–n junction photoanode with enhanced photoelectrochemical activity under visible light, ACS Applied Materials & Interfaces, 6 (2014) 8467-8474.
    [95] Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan, J.R. Gong, Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets, Journal of the American Chemical Society, 133 (2011) 10878-10884.
    [96] J.S. Jang, D.W. Hwang, J.S. Lee, CdS–AgGaS2 photocatalytic diodes for hydrogen production from aqueous Na2S/Na2SO3 electrolyte solution under visible light (λ ≥420 nm), Catalysis Today, 120 (2007) 174-181.
    [97] I. Coropceanu, M.G. Bawendi, Core/shell quantum dot based luminescent solar concentrators with reduced reabsorption and enhanced efficiency, Nano Letters, 14 (2014) 4097-4101.
    [98] M.M. Furchi, D.K. Polyushkin, A. Pospischil, T. Mueller, Mechanisms of photoconductivity in atomically thin MoS2, Nano Letters, 14 (2014) 6165-6170.
    [99] X. Li, X. Wang, D. Liu, S. Song, H. Zhang, Multifunctional nanostructures based on porous silica covered Fe3O4@CeO2-Pt composites: a thermally stable and magnetically-recyclable catalyst system, Chemical Communications, 50 (2014) 7198-7201.
    [100] F. Schuster, B. Laumer, R.R. Zamani, C. Magén, J.R. Morante, J. Arbiol, M. Stutzmann, p-GaN/n-ZnO Heterojunction Nanowires: Optoelectronic Properties and the Role of Interface Polarity, ACS Nano, 8 (2014) 4376-4384.
    [101] C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy, Nano Letters, 11 (2011) 2560-2566.
    [102] S. Deka, A. Genovese, Y. Zhang, K. Miszta, G. Bertoni, R. Krahne, C. Giannini, L. Manna, Phosphine-free synthesis of p-type Copper(I) selenide nanocrystals in hot coordinating solvents, Journal of the American Chemical Society, 132 (2010) 8912-8914.
    [103] X. Liu, X. Wang, B. Zhou, W.-C. Law, A.N. Cartwright, M.T. Swihart, Size-controlled synthesis of Cu2-xE (E = S, Se) nanocrystals with strong tunable near-infrared localized surface plasmon resonance and high conductivity in thin films, Advanced Functional Materials, 23 (2013) 1256-1264.
    [104] D. Dorfs, T. Härtling, K. Miszta, N.C. Bigall, M.R. Kim, A. Genovese, A. Falqui, M. Povia, L. Manna, Reversible tunability of the near-infrared valence band plasmon resonance in Cu2-xSe nanocrystals, Journal of the American Chemical Society, 133 (2011) 11175-11180.
    [105] S.Q. Lie, D.M. Wang, M.X. Gao, C.Z. Huang, Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence, Nanoscale, 6 (2014) 10289-10296.
    [106] W. Li, R. Zamani, M. Ibáñez, D. Cadavid, A. Shavel, J.R. Morante, J. Arbiol, A. Cabot, Metal ions to control the morphology of semiconductor nanoparticles: copper selenide nanocubes, Journal of the American Chemical Society, 135 (2013) 4664-4667.
    [107] R. Yu, T. Ren, K. Sun, Z. Feng, G. Li, C. Li, Shape-controlled copper selenide nanocubes synthesized by an electrochemical crystallization method, Journal of Physical Chemistry C, 113 (2009) 10833-10837.
    [108] D. Chen, G. Chen, R. Jin, H. Xu, Self-decorated Cu2-xSe nanosheets as anode materials for Li ion batteries and electrochemical hydrogen storage, CrystEngComm, 16 (2014) 2810-2817.
    [109] X.-J. Wu, X. Huang, J. Liu, H. Li, J. Yang, B. Li, W. Huang, H. Zhang, Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation, Angewandte Chemie International Edition, 53 (2014) 5083-5087.
    [110] J. Xu, W. Zhang, Z. Yang, S. Ding, C. Zeng, L. Chen, Q. Wang, S. Yang, Large-scale synthesis of long crystalline cu2-xse nanowire bundles by water-evaporation-induced self-assembly and their application in gas sensing, Advanced Functional Materials, 19 (2009) 1759-1766.
    [111] High performance nonvolatile memory devices based on Cu2-xSe nanowires, Applied Physics Letters, 103 (2013) 193501.
    [112] R. Zou, Z. Zhang, Q. Liu, K. Xu, G. He, J. Hu, A facile approach for the synthesis of Cu2-xSe nanowires and their field emission properties, Journal of Materials Science, 49 (2014) 532-537.
    [113] S.-Y. Zhang, C.-X. Fang, Y.-P. Tian, K.-R. Zhu, B.-K. Jin, Y.-H. Shen, J.-X. Yang, Synthesis and characterization of hexagonal cuse nanotubes by templating against trigonal se nanotubes, Crystal Growth & Design, 6 (2006) 2809-2813.
    [114] L. Qian, X. Tian, L. Yang, J. Mao, H. Yuan, D. Xiao, High specific capacitance of CuS nanotubes in redox active polysulfide electrolyte, RSC Advances, 3 (2013) 1703-1708.
    [115] J. Huang, Y. Zhu, X. Yang, W. Chen, Y. Zhou, C. Li, Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: in situ engineered versus ex situ piled, Nanoscale, 7 (2015) 559-569.
    [116] G. Ku, M. Zhou, S. Song, Q. Huang, J. Hazle, C. Li, Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm, ACS Nano, 6 (2012) 7489-7496.
    [117] Q. Tian, J. Hu, Y. Zhu, R. Zou, Z. Chen, S. Yang, R. Li, Q. Su, Y. Han, X. Liu, Sub-10 nm Fe3O4@Cu2-xS Core–Shell Nanoparticles for Dual-Modal Imaging and Photothermal Therapy, Journal of the American Chemical Society, 135 (2013) 8571-8577.
    [118] X. Liu, F. Fu, K. Xu, R. Zou, J. Yang, Q. Wang, Q. Liu, Z. Xiao, J. Hu, Folic acid-conjugated hollow mesoporous silica/CuS nanocomposites as a difunctional nanoplatform for targeted chemo-photothermal therapy of cancer cells, Journal of Materials Chemistry B, 2 (2014) 5358-5367.
    [119] S.S. Wilson, J.P. Bosco, Y. Tolstova, D.O. Scanlon, G.W. Watson, H.A. Atwater, Interface stoichiometry control to improve device voltage and modify band alignment in ZnO/Cu2O heterojunction solar cells, Energy & Environmental Science, 7 (2014) 3606-3610.
    [120] M. Nagarathinam, K. Saravanan, W.L. Leong, P. Balaya, J.J. Vittal, Hollow nanospheres and flowers of cus from self-assembled Cu(II) coordination polymer and hydrogen-bonded complexes of N-(2-Hydroxybenzyl)-l-serine, Crystal Growth & Design, 9 (2009) 4461-4470.
    [121] S. Sun, X. Song, C. Kong, D. Deng, Z. Yang, Copper sulfide cages wholly exposed with nanotwinned building blocks, CrystEngComm, 14 (2012) 67-70.
    [122] J. Zhang, J. Yu, Y. Zhang, Q. Li, J.R. Gong, Visible Light Photocatalytic H2-Production Activity of CuS/ZnS Porous Nanosheets Based on Photoinduced Interfacial Charge Transfer, Nano Letters, 11 (2011) 4774-4779.
    [123] J. Xu, Q. Yang, W. Kang, X. Huang, C. Wu, L. Wang, L. Luo, W. Zhang, C.-S. Lee, Water evaporation induced conversion of CuSe nanoflakes to Cu2-xSe hierarchical columnar superstructures for high-performance solar cell applications, Particle & Particle Systems Characterization, 32 (2015) 840-847.
    [124] Y. Mao, H. Zou, Q. Wang, C. Huang, Large-scale preparation of fernwort-like single-crystalline superstructures of CuSe as fenton-like catalysts for dye decolorization, Science China Chemistry, 59 (2016) 903-909.
    [125] S.C. Riha, D.C. Johnson, A.L. Prieto, Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction, Journal of the American Chemical Society, 133 (2011) 1383-1390.
    [126] F. Scotognella, G. Della Valle, A.R. Srimath Kandada, D. Dorfs, M. Zavelani-Rossi, M. Conforti, K. Miszta, A. Comin, K. Korobchevskaya, G. Lanzani, L. Manna, F. Tassone, Plasmon dynamics in colloidal Cu2-xSe nanocrystals, Nano Letters, 11 (2011) 4711-4717.
    [127] S.Q. Lie, D.M. Wang, M.X. Gao, C.Z. Huang, Controllable copper deficiency in Cu2-xSe nanocrystals with tunable localized surface plasmon resonance and enhanced chemiluminescence, Nanoscale, 6 (2014) 10289-10296.
    [128] C.M. Hessel, V.P. Pattani, M. Rasch, M.G. Panthani, B. Koo, J.W. Tunnell, B.A. Korgel, Copper selenide nanocrystals for photothermal therapy, Nano Letters, 11 (2011) 2560-2566.
    [129] H. Chu, X. Liu, B. Liu, G. Zhu, W. Lei, H. Du, J. Liu, J. Li, C. Li, C. Sun, Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction, Scientific Reports, 6 (2016) 35304.
    [130] B.Y. Yu, S.-Y. Kwak, Carbon quantum dots embedded with mesoporous hematite nanospheres as efficient visible light-active photocatalysts, Journal of Materials Chemistry, 22 (2012) 8345.
    [131] J. Wen, C. Ma, P. Huo, X. Liu, M. Wei, Y. Liu, X. Yao, Z. Ma, Y. Yan, Construction of vesicle CdSe nano-semiconductors photocatalysts with improved photocatalytic activity: enhanced photo induced carriers separation efficiency and mechanism insight, Journal of Environmental Sciences. https://doi.org/10.1016/j.jes.2016.12.023.
    [132] L. Li, Z. Chen, Y. Hu, X. Wang, T. Zhang, W. Chen, Q. Wang, Single-layer single-crystalline SnSe nanosheets, Journal of the American Chemical Society, 135 (2013) 1213-1216.
    [133] X. Ren, X. Qi, Y. Shen, G. Xu, J. Li, Z. Li, Z. Huang, J. Zhong, Synthesis of SnSe nanosheets by hydrothermal intercalation and exfoliation route and their photoresponse properties, Materials Science and Engineering: B, 214 (2016) 46-50.
    [134] A.T. Swesi, J. Masud, M. Nath, Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction, Energy & Environmental Science, 9 (2016) 1771-1782.
    [135] W. Shi, J. Shi, S. Yu, P. Liu, Ion-exchange synthesis and enhanced visible-light photocatalytic activities of CuSe-ZnSe flower-like nanocomposites, Applied Catalysis B: Environmental, 138–139 (2013) 184-190.
    [136] A.V. Kozytskiy, O.L. Stroyuk, S.Y. Kuchmiy, Inorganic photoelectrochemical solar cells based on nanocrystalline ZnO/ZnSe and ZnO/CuSe heterostructures, Catalysis Today, 230 (2014) 227-233.
    [137] H. Abdullah, D.-H. Kuo, Facile synthesis of n-type (AgIn)xZn2(1-x)S2/p-type Ag2S nanocomposite for visible light photocatalytic reduction to detoxify hexavalent chromium, ACS Applied Materials & Interfaces, 7 (2015) 26941-26951.
    [138] H.M. Chen, C.K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, D.P. Tsai, A new approach to solar hydrogen production: a ZnO-ZnS solid solution nanowire array photoanode, Advanced Energy Materials, 1 (2011) 742-747.
    [139] H. Abdullah, D.-H. Kuo, X. Chen, High efficient noble metal free Zn(O,S) nanoparticles for hydrogen evolution, International Journal of Hydrogen Energy, 42 (2017) 5638-5648.
    [140] H. Abdullah, N.S. Gultom, D.-H. Kuo, Indium oxysulfide nanosheet photocatalyst for the hexavalent chromium detoxification and hydrogen evolution reaction, Journal of Materials Science, 52 (2017) 6249-6264.
    [141] J.N. Hart, M. Cutini, N.L. Allan, Band Gap Modification of ZnO and ZnS through solid solution formation for applications in photocatalysis, Energy Procedia, 60 (2014) 32-36.
    [142] Q. Shu, M. Yang, An easy hydrothermal synthesis of porous CuSySe1-y nanomaterials with broadly tunable near-infrared localized surface plasmon resonance, Journal of Alloys and Compounds, 660 (2016) 361-369.
    [143] C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, M. Edoff, Strong valence-band offset bowing of ZnO1-xSx enhances p-type nitrogen doping of ZnO-like alloys, Physical Review Letters, 97 (2006) 146403.
    [144] Q. Shu, M. Yang, X. Sun, S. Luo, G. Zhao, Shape-controlled synthesis of star-shaped Cu2-xSySe1-y materials with highly enhanced chemiluminescence, Journal of Alloys and Compounds, 678 (2016) 70-79.
    [145] J. Xu, X. Yang, Q.D. Yang, X. Huang, Y. Tang, W. Zhang, C.S. Lee, Controllable synthesis of bandgap-tunable CuSxSe1-x nanoplate alloys, Chemistry – An Asian Journal, 10 (2015) 1490-1495.
    [146] J. Xu, X. Yang, Q. Yang, W. Zhang, C.-S. Lee, Phase conversion from hexagonal CuSySe1-y to cubic Cu2-xSySe1-y: composition variation, morphology evolution, optical tuning, and solar cell applications, ACS Applied Materials & Interfaces, 6 (2014) 16352-16359.
    [147] P.L. Saldanha, R. Brescia, M. Prato, H. Li, M. Povia, L. Manna, V. Lesnyak, Generalized one-pot synthesis of copper sulfide, selenide-sulfide, and telluride-sulfide nanoparticles, Chemistry of Materials, 26 (2014) 1442-1449.
    [148] M.-Y. Chiang, S.-H. Chang, C.-Y. Chen, F.-W. Yuan, H.-Y. Tuan, Quaternary CuIn(S1-xSex)2 nanocrystals: facile heating-up synthesis, band gap tuning, and gram-scale production, Journal of Physical Chemistry C, 115 (2011) 1592-1599.
    [149] D. Berthebaud, E. Guilmeau, O.I. Lebedev, A. Maignan, J. Gamon, P. Barboux, The BiCu1-xOS oxysulfide: copper deficiency and electronic properties, Journal of Solid State Chemistry, 237 (2016) 292-299.
    [150] I. Ijjaali, C.L. Haynes, A.D. McFarland, R.P. Van Duyne, J.A. Ibers, Synthesis, structure, and optical properties of the new lanthanum copper oxysulfide La3CuO2S3, Journal of Solid State Chemistry, 172 (2003) 257-260.
    [151] K. Ueda, S. Inoue, H. Hosono, N. Sarukura, M. Hirano, Room-temperature excitons in wide-gap layered-oxysulfide semiconductor: LaCuOS, Applied Physics Letters, 78 (2001) 2333-2335.
    [152] A. Nelson, K.E. Fritz, S. Honrao, R.G. Hennig, R.D. Robinson, J. Suntivich, Increased activity in hydrogen evolution electrocatalysis for partial anionic substitution in cobalt oxysulfide nanoparticles, Journal of Materials Chemistry A, 4 (2016) 2842-2848.
    [153] D. Genuit, I. Bezverkhyy, P. Afanasiev, Solution preparation of the amorphous molybdenum oxysulfide MoOS2 and its use for catalysis, Journal of Solid State Chemistry, 178 (2005) 2759-2765.
    [154] L. Liu, Nano-aggregates of cobalt nickel oxysulfide as a high-performance electrode material for supercapacitors, Nanoscale, 5 (2013) 11615-11619.
    [155] S.H. Park, Y.-K. Sun, K.S. Park, K.S. Nahm, Y.S. Lee, M. Yoshio, Synthesis and electrochemical properties of lithium nickel oxysulfide (LiNiSyO2-y) material for lithium secondary batteries, Electrochimica Acta, 47 (2002) 1721-1726.
    [156] X.-M. Zhang, D. Sarma, Y.-Q. Wu, L. Wang, Z.-X. Ning, F.-Q. Zhang, M.G. Kanatzidis, Open-framework oxysulfide based on the supertetrahedral [In4Sn16O10S34]12– cluster and efficient sequestration of heavy metals, Journal of the American Chemical Society, 138 (2016) 5543-5546.
    [157] Z. Peng, D. Wu, W. Wang, F. Tan, T.W. Ng, J. Chen, X. Qiao, P.K. Wong, Fabrication of magnetic Fe@ZnO0.6S0.4 nanocomposite for visible-light-driven photocatalytic inactivation of Escherichia coli, Applied Surface Science, 396 (2017) 19-25.
    [158] K. Maeda, K. Teramura, T. Takata, M. Hara, N. Saito, K. Toda, Y. Inoue, H. Kobayashi, K. Domen, Overall water splitting on (Ga1-xZnx)(N1-xOx) solid solution photocatalyst:  relationship between physical properties and photocatalytic activity, Journal of Physical Chemistry B, 109 (2005) 20504-20510.
    [159] Z.-J. Zhang, A. Feng, S.-L. Zhang, W.-B. Zhang, W. Yang, Mechanical properties of layered oxysulfide CaZnOS from first principle calculations, Journal of Alloys and Compounds, 670 (2016) 41-47.
    [160] Y.F. Li, H.L. Pan, B. Yao, R. Deng, Y. Xu, J.C. Li, L.G. Zhang, H.F. Zhao, D.Z. Shen, T. Wu, Hole-mediated ferromagnetic enhancement and stability in Cu-doped ZnOS alloy thin films, Journal of Physics D: Applied Physics, 45 (2012) 075002.
    [161] A.H. Mamaghani, F. Haghighat, C.-S. Lee, Photocatalytic oxidation technology for indoor environment air purification: The state-of-the-art, Applied Catalysis B: Environmental, 203 (2017) 247-269.
    [162] H. Ren, P. Koshy, W.-F. Chen, S. Qi, C.C. Sorrell, Photocatalytic materials and technologies for air purification, Journal of Hazardous Materials, 325 (2017) 340-366.
    [163] M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater, Chemical Engineering Journal, 263 (2015) 209-219.
    [164] X. Chen, D.-H. Kuo, Y.-X. Hou, Enhancing the photodegradation of charged pollutants under visible light in Ag2O/g-C3N4 catalyst by Coulombic interaction, Journal of Materials Science, 52 (2017) 5147-5154.
    [165] J. Qu, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Coral-inspired nanoscale design of porous SnS2 for photocatalytic reduction and removal of aqueous Cr (VI), Applied Catalysis B: Environmental, 207 (2017) 404-411.
    [166] L. Ke, P. Li, X. Wu, S. Jiang, M. Luo, Y. Liu, Z. Le, C. Sun, S. Song, Graphene-like sulfur-doped g-C3N4 for photocatalytic reduction elimination of UO22+ under visible light, Applied Catalysis B: Environmental, 205 (2017) 319-326.
    [167] Y. Li, Y. Bian, H. Qin, Y. Zhang, Z. Bian, Photocatalytic reduction behavior of hexavalent chromium on hydroxyl modified titanium dioxide, Applied Catalysis B: Environmental, 206 (2017) 293-299.
    [168] H. Wei, Q. Zhang, Y. Zhang, Z. Yang, A. Zhu, D.D. Dionysiou, Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution, Applied Catalysis A: General, 521 (2016) 9-18.
    [169] A.L. Luna, E. Novoseltceva, E. Louarn, P. Beaunier, E. Kowalska, B. Ohtani, M.A. Valenzuela, H. Remita, C. Colbeau-Justin, Synergetic effect of Ni and Au nanoparticles synthesized on titania particles for efficient photocatalytic hydrogen production, Applied Catalysis B: Environmental, 191 (2016) 18-28.
    [170] M. Lan, R.-M. Guo, Y. Dou, J. Zhou, A. Zhou, J.-R. Li, Fabrication of porous Pt-doping heterojunctions by using bimetallic MOF template for photocatalytic hydrogen generation, Nano Energy, 33 (2017) 238-246.
    [171] H. Gao, W. Zhen, J. Ma, G. Lu, High efficient solar hydrogen generation by modulation of Co-Ni sulfide (220) surface structure and adjusting adsorption hydrogen energy, Applied Catalysis B: Environmental, 206 (2017) 353-363.
    [172] X. Hao, Z. Jin, H. Yang, G. Lu, Y. Bi, Peculiar synergetic effect of MoS2 quantum dots and graphene on metal-organic frameworks for photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 210 (2017) 45-56.
    [173] B. Lin, H. An, X. Yan, T. Zhang, J. Wei, G. Yang, Fish-scale structured g-C3N4 nanosheet with unusual spatial electron transfer property for high-efficiency photocatalytic hydrogen evolution, Applied Catalysis B: Environmental, 210 (2017) 173-183.
    [174] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, Pd/ZnO catalysts for direct CO2 hydrogenation to methanol, Journal of Catalysis, 343 (2016) 133-146.
    [175] C.A. Huff, M.S. Sanford, Cascade catalysis for the homogeneoushydrogenation of CO2 to methanol, Journal of the American Chemical Society, 133 (2011) 18122-18125.
    [176] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C.F. Elkjær, J.S. Hummelshøj, S. Dahl, I. Chorkendorff, J.K. Nørskov, Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol, Nature Chemtry, 6 (2014) 320-324.
    [177] K. Lefatshe, C.M. Muiva, L.P. Kebaabetswe, Extraction of nanocellulose and in-situ casting of ZnO/cellulose nanocomposite with enhanced photocatalytic and antibacterial activity, Carbohydrate Polymers, 164 (2017) 301-308.
    [178] L. Jing, Y. Xu, S. Huang, M. Xie, M. He, H. Xu, H. Li, Q. Zhang, Novel magnetic CoFe2O4/Ag/Ag3VO4 composites: Highly efficient visible light photocatalytic and antibacterial activity, Applied Catalysis B: Environmental, 199 (2016) 11-22.
    [179] A. Fakhri, D.S. Kahi, Synthesis and characterization of MnS2/reduced graphene oxide nanohybrids for with photocatalytic and antibacterial activity, Journal of Photochemistry and Photobiology B: Biology, 166 (2017) 259-263.
    [180] R. Ahmad, Z. Ahmad, A.U. Khan, N.R. Mastoi, M. Aslam, J. Kim, Photocatalytic systems as an advanced environmental remediation: Recent developments, limitations and new avenues for applications, Journal of Environmental Chemical Engineering, 4 (2016) 4143-4164.
    [181] L.G. Devi, R. Kavitha, A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity, Applied Catalysis B: Environmental, 140–141 (2013) 559-587.
    [182] A. Molla, M. Sahu, S. Hussain, Under dark and visible light: fast degradation of methylene blue in the presence of Ag-In-Ni-S nanocomposites, Journal of Materials Chemistry A, 3 (2015) 15616-15625.
    [183] Q.W. Shu, J. Lan, M.X. Gao, J. Wang, C.Z. Huang, Controlled synthesis of CuS caved superstructures and their application to the catalysis of organic dye degradation in the absence of light, CrystEngComm, 17 (2015) 1374-1380.
    [184] J.M. Wu, W.E. Chang, Y.T. Chang, C.K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers, Advanced Materials, 28 (2016) 3718-3725.
    [185] A. Molla, M. Sahu, S. Hussain, Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes, Scientific Reports, 6 (2016) 26034.
    [186] X. Qiu, M. Miyauchi, K. Sunada, M. Minoshima, M. Liu, Y. Lu, D. Li, Y. Shimodaira, Y. Hosogi, Y. Kuroda, K. Hashimoto, Hybrid CuxO/TiO2 nanocomposites as risk-reduction materials in indoor environments, ACS Nano, 6 (2012) 1609-1618.
    [187] J. Li, C. Zhao, F. Lan, F. Chen, C. Teng, Q. Yan, J. Tang, An efficient CeGeO4 catalyst for degradation of organic dyes without light irradiation at room temperature, Catalysis Communications, 77 (2016) 26-31.
    [188] J. Li, X. Ma, C. Zhao, F. Lan, F. Chen, X. Liu, J. Tang, A novel Ce(IO3)4 catalyst: Facile preparation and high activity in degradation of organic dyes without light irradiation at room temperature, Journal of Physics and Chemistry of Solids, 100 (2017) 33-39.
    [189] G.A. Olah, G.K.S. Prakash, A. Goeppert, Anthropogenic chemical carbon cycle for a sustainable future, Journal of the American Chemical Society, 133 (2011) 12881-12898.
    [190] M. Ge, J. Cai, J. Iocozzia, C. Cao, J. Huang, X. Zhang, J. Shen, S. Wang, S. Zhang, K.-Q. Zhang, Y. Lai, Z. Lin, A review of TiO2 nanostructured catalysts for sustainable H2 generation, International Journal of Hydrogen Energy.
    [191] U.P.M. Ashik, W.M.A. Wan Daud, J.-i. Hayashi, A review on methane transformation to hydrogen and nanocarbon: Relevance of catalyst characteristics and experimental parameters on yield, Renewable and Sustainable Energy Reviews, 76 (2017) 743-767.
    [192] S.G. Jadhav, P.D. Vaidya, B.M. Bhanage, J.B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chemical Engineering Research and Design, 92 2557-2567.
    [193] X. Huang, T. Gao, X. Pan, D. Wei, C. Lv, L. Qin, Y. Huang, A review: feasibility of hydrogen generation from the reaction between aluminum and water for fuel cell applications, Journal of Power Sources, 229 (2013) 133-140.
    [194] S. Sahai, A. Ikram, S. Rai, R. Shrivastav, S. Dass, V.R. Satsangi, Quantum dots sensitization for photoelectrochemical generation of hydrogen: A review, Renewable and Sustainable Energy Reviews, 68, Part 1 (2017) 19-27.
    [195] P. Lianos, Review of recent trends in photoelectrocatalytic conversion of solar energy to electricity and hydrogen, Applied Catalysis B: Environmental, 210 (2017) 235-254.
    [196] J. Bae, S. Lee, S. Kim, J. Oh, S. Choi, M. Bae, I. Kang, S.P. Katikaneni, Liquid fuel processing for hydrogen production: A review, International Journal of Hydrogen Energy, 41 (2016) 19990-20022.
    [197] Y. Jiang, X. Fan, X. Xiao, T. Qin, L. Zhang, F. Jiang, M. Li, S. Li, H. Ge, L. Chen, Novel AgPd hollow spheres anchored on graphene as an efficient catalyst for dehydrogenation of formic acid at room temperature, Journal of Materials Chemistry A, 4 (2016) 657-666.
    [198] J. Jitputti, Y. Suzuki, S. Yoshikawa, Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution, Catalysis Communications, 9 (2008) 1265-1271.
    [199] E. Ha, L.Y.S. Lee, J. Wang, F. Li, K.-Y. Wong, S.C.E. Tsang, Significant enhancement in photocatalytic reduction of water to hydrogen by Au/Cu2ZnSnS4 nanostructure, Advanced Materials, 26 (2014) 3496-3500.
    [200] R.D. Cortright, R.R. Davda, J.A. Dumesic, Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water, Nature, 418 (2002) 964-967.
    [201] K.M.K. Yu, W. Tong, A. West, K. Cheung, T. Li, G. Smith, Y. Guo, S.C.E. Tsang, Non-syngas direct steam reforming of methanol to hydrogen and carbon dioxide at low temperature, Nature Communications, 3 (2012) 1230.
    [202] S.R. Lingampalli, U.K. Gautam, C.N.R. Rao, Highly efficient photocatalytic hydrogen generation by solution-processed ZnO/Pt/CdS, ZnO/Pt/Cd1-xZnxS and ZnO/Pt/CdS1-xSex hybrid nanostructures, Energy & Environmental Science, 6 (2013) 3589-3594.
    [203] E.J. Curry, E.M. Warshaw, Benzyl alcohol allergy: importance of patch testing with personal products, Dermatitis, 16 (2005) 203-208.
    [204] W. Zhou, Z. Yin, Y. Du, X. Huang, Z. Zeng, Z. Fan, H. Liu, J. Wang, H. Zhang, Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities, Small, 9 (2013) 140-147.
    [205] L. Wei, Y. Chen, Y. Lin, H. Wu, R. Yuan, Z. Li, MoS2 as non-noble-metal co-catalyst for photocatalytic hydrogen evolution over hexagonal ZnIn2S4 under visible light irradiations, Applied Catalysis B: Environmental, 144 (2014) 521-527.
    [206] I. Tsuji, Y. Shimodaira, H. Kato, H. Kobayashi, A. Kudo, Novel stannite-type complex sulfide photocatalysts AI2-Zn-AIV-S4 (AI = Cu and Ag; AIV = Sn and Ge) for hydrogen evolution under visible-light irradiation, Chemistry of Materials, 22 (2010) 1402-1409.
    [207] A. Kudo, I. Tsuji, H. Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation, Chemical Communications, (2002) 1958-1959.
    [208] V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook, Energy & Environmental Science, 2 (2009) 745-758.
    [209] G.P. Smestad, A. Steinfeld, Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts, Industrial & Engineering Chemistry Research, 51 (2012) 11828-11840.
    [210] M. Tamura, M. Honda, Y. Nakagawa, K. Tomishige, Direct conversion of CO2 with diols, aminoalcohols and diamines to cyclic carbonates, cyclic carbamates and cyclic ureas using heterogeneous catalysts, Journal of Chemical Technology & Biotechnology, 89 (2014) 19-33.
    [211] B. Hu, C. Guild, S.L. Suib, Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products, Journal of CO2 Utilization, 1 (2013) 18-27.
    [212] S. Yotsuhashi, H. Hashiba, M. Deguchi, Y. Zenitani, R. Hinogami, Y. Yamada, M. Deura, K. Ohkawa, Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system, AIP Advances, 2 (2012) 042160.
    [213] X. Li, J. Chen, H. Li, J. Li, Y. Xu, Y. Liu, J. Zhou, Photoreduction of CO2 to methanol over Bi2S3/CdS photocatalyst under visible light irradiation, Journal of Natural Gas Chemistry, 20 (2011) 413-417.
    [214] I.H. Tseng, W.-C. Chang, J.C.S. Wu, Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts, Applied Catalysis B: Environmental, 37 (2002) 37-48.
    [215] S.-i. Fujita, Y. Kanamori, A.M. Satriyo, N. Takezawa, Methanol synthesis from CO2 over Cu/ZnO catalysts prepared from various coprecipitated precursors, Catalysis Today, 45 (1998) 241-244.
    [216] J. Wu, M. Saito, M. Takeuchi, T. Watanabe, The stability of Cu/ZnO-based catalysts in methanol synthesis from a CO2-rich feed and from a CO-rich feed, Applied Catalysis A: General, 218 (2001) 235-240.
    [217] G. Zhao, H. Pang, G. Liu, P. Li, H. Liu, H. Zhang, L. Shi, J. Ye, Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light, Applied Catalysis B: Environmental, 200 (2017) 141-149.
    [218] R.E. Owen, J.P. O'Byrne, D. Mattia, P. Plucinski, S.I. Pascu, M.D. Jones, Cobalt catalysts for the conversion of CO2 to light hydrocarbons at atmospheric pressure, Chemical Communications, 49 (2013) 11683-11685.
    [219] D. Jiang, W. Wang, E. Gao, S. Sun, L. Zhang, Highly selective defect-mediated photochemical CO2 conversion over fluorite ceria under ambient conditions, Chemical Communications, 50 (2014) 2005-2007.
    [220] J. Kothandaraman, A. Goeppert, M. Czaun, G.A. Olah, G.K.S. Prakash, Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst, Journal of the American Chemical Society, 138 (2016) 778-781.
    [221] H. Lei, Z. Hou, J. Xie, Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine, Fuel, 164 (2016) 191-198.
    [222] C. Tisseraud, C. Comminges, S. Pronier, Y. Pouilloux, A. Le Valant, The Cu-ZnO synergy in methanol synthesis Part 3: Impact of the composition of a selective Cu@ZnOx core–shell catalyst on methanol rate explained by experimental studies and a concentric spheres model, Journal of Catalysis, 343 (2016) 106-114.
    [223] O. Martin, C. Mondelli, D. Curulla-Ferré, C. Drouilly, R. Hauert, J. Pérez-Ramírez, Zinc-rich copper catalysts promoted by gold for methanol synthesis, ACS Catalysis, 5 (2015) 5607-5616.
    [224] J. Wei, Q. Ge, R. Yao, Z. Wen, C. Fang, L. Guo, H. Xu, J. Sun, Directly converting CO2 into a gasoline fuel, Nature Communications, 8 (2017) 15174.
    [225] C. Oze, D.K. Bird, S. Fendorf, Genesis of hexavalent chromium from natural sources in soil and groundwater, Proc Natl Acad Sci USA, 104 (2007) 6544-6549.
    [226] Y. Qi, M. Jiang, Y.L. Cui, L. Zhao, S. Liu, Novel reduction of Cr(VI) from wastewater using a naturally derived microcapsule loaded with rutin-Cr(III) complex, Journal of Hazardous Materials, 285 (2015) 336-345.
    [227] G. Dong, L. Zhang, Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride, Journal of Physical Chemistry C, 117 (2013) 4062-4068.
    [228] A. Zhitkovich, Chromium in drinking water: sources, metabolism, and cancer risks, Chemical Research in Toxicology, 24 (2011) 1617-1629.
    [229] Y. Li, X. Xu, J. Liu, K. Wu, C. Gu, G. Shao, S. Chen, G. Chen, X. Huo, The hazard of chromium exposure to neonates in Guiyu of China, Science of The Total Environment, 403 (2008) 99-104.
    [230] Y. Li, W. Cui, L. Liu, R. Zong, W. Yao, Y. Liang, Y. Zhu, Removal of Cr(VI) by 3D TiO2-graphene hydrogel via adsorption enriched with photocatalytic reduction, Applied Catalysis B: Environmental, 199 (2016) 412-423.
    [231] B. Saha, C. Orvig, Biosorbents for hexavalent chromium elimination from industrial and municipal effluents, Coordination Chemistry Reviews, 254 (2010) 2959-2972.
    [232] D. Park, S.R. Lim, Y.S. Yun, J.M. Park, Development of a new Cr(VI)-biosorbent from agricultural biowaste, Bioresource Technology, 99 (2008) 8810-8818.
    [233] S. Liu, J. Sun, Z. Huang, Carbon spheres/activated carbon composite materials with high Cr(VI) adsorption capacity prepared by a hydrothermal method, Journal of Hazardous Materials, 173 (2010) 377-383.
    [234] R. Liang, L. Shen, F. Jing, W. Wu, N. Qin, R. Lin, L. Wu, NH 2 -mediated indium metal organic framework as a novel visible-light-driven photocatalyst for reduction of the aqueous Cr(VI), Applied Catalysis B: Environmental, 162 (2015) 245-251.
    [235] M. Cobas, M.A. Sanroman, M. Pazos, Box-Behnken methodology for Cr(VI) and leather dyes removal by an eco-friendly biosorbent: F. vesiculosus, Bioresource Technology, 160 (2014) 166-174.
    [236] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal organic frameworks: Plausible mechanisms for selective adsorptions, Journal of Hazardous Materials, 283 (2015) 329-339.
    [237] R. Liang, F. Jing, L. Shen, N. Qin, L. Wu, MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes, Journal of Hazardous Materials, 287 (2015) 364-372.
    [238] H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, P25-graphene composite as a high performance photocatalyst, ACS Nano, 4 (2010) 380-386.
    [239] H. Gu, S.B. Rapole, J. Sharma, Y. Huang, D. Cao, H.A. Colorado, Z. Luo, N. Haldolaarachchige, D.P. Young, B. Walters, S. Wei, Z. Guo, Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal, RSC Advances, 2 (2012) 11007.
    [240] C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review, Applied Catalysis B: Environmental, 193 (2016) 198-216.
    [241] T. Xu, L. Zhang, H. Cheng, Y. Zhu, Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study, Applied Catalysis B: Environmental, 101 (2011) 382-387.
    [242] Z. Chen, Y. Li, M. Guo, F. Xu, P. Wang, Y. Du, P. Na, One-pot synthesis of Mn-doped TiO2 grown on graphene and the mechanism for removal of Cr(VI) and Cr(III), Journal of Hazardous Materials, 310 (2016) 188-198.
    [243] A.Y.S. Malkhasian, R.M. Mohamed, Environmental remediation of Cr(VI) solutions by photocatalytic reduction using Ag-Er(OH)3 nanocomposite, Journal of Alloys and Compounds, 632 (2015) 735-740.
    [244] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, chemical Society Reviews, 39 (2010) 4206-4219.
    [245] A.E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, I. Konstantinou, Characterization and catalytic performance of B-doped, B–N co-doped and B–N–F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation, Applied Catalysis B: Environmental, 184 (2016) 44-54.
    [246] Y.C. Zhang, M. Yang, G. Zhang, D.D. Dionysiou, HNO3-involved one-step low temperature solvothermal synthesis of N-doped TiO2 nanocrystals for efficient photocatalytic reduction of Cr(VI) in water, Applied Catalysis B: Environmental, 142-143 (2013) 249-258.
    [247] D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light, Applied Surface Science, 358 (2015) 181-187.
    [248] Y.C. Zhang, L. Yao, G. Zhang, D.D. Dionysiou, J. Li, X. Du, One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI), Applied Catalysis B: Environmental, 144 (2014) 730-738.
    [249] Y.C. Zhang, J. Li, H.Y. Xu, One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Applied Catalysis B: Environmental, 123-124 (2012) 18-26.
    [250] J. Yang, J. Dai, J. Li, Visible-light-induced photocatalytic reduction of Cr(VI) with coupled Bi2O3/TiO2 photocatalyst and the synergistic bisphenol A oxidation, Environ Sci Pollut Res Int, 20 (2013) 2435-2447.
    [251] L. Yang, Y. Xiao, S. Liu, Y. Li, Q. Cai, S. Luo, G. Zeng, Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid, Applied Catalysis B: Environmental, 94 (2010) 142-149.
    [252] J. Yu, S. Zhuang, X. Xu, W. Zhu, B. Feng, J. Hu, Photogenerated electron reservoir in hetero-p–n CuO-ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(VI), Journal of Materials Chemistry A, 3 (2015) 1199-1207.
    [253] X. Liu, L. Pan, T. Lv, G. Zhu, Z. Sun, C. Sun, Microwave-assisted synthesis of CdS-reduced graphene oxide composites for photocatalytic reduction of Cr(VI), Chemical Communications, 47 (2011) 11984-11986.
    [254] A. Idris, N. Hassan, R. Rashid, A.F. Ngomsik, Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight, Journal of Hazardous Materials, 186 (2011) 629-635.
    [255] J. Ghijsen, L.H. Tjeng, J. van Elp, H. Eskes, J. Westerink, G.A. Sawatzky, M.T. Czyzyk, Electronic structure of Cu2O and CuO, Physical Review B, 38 (1988) 11322-11330.
    [256] Z. Xu, Y. Yu, D. Fang, J. Liang, L. Zhou, Simulated solarlight catalytic reduction of Cr(VI) on microwave–ultrasonication synthesized flower-like CuO in the presence of tartaric acid, Materials Chemistry and Physics, 171 (2016) 386-393.
    [257] A.K. Sasmal, S. Dutta, T. Pal, A ternary Cu2O-Cu-CuO nanocomposite: a catalyst with intriguing activity, Dalton Transactions, 45 (2016) 3139-3150.
    [258] H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura, N. Yamazoe, Indium oxide-based gas sensor for selective detection of CO, Sensors and Actuators B: Chemical, 36 (1996) 325-332.
    [259] C.C. Landry, A.R. Barron, Synthesis of polycrystalline chalcopyrite semiconductors by microwave irradiation, Science, 260 (1993) 1653-1655.
    [260] X. Chen, D.-H. Kuo, D. Lu, N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light, Chemical Engineering Journal, 295 (2016) 192-200.
    [261] O. Ahmed Zelekew, D.H. Kuo, A two-oxide nanodiode system made of double-layered p-type Ag2O@n-type TiO2 for rapid reduction of 4-nitrophenol, Phys Chem Chem Phys, 18 (2016) 4405-4414.
    [262] Y. Yang, D. Xu, Q. Wu, P. Diao, Cu2O/CuO bilayered composite as a high-efficiency photocathode for photoelectrochemical hydrogen evolution reaction, Scientific Reports, 6 (2016) 35158.
    [263] J.C. Klein, C.P. Li, D.M. Hercules, J.F. Black, Decomposition of copper compounds in X-Ray photoelectron spectrometers, Applied Spectroscopy, 38 (1984) 729-734.
    [264] W. Liu, X. Yang, Y. Zhang, M. Xu, H. Chen, Ultra-stable two-dimensional MoS2 solution for highly efficient organic solar cells, RSC Advances, 4 (2014) 32744-32748.
    [265] K.P. Prasad, Y. Chen, M.A. Sk, A. Than, Y. Wang, H. Sun, K.-H. Lim, X. Dong, P. Chen, Fluorescent quantum dots derived from PEDOT and their applications in optical imaging and sensing, Materials Horizons, 1 (2014) 529-534.
    [266] S. Liu, X. Chen, A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation, Journal of Hazardous Materials, 152 (2008) 48-55.
    [267] D. Ma, Y. Xin, M. Gao, J. Wu, Fabrication and photocatalytic properties of cationic and anionic S-doped TiO2 nanofibers by electrospinning, Applied Catalysis B: Environmental, 147 (2014) 49-57.
    [268] L.G. Devi, R. Kavitha, Enhanced photocatalytic activity of sulfur doped TiO2 for the decomposition of phenol: A new insight into the bulk and surface modification, Materials Chemistry and Physics, 143 (2014) 1300-1308.
    [269] X. Chen, D.-H. Kuo, D. Lu, Visible light response and superior dispersed S-doped TiO2 nanoparticles synthesized via ionic liquid, Advanced Powder Technology, 28 (2017) 1213-1220.
    [270] L.Z. Pei, J.F. Wang, X.X. Tao, S.B. Wang, Y.P. Dong, C.G. Fan, Q.-F. Zhang, Synthesis of CuS and Cu1.1Fe1.1S2 crystals and their electrochemical properties, Materials Characterization, 62 (2011) 354-359.
    [271] M. Yoon, M. Seo, C. Jeong, J.H. Jang, K.S. Jeon, Synthesis of liposome-templated titania nanodisks:  optical properties and photocatalytic activities, Chemistry of Materials, 17 (2005) 6069-6079.
    [272] X. Chen, D.-H. Kuo, D. Lu, Y. Hou, Y.-R. Kuo, Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template, Microporous and Mesoporous Materials, 223 (2016) 145-151.
    [273] Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Size-tunable hydrothermal synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Environmental Science & Technology, 45 (2011) 9324-9331.
    [274] S. Park, R. Selvaraj, M.A. Meetani, Y. Kim, Enhancement of visible-light-driven photocatalytic reduction of aqueous Cr(VI) with flower-like In3+-doped SnS2, Journal of Industrial and Engineering Chemistry, 45 (2017) 206-214.
    [275] S.X. Liu, X. Chen, X.Y. Chen, Z.F. Liu, H.L. Wang, Activated carbon with excellent chromium(VI) adsorption performance prepared by acid-base surface modification, Journal of Hazardous Materials, 141 (2007) 315-319.
    [276] D. Dinda, A. Gupta, S.K. Saha, Removal of toxic Cr(vi) by UV-active functionalized graphene oxide for water purification, Journal of Materials Chemistry A, 1 (2013) 11221.
    [277] Q. Wang, X. Shi, E. Liu, J.C. Crittenden, X. Ma, Y. Zhang, Y. Cong, Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction, Journal of Hazardous Materials, 317 (2016) 8-16.
    [278] N. Shaham-Waldmann, Y. Paz, Beyond charge separation: The effect of coupling between titanium dioxide and CNTs on the adsorption and photocatalytic reduction of Cr(VI), Chemical Engineering Journal, 231 (2013) 49-58.
    [279] H. Chu, W. Lei, X. Liu, J. Li, W. Zheng, G. Zhu, C. Li, L. Pan, C. Sun, Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2, Applied Catalysis A: General, 521 (2016) 19-25.
    [280] Y. Zhang, Q. Zhang, Q. Shi, Z. Cai, Z. Yang, Acid-treated g-C3N4 with improved photocatalytic performance in the reduction of aqueous Cr(VI) under visible-light, Separation and Purification Technology, 142 (2015) 251-257.
    [281] X. Chen, H. Abdullah, D.H. Kuo, CuMnOS Nanoflowers with Different Cu+/Cu2+ Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions, Scientific Reports, 7 (2017) 41194.
    [282] Y. Li, Z. Wei, F. Gao, L. Kovarik, R.A.L. Baylon, C.H.F. Peden, Y. Wang, Effect of oxygen defects on the catalytic performance of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol, ACS Catalysis, 5 (2015) 3006-3012.
    [283] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J. Fernandez Sanz, J.A. Rodriguez, Catalysis. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science, 345 (2014) 546-550.
    [284] J. Wu, S. Luo, J. Toyir, M. Saito, M. Takeuchi, T. Watanabe, Optimization of preparation conditions and improvement of stability of Cu/ZnO-based multicomponent catalysts for methanol synthesis from CO2 and H2, Catalysis Today, 45 (1998) 215-220.
    [285] W. Lin, H. Frei, Photochemical CO2 splitting by metal-to-metal charge-transfer excitation in mesoporous ZrCu(I)-MCM-41 silicate sieve, Journal of the American Chemical Society, 127 (2005) 1610-1611.
    [286] G.P. Smestad, A. Steinfeld, Review: photochemical and thermochemical production of solar fuels from H2O and CO2 using metal oxide catalysts, Industrial & Engineering Chemistry Research, 51 (2012) 11828-11840.
    [287] F. Wang, M. Wei, D.G. Evans, X. Duan, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, Journal of Materials Chemistry A, 4 (2016) 5773-5783.
    [288] J. Fester, M. Garcia-Melchor, A.S. Walton, M. Bajdich, Z. Li, L. Lammich, A. Vojvodic, J.V. Lauritsen, Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands, Nature Communications, 8 (2017) 14169.
    [289] A. Ajmal, I. Majeed, R.N. Malik, H. Idriss, M.A. Nadeem, Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview, RSC Advances, 4 (2014) 37003-37026.
    [290] X. Chen, S.S. Mao, Titanium dioxide nanomaterials:  synthesis, properties, modifications, and applications, Chemical Reviews, 107 (2007) 2891-2959.
    [291] C. Han, J. Andersen, V. Likodimos, P. Falaras, J. Linkugel, D.D. Dionysiou, The effect of solvent in the sol-gel synthesis of visible light-activated, sulfur-doped TiO2 nanostructured porous films for water treatment, Catalysis Today, 224 (2014) 132-139.
    [292] M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O'Shea, M.H. Entezari, D.D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Applied Catalysis B: Environmental, 125 (2012) 331-349.
    [293] C. Chen, W. Ma, J. Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chemical Society Reviews, 39 (2010) 4206-4219.
    [294] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Visible-Light Photocatalysis in nitrogen-doped titanium oxides, Science, 293 (2001) 269-271.
    [295] C. McManamon, J. O'Connell, P. Delaney, S. Rasappa, J.D. Holmes, M.A. Morris, A facile route to synthesis of S-doped TiO2 nanoparticles for photocatalytic activity, Journal of Molecular Catalysis A: Chemical, 406 (2015) 51-57.
    [296] C. Randorn, J.T.S. Irvine, Synthesis and visible light photoactivity of a high temperature stable yellow TiO2 photocatalyst, Journal of Materials Chemistry, 20 (2010) 8700-8704.
    [297] G. Zhang, Y.C. Zhang, M. Nadagouda, C. Han, K. O'Shea, S.M. El-Sheikh, A.A. Ismail, D.D. Dionysiou, Visible light-sensitized S, N and C co-doped polymorphic TiO2 for photocatalytic destruction of microcystin-LR, Applied Catalysis B: Environmental, 144 (2014) 614-621.
    [298] D.-H. Kuo, W.-T. Hsu, Y.-Y. Yang, From the fluorescent lamp-induced bactericidal performance of sputtered Ag/TiO2 films to re-explore the photocatalytic mechanism, Applied Catalysis B: Environmental, 184 (2016) 191-200.
    [299] V. Vaiano, G. Iervolino, D. Sannino, J.J. Murcia, M.C. Hidalgo, P. Ciambelli, J.A. Navío, Photocatalytic removal of patent blue V dye on Au-TiO2 and Pt-TiO2 catalysts, Applied Catalysis B: Environmental, 188 (2016) 134-146.
    [300] H. Yamashita, M. Harada, J. Misaka, M. Takeuchi, K. Ikeue, M. Anpo, Degradation of propanol diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts, Journal of Photochemistry and Photobiology A: Chemistry, 148 (2002) 257-261.
    [301] M. Rico-Santacruz, Á.E. Sepúlveda, C. Ezquerro, E. Serrano, E. Lalinde, J.R. Berenguer, J. García-Martínez, Bottom-up construction of highly photoactive dye-sensitized titania using Ru(II) and Ir(III) complexes as building blocks, Applied Catalysis B: Environmental, 200 (2017) 93-105.
    [302] H. Yu, H. Irie, Y. Shimodaira, Y. Hosogi, Y. Kuroda, M. Miyauchi, K. Hashimoto, An efficient visible-light-sensitive Fe(III)-Grafted TiO2 photocatalyst, Journal of Physical Chemistry C, 114 (2010) 16481-16487.
    [303] Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation, Chemical Engineering Journal, 260 (2015) 117-125.
    [304] W. Wang, J. Yu, Q. Xiang, B. Cheng, Enhanced photocatalytic activity of hierarchical macro/mesoporous TiO2-graphene composites for photodegradation of acetone in air, Applied Catalysis B: Environmental, 119–120 (2012) 109-116.
    [305] P. Chen, A novel synthesis of Ti3+ self-doped Ag2O/TiO2(p–n) nanoheterojunctions for enhanced visible photocatalytic activity, Materials Letters, 163 (2016) 130-133.
    [306] D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, O.I. Lebedev, A. Parfenova, S. Turner, E. Tondello, G. Van Tendeloo, Tailored vapor-phase growth of CuxO-TiO2 (x = 1, 2) nanomaterials decorated with Au particles, Langmuir, 27 (2011) 6409-6417.
    [307] D. Barreca, G. Carraro, E. Comini, A. Gasparotto, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello, Novel synthesis and gas sensing performances of CuO-TiO2 nanocomposites functionalized with Au nanoparticles, Journal of Physical Chemistry C, 115 (2011) 10510-10517.
    [308] M.V. Dozzi, S. Marzorati, M. Longhi, M. Coduri, L. Artiglia, E. Selli, Photocatalytic activity of TiO2-WO3 mixed oxides in relation to electron transfer efficiency, Applied Catalysis B: Environmental, 186 (2016) 157-165.
    [309] C. Wang, C. Shao, X. Zhang, Y. Liu, SnO2 nanostructures-TiO2 nanofibers heterostructures: controlled fabrication and high photocatalytic properties, Inorganic Chemistry, 48 (2009) 7261-7268.
    [310] X. Zheng, D. Li, X. Li, J. Chen, C. Cao, J. Fang, J. Wang, Y. He, Y. Zheng, Construction of ZnO/TiO2 photonic crystal heterostructures for enhanced photocatalytic properties, Applied Catalysis B: Environmental, 168–169 (2015) 408-415.
    [311] B. O'Regan, M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature, 353 (1991) 737-740.
    [312] A. Molla, M. Sahu, S. Hussain, Synthesis of tunable band gap semiconductor nickel sulphide nanoparticles: rapid and round the clock degradation of organic dyes, Scientific Reports, 6 (2016) 26034.
    [313] J.M. Wu, W.E. Chang, Y.T. Chang, C.-K. Chang, Piezo-catalytic effect on the enhancement of the ultra-high degradation activity in the dark by single- and few-layers MoS2 nanoflowers, Advanced Materials, 28 (2016) 3718-3725.
    [314] X. Chen, D.-H. Kuo, D. Lu, N-doped mesoporous TiO2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light, Chemical Engineering Journal, 295 (2016) 192-200.
    [315] O.A. Zelekew, D.-H. Kuo, Facile synthesis of SiO2@CuxO@TiO2 heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants, Applied Surface Science, 393 (2017) 110-118.
    [316] D.R. Kumar, D. Manoj, J. Santhanalakshmi, J.-J. Shim, Au-CuO core-shell nanoparticles design and development for the selective determination of Vitamin B6, Electrochimica Acta, 176 (2015) 514-522.
    [317] K.-i. Shimizu, H. Maeshima, H. Yoshida, A. Satsuma, T. Hattori, Spectroscopic characterisation of Cu-Al2O3 catalysts for selective catalytic reduction of NO with propene, Physical Chemistry Chemical Physics, 2 (2000) 2435-2439.
    [318] E.E. Khawaja, M.A. Salim, M.A. Khan, F.F. Al-Adel, G.D. Khattak, Z. Hussain, XPS, auger, electrical and optical studies of vanadium phosphate glasses doped with nickel oxide, Journal of Non-Crystalline Solids, 110 (1989) 33-43.
    [319] J. Haber, T. Machej, L. Ungier, J. Ziółkowski, ESCA studies of copper oxides and copper molybdates, Journal of Solid State Chemistry, 25 (1978) 207-218.
    [320] B.R. Strohmeier, D.E. Levden, R.S. Field, D.M. Hercules, Surface spectroscopic characterization of CuAl2O3 catalysts, Journal of Catalysis, 94 (1985) 514-530.
    [321] D.L. Perry, J.A. Taylor, X-ray photoelectron and Auger spectroscopic studies of Cu2S and CuS, Journal of Materials Science Letters, 5 (1986) 384-386.
    [322] S. Liu, X. Chen, A visible light response TiO2 photocatalyst realized by cationic S-doping and its application for phenol degradation, Journal of Hazardous Materials, 152 (2008) 48-55.
    [323] X. Meng, G. Tian, Y. Chen, R. Zhai, J. Zhou, Y. Shi, X. Cao, W. Zhou, H. Fu, Hierarchical CuS hollow nanospheres and their structure-enhanced visible light photocatalytic properties, CrystEngComm, 15 (2013) 5144-5149.
    [324] Z. Li, L. Mi, W. Chen, H. Hou, C. Liu, H. Wang, Z. Zheng, C. Shen, Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization, CrystEngComm, 14 (2012) 3965-3971.
    [325] E. Román, J.L. de Segovia, J.A. Martín-Gago, G. Comtet, L. Hellner, Study of the interaction of SO2 with TiO2 (110) surface, Vacuum, 48 (1997) 597-600.
    [326] X. Chen, D.-H. Kuo, D. Lu, Y. Hou, Y.-R. Kuo, Synthesis and photocatalytic activity of mesoporous TiO2 nanoparticle using biological renewable resource of un-modified lignin as a template, Microporous and Mesoporous Materials, 223 (2016) 145-151.
    [327] L.V. Trandafilović, D.J. Jovanović, X. Zhang, S. Ptasińska, M.D. Dramićanin, Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles, Applied Catalysis B: Environmental, 203 (2017) 740-752.
    [328] Q. Wang, S. Tian, P. Ning, Degradation mechanism of methylene blue in a heterogeneous fenton-like reaction catalyzed by ferrocene, Industrial & Engineering Chemistry Research, 53 (2014) 643-649.
    [329] D.P. DePuccio, P. Botella, B. O’Rourke, C.C. Landry, Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies, ACS Applied Materials & Interfaces, 7 (2015) 1987-1996.
    [330] J. Zhao, J. Nan, Z. Zhao, N. Li, J. Liu, F. Cui, Energy-efficient fabrication of a novel multivalence Mn3O4-MnO2 heterojunction for dye degradation under visible light irradiation, Applied Catalysis B: Environmental, 202 (2017) 509-517.
    [331] R. Atchudan, T.N. Jebakumar Immanuel Edison, S. Perumal, D. Karthikeyan, Y.R. Lee, Effective photocatalytic degradation of anthropogenic dyes using graphene oxide grafting titanium dioxide nanoparticles under UV-light irradiation, Journal of Photochemistry and Photobiology A: Chemistry, 333 (2017) 92-104.
    [332] Y.C. Zhang, J. Li, M. Zhang, D.D. Dionysiou, Size-Tunable Hydrothermal Synthesis of SnS2 nanocrystals with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Environmental Science & Technology, 45 (2011) 9324-9331.
    [333] D. Xiao, K. Dai, Y. Qu, Y. Yin, H. Chen, Hydrothermal synthesis of α-Fe2O3/g-C3N4 composite and its efficient photocatalytic reduction of Cr(VI) under visible light, Applied Surface Science, 358, Part A (2015) 181-187.
    [334] Y.C. Zhang, J. Li, H.Y. Xu, One-step in situ solvothermal synthesis of SnS2/TiO2 nanocomposites with high performance in visible light-driven photocatalytic reduction of aqueous Cr(VI), Applied Catalysis B: Environmental, 123–124 (2012) 18-26.
    [335] S.X. Liu, X. Chen, X.Y. Chen, Z.F. Liu, H.L. Wang, Activated carbon with excellent chromium(VI) adsorption performance prepared by acid–base surface modification, Journal of Hazardous Materials, 141 (2007) 315-319.
    [336] D. Dinda, A. Gupta, S.K. Saha, Removal of toxic Cr(vi) by UV-active functionalized graphene oxide for water purification, Journal of Materials Chemistry A, 1 (2013) 11221-11228.
    [337] H. Chu, X. Liu, B. Liu, G. Zhu, W. Lei, H. Du, J. Liu, J. Li, C. Li, C. Sun, Hexagonal 2H-MoSe2 broad spectrum active photocatalyst for Cr(VI) reduction, Scientific Reports, 6 (2016) 35304.
    [338] Q. Wang, X. Shi, E. Liu, J.C. Crittenden, X. Ma, Y. Zhang, Y. Cong, Facile synthesis of AgI/BiOI-Bi2O3 multi-heterojunctions with high visible light activity for Cr(VI) reduction, Journal of Hazardous Materials, 317 (2016) 8-16.
    [339] H. Chu, W. Lei, X. Liu, J. Li, W. Zheng, G. Zhu, C. Li, L. Pan, C. Sun, Synergetic effect of TiO2 as co-catalyst for enhanced visible light photocatalytic reduction of Cr(VI) on MoSe2, Applied Catalysis A: General, 521 (2016) 19-25.
    [340] X. Chen, H. Abdullah, D.-H. Kuo, CuMnOS Nanoflowers with Different Cu+/Cu2+ Ratios for the CO2-to-CH3OH and the CH3OH-to-H2 Redox Reactions, Scientific Reports, 7 (2017) 41194.
    [341] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2, Science, 345 (2014) 546-550.
    [342] H. Ahmad, S.K. Kamarudin, L.J. Minggu, M. Kassim, Hydrogen from photo-catalytic water splitting process: A review, Renewable and Sustainable Energy Reviews, 43 (2015) 599-610.
    [343] T. He, Q. Pei, P. Chen, Liquid organic hydrogen carriers, Journal of Energy Chemistry, 24 (2015) 587-594.
    [344] P. Preuster, C. Papp, P. Wasserscheid, Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy, Accounts of Chemical Research, 50 (2017) 74-85.
    [345] D. Teichmann, W. Arlt, P. Wasserscheid, Liquid organic hydrogen carriers as an efficient vector for the transport and storage of renewable energy, International Journal of Hydrogen Energy, 37 (2012) 18118-18132.
    [346] S. Sá, H. Silva, L. Brandão, J.M. Sousa, A. Mendes, Catalysts for methanol steam reforming—A review, Applied Catalysis B: Environmental, 99 (2010) 43-57.
    [347] S. Schuyten, S. Guerrero, J.T. Miller, T. Shibata, E.E. Wolf, Characterization and oxidation states of Cu and Pd in Pd–CuO/ZnO/ZrO2 catalysts for hydrogen production by methanol partial oxidation, Applied Catalysis A: General, 352 (2009) 133-144.
    [348] H.M. Chen, C.K. Chen, R.-S. Liu, C.-C. Wu, W.-S. Chang, K.-H. Chen, T.-S. Chan, J.-F. Lee, D.P. Tsai, A New approach to solar hydrogen production: a ZnO–ZnS solid solution nanowire array photoanode, Advanced Energy Materials, 1 (2011) 742-747.
    [349] E. Alberico, M. Nielsen, Towards a methanol economy based on homogeneous catalysis: methanol to H2 and CO2 to methanol, Chemical Communications, 51 (2015) 6714-6725.
    [350] D. Morton, D.J. Cole-Hamilton, Rapid thermal hydrogen production from alcohols catalysed by [Rh(2,2[prime or minute]-bipyridyl)2]Cl, Journal of the Chemical Society, Chemical Communications, (1987) 248-249.
    [351] E. Alberico, P. Sponholz, C. Cordes, M. Nielsen, H.-J. Drexler, W. Baumann, H. Junge, M. Beller, Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions, Angewandte Chemie International Edition, 52 (2013) 14162-14166.
    [352] K.M. Eblagon, K. Tam, S.C.E. Tsang, Comparison of catalytic performance of supported ruthenium and rhodium for hydrogenation of 9-ethylcarbazole for hydrogen storage applications, Energy & Environmental Science, 5 (2012) 8621-8630.
    [353] A.A. Dubale, C.-J. Pan, A.G. Tamirat, H.-M. Chen, W.-N. Su, C.-H. Chen, J. Rick, D.W. Ayele, B.A. Aragaw, J.-F. Lee, Y.-W. Yang, B.-J. Hwang, Heterostructured Cu2O/CuO decorated with nickel as a highly efficient photocathode for photoelectrochemical water reduction, Journal of Materials Chemistry A, 3 (2015) 12482-12499.
    [354] A. Ajmal, I. Majeed, R.N. Malik, M. Iqbal, M.A. Nadeem, I. Hussain, S. Yousaf, Zeshan, G. Mustafa, M.I. Zafar, M.A. Nadeem, Photocatalytic degradation of textile dyes on Cu2O-CuO/TiO2 anatase powders, Journal of Environmental Chemical Engineering, 4 (2016) 2138-2146.
    [355] B.P. Vinayan, S. Ramaprabhu, Platinum-TM (TM = Fe, Co) alloy nanoparticles dispersed nitrogen doped (reduced graphene oxide-multiwalled carbon nanotube) hybrid structure cathode electrocatalysts for high performance PEMFC applications, Nanoscale, 5 (2013) 5109-5118.
    [356] M.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni, Applied Surface Science, 257 (2011) 2717-2730.
    [357] A.W.C. Lin, N.R. Armstrong, T. Kuwana, X-ray photoelectron/Auger electron spectroscopic studies of tin and indium metal foils and oxides, Analytical Chemistry, 49 (1977) 1228-1235.
    [358] Z. Zhang, Y. Chen, J. Bao, Z. Xie, J. Wei, Z. Zhou, Co3O4 hollow nanoparticles and Co organic complexes highly dispersed on N-doped graphene: an efficient cathode catalyst for Li-O2 batteries, Particle & Particle Systems Characterization, 32 (2015) 680-685.
    [359] Y. Cai, X. Yang, T. Liang, L. Dai, L. Ma, G. Huang, W. Chen, H. Chen, H. Su, M. Xu, Easy incorporation of single-walled carbon nanotubes into two-dimensional MoS2 for high-performance hydrogen evolution, Nanotechnology, 25 (2014) 465401.
    [360] J. Baltrusaitis, C.R. Usher, V.H. Grassian, Reactions of sulfur dioxide on calcium carbonate single crystal and particle surfaces at the adsorbed water carbonate interface, Physical Chemistry Chemical Physics, 9 (2007) 3011-3024.
    [361] R.C. Pawar, V. Khare, C.S. Lee, Hybrid photocatalysts using graphitic carbon nitride/cadmium sulfide/reduced graphene oxide (g-C3N4/CdS/RGO) for superior photodegradation of organic pollutants under UV and visible light, Dalton Transactions, 43 (2014) 12514-12527.
    [362] X. Chen, D.-H. Kuo, Nanoflower bimetal CuInOS oxysulfide catalyst for the reduction of Cr(VI) in the dark, ACS Sustainable Chemistry & Engineering, (2017).
    [363] L.E. Heim, N.E. Schlörer, J.-H. Choi, M.H.G. Prechtl, Selective and mild hydrogen production using water and formaldehyde, Nature Communications, 5 (2014) 3621.
    [364] C.L. Muhich, B.W. Evanko, K.C. Weston, P. Lichty, X. Liang, J. Martinek, C.B. Musgrave, A.W. Weimer, Efficient generation of H2 by splitting water with an isothermal redox cycle, Science, 341 (2013) 540-542.
    [365] G.A. Olah, Beyond oil and gas: the methanol economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639.
    [366] W.-H. Wang, Y. Himeda, J.T. Muckerman, G.F. Manbeck, E. Fujita, CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction, Chemical Reviews, 115 (2015) 12936-12973.
    [367] J.A. Rodriguez, P. Liu, D.J. Stacchiola, S.D. Senanayake, M.G. White, J.G. Chen, Hydrogenation of CO2 to methanol: importance of metal–oxide and metal–carbide interfaces in the activation of CO2, ACS Catalysis, 5 (2015) 6696-6706.
    [368] S.G. Jadhav, P.D. Vaidya, B.M. Bhanage, J.B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chemical Engineering Research and Design, 92 (2014) 2557-2567.
    [369] I. Ganesh, Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review), Renewable and Sustainable Energy Reviews, 31 (2014) 221-257.
    [370] S. Wesselbaum, T. vom Stein, J. Klankermayer, W. Leitner, Hydrogenation of carbon dioxide to methanol by using a homogeneous ruthenium–phosphine catalyst, Angewandte Chemie International Edition, 51 (2012) 7499-7502.
    [371] S.-Q. Liu, S.-S. Zhou, Z.-G. Chen, C.-B. Liu, F. Chen, Z.-Y. Wu, An artificial photosynthesis system based on CeO2 as light harvester and N-doped graphene Cu(II) complex as artificial metalloenzyme for CO2 reduction to methanol fuel, Catalysis Communications, 73 (2016) 7-11.
    [372] C.-W. Tsai, H.M. Chen, R.-S. Liu, K. Asakura, T.-S. Chan, Ni@NiO core–shell structure-modified nitrogen-doped InTaO4 for solar-driven highly efficient CO2 reduction to methanol, Journal of Physical Chemistry C, 115 (2011) 10180-10186.
    [373] H. Yamashita, Y. Fujii, Y. Ichihashi, S.G. Zhang, K. Ikeue, D.R. Park, K. Koyano, T. Tatsumi, M. Anpo, Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves, Catalysis Today, 45 (1998) 221-227.
    [374] A. Iulianelli, P. Ribeirinha, A. Mendes, A. Basile, Methanol steam reforming for hydrogen generation via conventional and membrane reactors: A review, Renewable and Sustainable Energy Reviews, 29 (2014) 355-368.
    [375] D.R. Palo, R.A. Dagle, J.D. Holladay, Methanol steam reforming for hydrogen production, Chemical Reviews, 107 (2007) 3992-4021.
    [376] R.M. Navarro, M.A. Peña, J.L.G. Fierro, Hydrogen production reactions from carbon feedstocks:  fossil fuels and biomass, Chemical Reviews, 107 (2007) 3952-3991.
    [377] R.E. Rodríguez-Lugo, M. Trincado, M. Vogt, F. Tewes, G. Santiso-Quinones, H. Grützmacher, A homogeneous transition metal complex for clean hydrogen production from methanol–water mixtures, Nature Chemistry, 5 (2013) 342-347.
    [378] M. Nielsen, E. Alberico, W. Baumann, H.-J. Drexler, H. Junge, S. Gladiali, M. Beller, Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide, Nature, 495 (2013) 85-89.
    [379] A. Idris, N. Hassan, R. Rashid, A.-F. Ngomsik, Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight, Journal of Hazardous Materials, 186 (2011) 629-635.
    [380] M. Wang, F. Xie, W. Li, M. Chen, Y. Zhao, Preparation of various kinds of copper sulfides in a facile way and the enhanced catalytic activity by visible light, Journal of Materials Chemistry A, 1 (2013) 8616-8621.
    [381] A. Moses Ezhil Raj, S.G. Victoria, V.B. Jothy, C. Ravidhas, J. Wollschläger, M. Suendorf, M. Neumann, M. Jayachandran, C. Sanjeeviraja, XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique, Applied Surface Science, 256 (2010) 2920-2926.
    [382] M. Naddaf, Tuning of structural, light emission and wetting properties of nanostructured copper oxide–porous silicon matrix formed on electrochemically etched copper-coated silicon substrates, Applied Physics A, 123 (2016) 40.
    [383] H. Heydari, S.E. Moosavifard, S. Elyasi, M. Shahraki, Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors, Applied Surface Science, 394 (2017) 425-430.
    [384] Z. Sun, H. Zheng, J. Li, P. Du, Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts, Energy & Environmental Science, 8 (2015) 2668-2676.
    [385] J. Sun, G. Chen, J. Pei, R. Jin, Q. Wang, X. Guang, A simple approach to strontium sodium tantalite mesocrystals with ultra-high photocatalytic properties for water splitting, Journal of Materials Chemistry, 22 (2012) 5609-5614.
    [386] F. Wang, M. Wei, D.G. Evans, X. Duan, CeO2-based heterogeneous catalysts toward catalytic conversion of CO2, Journal of Materials Chemistry A, 4 (2016) 5773-5783.
    [387] S. Sun, Y. Wang, Q. Yang, Density functional theory study of the methanol adsorption and dissociation on CuO(1 1 1) surface, Applied Surface Science, 313 (2014) 777-783.
    [388] B. Sun, E.P. Reddy, P.G. Smirniotis, Visible light Cr(VI) reduction and organic chemical oxidation by TiO2 photocatalysis, Environmental Science & Technology, 39 (2005) 6251-6259.
    [389] B.A. Marinho, R.O. Cristóvão, R. Djellabi, J.M. Loureiro, R.A.R. Boaventura, V.J.P. Vilar, Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light, Applied Catalysis B: Environmental, 203 (2017) 18-30.
    [390] H. Gao, P. Zhang, J. Zhao, Y. Zhang, J. Hu, G. Shao, Plasmon enhancement on photocatalytic hydrogen production over the Z-scheme photosynthetic heterojunction system, Applied Catalysis B: Environmental, 210 (2017) 297-305.
    [391] X. Sun, X. Xu, Efficient photocatalytic hydrogen production over La/Rh co-doped ruddlesden-popper compound Sr2TiO4, Applied Catalysis B: Environmental, 210 (2017) 149-159.
    [392] K.S. Rawat, A. Mahata, B. Pathak, Thermochemical and electrochemical CO2 reduction on octahedral Cu nanocluster: role of solvent towards product selectivity, Journal of Catalysis, 349 (2017) 118-127.
    [393] N.J. Brown, A. García-Trenco, J. Weiner, E.R. White, M. Allinson, Y. Chen, P.P. Wells, E.K. Gibson, K. Hellgardt, M.S.P. Shaffer, C.K. Williams, From organometallic zinc and copper complexes to highly active colloidal catalysts for the conversion of CO2 to methanol, ACS Catalysis, 5 (2015) 2895-2902.
    [394] B. Mei, A. Pougin, J. Strunk, Influence of photodeposited gold nanoparticles on the photocatalytic activity of titanate species in the reduction of CO2 to hydrocarbons, Journal of Catalysis, 306 (2013) 184-189.
    [395] K.R. Raghupathi, R.T. Koodali, A.C. Manna, Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles, Langmuir, 27 (2011) 4020-4028.
    [396] T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, A.E. Nel, Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties, ACS Nano, 2 (2008) 2121-2134.
    [397] A. Thill, O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, A.M. Flank, Cytotoxicity of CeO2 nanoparticles for Escherichia coli. physico-chemical insight of the cytotoxicity mechanism, Environmental Science & Technology, 40 (2006) 6151-6156.
    [398] L.V. Bora, R.K. Mewada, Visible/solar light active photocatalysts for organic effluent treatment: fundamentals, mechanisms and parametric review, Renewable and Sustainable Energy Reviews, 76 (2017) 1393-1421.
    [399] D. Li, W. Shi, Recent developments in visible-light photocatalytic degradation of antibiotics, Chinese Journal of Catalysis, 37 (2016) 792-799.
    [400] S.C. Riha, D.C. Johnson, A.L. Prieto, Cu2Se nanoparticles with tunable electronic properties due to a controlled solid-state phase transition driven by copper oxidation and cationic conduction, Journal of the American Chemical Society, 133 (2011) 1383-1390.
    [401] J. Xu, X. Yang, Q.-D. Yang, X. Huang, Y. Tang, W. Zhang, C.-S. Lee, Controllable synthesis of bandgap-tunable CuSxSe1-x nanoplate alloys, Chemistry – An Asian Journal, 10 (2015) 1490-1495.
    [402] Q. Wang, W.L. Li, H.Y. Zou, H. Liu, C.Z. Huang, Nonstoichiometric Cu2-xSe nanocrystals in situ produced on the surface of carbon nanotubes for ablation of tumor cells, New Journal of Chemistry, 40 (2016) 6315-6324.
    [403] M. Pal, N.R. Mathews, E. Sanchez-Mora, U. Pal, F. Paraguay-Delgado, X. Mathew, Synthesis of CuS nanoparticles by a wet chemical route and their photocatalytic activity, Journal of Nanoparticle Research, 17 (2015) 301.
    [404] C. Xu, S. Peng, C. Tan, H. Ang, H. Tan, H. Zhang, Q. Yan, Ultrathin S-doped MoSe2 nanosheets for efficient hydrogen evolution, Journal of Materials Chemistry A, 2 (2014) 5597-5601.
    [405] W.L. Li, S.Q. Lie, Y.Q. Du, X.Y. Wan, T.T. Wang, J. Wang, C.Z. Huang, Hydrophilic Cu2-xSe/reduced graphene oxide nanocomposites with tunable plasmonic properties and their applications in cellular dark-field microscopic imaging, Journal of Materials Chemistry B, 2 (2014) 7027-7033.
    [406] Y.-Q. Liu, F.-X. Wang, Y. Xiao, H.-D. Peng, H.-J. Zhong, Z.-H. Liu, G.-B. Pan, Facile microwave-assisted synthesis of klockmannite CuSe nanosheets and their exceptional electrical properties, Scientific Reports, 4 (2014) 5998.
    [407] Q.W. Shu, C.M. Li, P.F. Gao, M.X. Gao, C.Z. Huang, Porous hollow CuS nanospheres with prominent peroxidase-like activity prepared in large scale by a one-pot controllable hydrothermal step, RSC Advances, 5 (2015) 17458-17465.
    [408] J. Fester, M. García-Melchor, A.S. Walton, M. Bajdich, Z. Li, L. Lammich, A. Vojvodic, J.V. Lauritsen, Edge reactivity and water-assisted dissociation on cobalt oxide nanoislands, Nature Communications, 8 (2017) 14169.
    [409] Y. Li, Z. Wei, F. Gao, L. Kovarik, R.A.L. Baylon, C.H.F. Peden, Y. Wang, Effect of oxygen defects on the catalytic performance of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol, ACS Catalysis, 5 (2015) 3006-3012.

    無法下載圖示 全文公開日期 2022/06/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE