簡易檢索 / 詳目顯示

研究生: 王俊堯
Chun-Yao Wang
論文名稱: 控制碳氮結構於石墨型氮化碳於光催化降解四環黴素以及分解水之應用
Structural Engineering for Graphitic Carbon Nitride for Photocatalytic Tetracycline Degradation and H2 Evolution
指導教授: 胡哲嘉
Che-Chia Hu
口試委員: 游文岳
Wen-Yueh Yu
林子仁
tjlin@mail.ntust.edu.tw
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 80
中文關鍵詞: 石墨型氮化碳光觸媒抗生素降解分解水產氫
外文關鍵詞: antibiotics
相關次數: 點閱:151下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著醫療衛生的進步與發展,抗生素在我們生活中扮演著非常重要的角色。然而,由於氾濫的使用,如何去有效地處理水資源中抗生素的殘留便成為一個值得探討的議題。除此之外,自19世紀工業革命以來,人類對於能源消耗的需求逐漸增大,主要仰賴於石油、煤炭、天然氣等化石燃料。然而,化石燃料具有排放二氧化碳造成空氣污染和能源枯竭等問題。作為替代能源之一的氫能,具有無毒性、高能量密度以及高豐富資源性等特性使其成為最具有潛能的替代能源之一。綜合以上兩項議題,考量到成本、能源消耗以及對環境友善等特性,本研究選擇使用光催化法同時應用於降解四環黴素以及產氫兩大環境與能源的問題。
    石墨型氮化碳具有高豐富資源性、無毒性、高化學穩定性以及使用可見光的能力使它成為光觸媒領域備受關注的焦點。近年,不同碳氮比例的石墨型氮化碳g-C3N4, C3N5與C3N6陸續地被發表於文獻中,並應用於各種光催化領域。這些石墨型氮化碳具有不同的碳氮結構,可能產生不一樣的光催化活性。因此,本研究即是透過前聚物法,分別將其三種不同的前驅物(Melamine, 3-amino-1H-1,2,4-triazole, 5-amino-1H-tetrazole)進行二次鍛燒合成奈米結構之石墨型氮化碳。另外,本研究亦將三種前驅物互相混合製備新穎材料,期望產生結構不同的石墨型氮化碳以提升材料的光催化活性。
    結果表明,由前驅物3-amino-1H-1,2,4-triazole所合成的材料具有最強的共軛作用力、最佳的電流效應。但是,由於其穩定的電子結構,不易將電子激發至材料表面。前驅物5-amino-1H-tetrazole所合成的石墨型氮化碳則是因為存在大量的缺陷點而具有最強的吸光性質,但不穩定且複雜的能帶結構依舊相當程度地限制其光催化活性。因此,透過前驅物Melamine所合成的樣品具有較高的比表面積以及較為合適的化學結構,在光催化降解四環黴素與產氫實驗中都能展現出較佳的效率。除此之外,我們所合成的新穎材料,結合了三種石墨型氮化碳的特性。於降解實驗中展現良好的發展潛能。然而,在產氫實驗中卻受限於價帶的氧化電位,效果受到顯著地抑制。


    With the development of medical industry, antibiotics have played important roles in our life. Being one of the most widely used antibiotics, tetracycline has the formidable ability of bacteriostasis. It is urgent to deal with the residue of tetracycline in the discharged wastewater. Furthermore, since the Industrial Revolution in the 19th century, human demand for energy consumption has been gradually increasing, mainly relying on fossil fuels such as oil, coal, and natural gas. However, fossil fuels cause some problems such as emissions of carbon dioxide, air pollution, and energy depletion. Hydrogen has the characteristics properties of emission-free, high energy density, and high resource abundance, making it one of the most potential alternative energies. Solar-irradiated photocatalysis is extensively explored to decompose contaminator and produce hydrogen energy.
    Among different photocatalysts, graphitic carbon nitride is a promising visible light-driven material with the advantages of earth-abundance nature, nontoxicity, chemical stability. In our study, the three various precursors including Melamine, 3-amino-1H-1,2,4-triazole and 5-amino-1H-tetrazole corresponding to g-C3N4, C3N5, and C3N6 to synthesize carbon nitride was controlled for structural engineering. Our results indicated that the sample synthesized from 3-amino-1H-1,2,4-triazole exhibits the high conjugation and the enhanced electronic current density. However, due to its stable electronic structure, it is difficult to excite electrons to the surface of the material. The material prepared from 5-amino-1H-tetrazole, on the other hand, has the strongest light absorption due to large amount of defect sites. Nevertheless, its unstable and complex band structure still significantly limits its photocatalytic activity. Therefore, the graphitic carbon nitride calcined from melamine with relatively suitable chemical structure and higher specific surface area exhibits better efficiency in both photocatalytic degradation of tetracycline and hydrogen evolution. Interestingly, the novel material synthesized by the mixture of three precursors in this study displays the characteristic properties of three graphitic carbon nitrides and shows great potential for degradation experiments. Even so, its performance is still obviously limited by the oxidation potential of the valence band in hydrogen evolution applications.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 IX 第一章 緒論 1 第二章 文獻回顧 4 2.1 水汙染簡介 4 2.1.1 抗生素簡介 4 2.1.2 四環黴素常見的處理方法 5 2.2 能源發展簡介 8 2.2.1 化石燃料 8 2.2.2 再生能源 8 2.2.3 氫能源 9 2.3 光觸媒 11 2.3.1 碳、氮元素改質 14 2.3.2 不同碳氮比例之石墨型氮化碳 17 第三章 實驗方法與檢測儀器 19 3.1 實驗藥品及儀器 19 3.1.1 實驗藥品、氣體 19 3.1.2 實驗儀器 20 3.2 實驗步驟 21 3.2.1 石墨型氮化碳製備 21 3.2.2 光催化降解四環黴素 22 3.2.3 光沉積附載共觸媒 Pt於材料 22 3.2.4 光催化分解水產氫實驗 23 3.2.5 電化學分析實驗 24 3.3 儀器分析原理 25 第四章 結果與討論 30 4.1 晶相結構分析 30 4.2 化學結構分析 31 4.3 表面結構分析 35 4.4 光學性質分析 37 4.5 電化學性質分析 39 4.6 光催化降解實驗 42 4.7 光催化產氫實驗 44 第五章 結論 48 參考文獻 50 附錄一 58 附錄二 66 附錄三 67

    [1] How Much of Earth’s Water is Stored in Glaciers? (USGS)
    [2] BP Statistical Review of World Energy, 2021.
    [3] R. Gothwal, T. Shashidhar, Antibiotic pollution in the environment: a review, Clean: Soil, Air, Water, 2015, 43, 4, 479-489.
    [4] B. Halling-Sørensen, Algal toxicity of antibacterial agents used in intensive farming, Chemosphere, 2000, 40, 7, 731-739.
    [5] R. Daghrir, P. Drogui, Tetracycline antibiotics in the environment: a review, Environ. Chem. Lett., 2013, 11, 209-227.
    [6] X. Liu, L. Zhang, X. Cui, Q. Zhang, W. Hu, J. Du, H. Zeng, Q. Xu, 2D Material nanofiltration membranes: from fundamental understandings to rational design, Adv. Sci., 2021, 8, 23, 2102493.
    [7] S. Z. Li, X. Y. Li, D. Z. Wang, Membrane (RO-UF) filtration for antibiotic wastewater treatment and recovery of antibiotics, Sep. Purif. Technol., 2004, 34, 1-3, 109-114.
    [8] V. Homem, L. Santos, Degradation and removal methods of antibiotics from aqueous matrices – A review, J. Environ. Manage., 2011, 92, 10, 2304-2347.
    [9] E. Worch, Adsorption technology in water treatment, 2021.
    [10] K. J. Choi, S. G. Kim, S. H. Kim, Removal of antibiotics by coagulation and granular activated carbon filtration, J. Hazard. Mater., 2008, 151, 1, 38-43.
    [11] G. Sharma, S. Sharma, A. Kumar, C. W. Lai, M. Naushad, Shehnaz, J. Iqbal, F. J. Stadler, Activated carbon as superadsorbent and sustainable material for diverse applications, Adsorpt. Sci. Technol., 2022, 21.
    [12] J. Benner, D. E. Helbling, H. P. E. Kohler, J. Wittebol, E. Kaiser, C. Prasse, T. A. Ternes, C. N. Albers, J. Aamand, B. Horemans, D. Springael, E. Walravens, N. Boon, Is biological treatment a viable alternative for micropollutant removal in drinking water treatment processes?, Water Res., 2013, 47, 16, 5955-5976.
    [13] Y. Dai, M. Liu, J. Lia S. Yang, Y. Sun, Q. Sun, W. Wang, L. Lu, K. Zhang, J. Xu, W. Zheng, Z. Hu, Y. Yang, Y. Gao, Z. Liu, A review on pollution situation and treatment methods of tetracycline in groundwater, Sep. Sci. Technol., 2020, 55, 5, 1005-1021.
    [14] G. X. Wang, D. Huang, J. H. Ji, C. Völker, F. R. Wurm, Seawater-degradable polymers—fighting the marine plastic pollution, Adv. Sci., 2021, 8, 1, 2001121.
    [15] G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 2004, 38, 1, 11-41.
    [16] M. Miyata, I. Ihara, G. Yoshid, K. Toyod, K. Umetsu, Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry, Water Sci. Technol., 2011, 63, 3, 456-461.
    [17] H. Olvera. Vargas, X. Zheng, O. G. Rodriguez, O. Lefebvre, Sequential “electrochemical peroxidation – Electro-Fenton” process for anaerobic sludge treatment, Water Res., 2019, 154, 277-286.
    [18] D. Bahnemann, Photocatalytic water treatment: solar energy applications, Sol. Energy, 2004, 77, 5, 445-459.
    [19] S. Jiao, S. Zheng, D. Yin, L. Wang, L. Chen, Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria, Chemosphere, 2008, 73, 3, 377-382.
    [20] C. C. Chen, W. H. Ma, J, C, Zhao, Semiconductor-mediated photodegradation of pollutants under visible-light irradiation, Chem. Soc. Rev., 2010, 39, 11, 4206-4219.
    [21] International Energy Agency, IEA 2020.
    [22] Global Wind Energy Council, Global Wind Report 2022.
    [23] International Hydropower Association, Hydropower Status Report 2022.
    [24] International Renewable Energy Agency, Geothermal Energy 2021.
    [25] International Energy Agency, The Future of Hydrogen 2021.
    [26] T. D. S. Veras, T. S. Mozer, D. D. C. R. M. D. Santos, A. D. S. César, Hydrogen: trends, production and characterization of the main process worldwide, Int. J. Hydrogen Energy, 2017, 42, 4, 2018-2033.
    [27] I. Dincer, C. Acar, Review and evaluation of hydrogen production methods for better sustainability, Int. J. Hydrogen Energy, 2015, 40, 34, 11094-11111.
    [28] J. A. Turner, Sustainable hydrogen production, Science, 2004, 305, 5686, 972-974.
    [29] P. C. Hallenbeck, D. Ghosh, Advances in fermentative biohydrogen production: the way forward?, Trends Biotechnol., 2009, 27, 5, 287-297.
    [30] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972, 238, 37-38.
    [31] T. Bak, J. Nowotny, M. Rekas, C. C. Sorrell, Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects, Int. J. Hydrogen Energy, 2002, 27, 10, 991-1022. [32] A. Dhakshinamoorthy, Z. Li, H. Garcia, Catalysis and photocatalysis by metal organic frameworks, Chem. Soc. Rev., 2018, 47, 8134-8172.
    [33] T. F. Yeh, J. Cihlář, C. Y. Chang, C. Cheng, H. Teng, Roles of graphene oxide in photocatalytic water splitting, Mater. Today, 2013, 16, 3, 78-84. [34] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J. O. Müller, R. Schlögl, J. M. Carlsson, Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts, J. Mater. Chem., 2008, 18, 4893-4908.
    [35] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light, ACS Catal., 2014, 4, 3, 774-780.
    [36] C. C. Hu, W. L. Chiu, C. Y. Wang, V. H. Nguyen, Freeze-dried dicyandiamide-derived g-C3N4 as an effective photocatalyst for H2 generation, J. Taiwan Inst. Chem. Eng., 2021, 129, 128-134.
    [37] S. C. Yan, Z. S. Li, Z. G. Zou, Photodegradation performance of g-C3N4 fabricated by directly heating melamine, Langmuir, 2009, 25, 17, 10397-10401.
    [38] F. Dong, L. W. Wu, Y. J. Sun, M. Fu, Z. B. Wu, S. C. Lee, Efficient synthesis of polymeric g-C3N4 layered materials as novel efficient visible light driven photocatalysts, J. Mater. Chem., 2011, 21, 15171-15174.
    [39] Y. W. Zhang, J. H. Liu, G. Wu, W. Chen, Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production, Nanoscale, 2012, 4, 5300-5303.
    [40] N. Tian, Y. Zhang, X. Li, K. Xiao, X. Du, F. Dong, G. I. N. Waterhouse, T. Zhang, H. Huang, Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution, Nano Energy, 2017, 38, 72-81.
    [41] K. Zhang, L. Y. Wang, X. W. Sheng, M. Ma, M. S. Jung, W. J. Kim, H. Lee, J. H. Park, Tunable bandgap energy and promotion of H2O2 oxidation for overall water splitting from carbon nitride nanowire bundles, Adv. Energy Mater., 2016, 6, 11, 1502352.
    [42] X. C. Wang, X. F. Chen, A. Thomas, X. Z. Fu, M. Antonietti, Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material, Adv. Mater., 2009, 21, 16, 1609-1612.
    [43] S. Patnaik, K. K. Das, A. Mohanty, K. Parida, Enhanced photo catalytic reduction of Cr (VI) over polymer-sensitized g-C3N4/ZnFe2O4 and its synergism with phenol oxidation under visible light irradiation, Catal. Today, 2018, 315, 52-66.
    [44] Y. Zheng, L. H. Lin, B. Wang, X. C. Wang, Graphitic carbon nitride polymers toward sustainable photoredox catalysis, Angew. Chem. Int. Ed., 2015, 54, 44, 12868-12884.
    [45] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, M. Antonietti, Nature, 2009, 8, 76-80.
    [46] C. Portet, G. Yushin, Y. Gogotsi, Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors, Carbon, 2007, 45, 13, 2511-2518.
    [47] Y, Shi, Q. Zhao, J. Li, G. Gao, J. Zhi, Onion-liked carbon-embedded graphitic carbon nitride for enhanced photocatalytic hydrogen evolution and dye degradation, Appl. Catal., B, 2022, 308, 121216.
    [48] T. Huang, J. Chen, L. Zhang, A. Khataee, Q. Han, X. Liu, J. Sun, J. Zhu, S. Pan, X. Wang, Y. Fu, Precursor-modified strategy to synthesize thin porous amino-rich graphitic carbon nitride with enhanced photocatalytic degradation of RhB and hydrogen evolution performances, Chin. J. Catal., 2022, 43, 2, 497-506.
    [49] H. Li, F. Li, Z. Wang, Y. Jiao, Y. Liu, P. Wang, X. Zhang, X. Qin, Y. Dai,
    B. Huang, Fabrication of carbon bridged g-C3N4 through supramolecular self-assembly for enhanced photocatalytic hydrogen evolution, Appl. Catal., B, 2018, 229, 114-120.
    [50] P. Niu, M. Qiao, Y. Li, L. Huang, T. Zhai, Distinctive defects engineering in graphitic carbon nitride for greatly extended visible light photocatalytic hydrogen evolution, Nano Energy, 2018, 44, 73-81.
    [51] J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, J. Mater. Chem. A, 2015, 3, 13819-13826.
    [52] I. Y. Kim, S. Kim, S. Premkumar, J. H. Yang, S. Umapathy, A. Vinu, Thermodynamically stable mesoporous C3N7 and C3N6 with ordered structure and their excellent performance for oxygen reduction reaction, 2020, 16, 12, 1903572.
    [53] D. H. Park, K. S. Lakhi, K. Ramadass, M. K. Kim, S. N. Talapaneni, S. Joseph, U. Ravon, K. Al-Bahily, A. Vinu, Energy efficient synthesis of ordered mesoporous carbon nitrides with a high nitrogen content and enhanced CO2 capture capacity, Chem. - Eur. J., 2017, 23, 45, 10753-10757.
    [54] S. N. Talapaneni, G. P. Mane, D. H. Park, K. S. Lakhi, K. Ramadass, S. Joseph, W. M. Skinner, U. Ravon, K. Al-Bahilyb, A. Vinu, Diaminotetrazine based mesoporous C3N6 with a well-ordered 3D cubic structure and its excellent photocatalytic performance for hydrogen evolution, J. Mater. Chem. A., 2017, 5, 18183-18192.
    [55] M. Wang, F. Ma, Z. Wang, D. Hu, X. Xu, X. Hao, Graphitic carbon nitride, a saturable absorber material for the visible waveband, Photonics Res., 2018, 6, 4, 307-313.
    [56] J. J. Wu, N. Li, H. B. Fang, X. Li, Y. Z. Zheng, X. Tao, Nitrogen vacancies modified graphitic carbon nitride: scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution, Chem. Eng. J., 2019, 358, 20-29.
    [57] H. Wang, M. Li, Q. Lu, Y. Cen, Y. Zhang, S. Yao, A mesoporous rod-like g-C3N5 synthesized by salt-guided strategy: as a superior photocatalyst for degradation of organic pollutant, ACS Sustainable Chem. Eng. 2019, 7, 1, 625-631.
    [58] Y. Zhou, L. Zhang, W. Huang, Q. Kong, X. Fan, M. Wang, J. Shi, N-doped graphitic carbon-incorporated g-C3N4 for remarkably enhanced photocatalytic H2 evolution under visible light, Carbon, 2016, 99, 111-117.
    [59] H. Wang, M. Li, H. Li, Q. Lu, Y. Zhang, S. Yao, Porous graphitic carbon nitride with controllable nitrogen vacancies: as promising catalyst for enhanced degradation of pollutant under visible light, Mater. Des., 2019, 162, 210-218.
    [60] K. Dave, K. H. Park, M. Dhayal, Characteristics of ultrasonication assisted assembly of gold nanoparticles in hydrazine reduced graphene oxide, RSC Adv., 2015, 5, 107348-107354.
    [61] G. Liu, M. Xue, Q. Liu, H. Yang, Y. Zhou, Facile synthesis of C-doped hollow spherical g-C3N4 from supramolecular self-assembly for enhanced photoredox water splitting, Int. J. Hydrogen Energy, 2019, 44, 47, 25671-25679.
    [62] B. Gao, J. Wang, M. Dou, X. Huang, X. Yu, Novel nitrogen-rich g-C3N4 with adjustable energy band by introducing triazole ring for cefotaxime removal, Sep. Purif. Technol., 2020, 241, 116576.
    [63] F. Yang, D. Liu, Y. Li, L. Cheng, J. Ye, Salt-template-assisted construction of honeycomb-like structured g-C3N4 with tunable band structure for enhanced photocatalytic H2 production, Appl. Catal., B, 2019, 240, 67-71.
    [64] V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, B. V. Lotsch, Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites, Nat. Commun., 2016, 7, 12165.
    [65] J. Zou, Y. Cao, Y. Sun, D. Mao, J. Fang, W. Deng, X. He, J. Jiang, A comparative study of the photoconduction, photocatalytic and electrocatalytic performance of g-C3N4/ZnS/CuS heterojunctions with different morphologies, Catal. Lett., 148, 3342-3348.
    [66] W. Li, Z. Wei, K. Zhu, W. Wei, J. Yang, J. Jing, D. L. Phillips, Y. Zhu, Nitrogen-defect induced trap states steering electron-hole migration in graphite carbon nitride, Appl. Catal., B, 2022, 306, 121142.
    [67] C. C. Hu, Z. T. Liu, P. C. Yang, Y. X. Ding, K. Y. A. Lin, B. S. Nguyen, Self-assembly L-cysteine based 2D g-C3N4 nanoflakes for light-dependent degradation of rhodamine B and tetracycline through photocatalysis, J. Taiwan Inst. Chem. Eng., 2021, 123, 219-227. [68] C. Cheng, J. Shi, L. Wen, C. L. Dong, Y. C. Huang, Y. Zhang, S. Zong, Z. Diao, S. Shen, L. Guo, Disordered nitrogen-defect-rich porous carbon nitride photocatalyst for highly efficient H2 evolution under visible-light irradiation, Carbon, 2021, 181, 193-203.
    [69] Q. Liang, Z. Li, Z. H. Huang, F. Kang, Q. H. Yang, Holey graphitic carbon nitride nanosheets with carbon vacancies for highly improved photocatalytic hydrogen production, Adv. Funct. Mater., 2015, 25, 44, 6885-6892.
    [70] L. Ye, D. Wang, S. Chen, Fabrication and enhanced photoelectrochemical performance of MoS2/S-Doped g-C3N4 heterojunction film, ACS Appl. Mater. Interfaces, 2016, 8, 8, 5280-5289.
    [71] S. Fujii, T. Morita, S. Kimura, Photoinduced electron transfer in thin layers composed of fullerene-cyclic peptide conjugate and pyrene derivative, Langmuir, 2008, 24, 10, 5608–5614.
    [72] X. Chen, R. Shi, Q. Chen, Z. Zhang, W. Jiang, Y. Zhu, T. Zhang, Three-dimensional porous g-C3N4 for highly efficient photocatalytic overall water splitting, Nano Energy, 2019, 59, 644-650.
    [73] S. Bajracharya, A. ElMekawy, S. Srikanth, D. Pant, Cathodes for microbial fuel cells, Microbial Electrochemical and Fuel Cells Fundamentals and Applications, 2016, 179-213.
    [74] A. A. Tessema, C. M. Wu, K. G. Motora, Highly efficient solar light driven g-C3N4@Cs0.33WO3 heterojunction for the photodegradation of colorless antibiotics, ACS Omega, 2022, 7, 43, 38475-38486.
    [75] L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Yu, D. Mo, H. Wang, Z. Xiao, C. Zhou, J. Colloid Interface Sci., 2019, 536, 17-29.
    [76] M. A. Mohamed, M. F. M. Zain, L. J. Minggu, M. B. Kassim, J. Jaafar, N. A. S. Amin, Z. A. M. Hir, M. S. Rosmi, Enhancement of visible light photocatalytic hydrogen evolution by bio-mimetic C-doped graphitic carbon nitride, Int. J. Hydrogen Energy, 2019, 44, 26, 13098-13105.
    [77] L. Zhang, Z. Jin, S. Huang, X. Huang, B. Xu, L. Hu, H. Cui, S. Ruan, Y. J. Zeng, Bio-inspired carbon doped graphitic carbon nitride with booming photocatalytic hydrogen evolution, Appl. Catal., B, 2019, 246, 61-71.
    [78] Q. Yang, W. Yang, F. He, K. Liu, H. Cao, H. Yan, One-step synthesis of nitrogen-defective graphitic carbon nitride for improving photocatalytic hydrogen evolution, J. Hazard. Mater., 2021, 410, 124594.
    [79] L. Luo, K. Wang, Z. Gong, H. Zhu, J. Ma, L. Xiong, J. Tang, Bridging-nitrogen defects modified graphitic carbon nitride nanosheet for boosted photocatalytic hydrogen production, Int. J. Hydrogen Energy, 2021, 46, 53, 27014-27025.
    [80] Y. Zhang, Z. Huang, C. L. Dong, J. Shi, C. Cheng, X. Guan, S. Zong, B. Luo, Z. Cheng, D. Wei, Y. C. Huang, S. Shen, L. Guo, Synergistic effect of nitrogen vacancy on ultrathin graphitic carbon nitride porous nanosheets for highly efficient photocatalytic H2 evolution, Chem. Eng. J., 2022, 431, 2, 134101.
    [81] B. Zhao, D. Gao, Y. Liu, J. Fan, H. Yu, Cyano group-enriched crystalline graphitic carbon nitride photocatalyst: ethyl acetate-induced improved ordered structure and efficient hydrogen-evolution activity, J. Colloid Interface Sci., 2022, 608, 2, 1268-1277.
    [82] L. Mao, B. Lu, J. Shi, Y. Zhang, X. Kang, Y. Chen, H. Jin, L. Guo, Rapid high-temperature hydrothermal post treatment on graphitic carbon nitride for enhanced photocatalytic H2 evolution, Catal. Today, 2023, 409, 94-102.
    [83] Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama, T. Maeda, Y. Sakata, S. Okunaka, H. Tokudome, M. Katayama, S. Akiyama, H. Nishiyama, Y. Inoue, T. Takewaki, T. Setoyama, T. Minegishi, T. Takata, T. Yamada, K. Domen, A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation, Joule, 2018, 2, 3, 509-520.
    [84] Y. Hong, Y. Meng, G. Zhang, B. Yin, Y. Zhao, W. Shi, C. Li, Facile fabrication of stable metal-free CQDs/g-C3N4 heterojunctions with efficiently enhanced visible-light photocatalytic activity, Sep. Purif. Technol., 2016, 171, 229-237.
    [85] H. Wang, Y. Wu, M. Feng, W. Tu, T. Xiao, T. Xiong, H. Ang, X. Yuan, J. W. Chew, Visible-light-driven removal of tetracycline antibiotics and reclamation of hydrogen energy from natural water matrices and wastewater by polymeric carbon nitride foam, Water Res., 2018, 144, 215-225.
    [86] L. Jiang, X. Yuan, G. Zeng, J. Liang, Z. Wu, H. Yu, D. Mo, H. Wang, Z. Xiao , C. Zhou, Nitrogen self-doped g-C3N4 nanosheets with tunable band structures for enhanced photocatalytic tetracycline degradation, J. Colloid Interface Sci., 2019, 536, 17-29.
    [87] Y. Shi, L. Li, Z. Xu, H. Sun, F. Guo, W. Shi, One-step simple green method to prepare carbon-doped graphitic carbon nitride nanosheets for boosting visible-light photocatalytic degradation of tetracycline, J. Appl. Chem. Biotechnol., 2021, 96, 9, 2426-2435.
    [88] H. Fattahimoghaddam, T. M. Shamsabadi, B. K. Lee, Efficient photodegradation of rhodamine B and tetracycline over robust and green g-C3N4 nanostructures: supramolecular design, J. Hazard. Mater., 2021, 403, 123703.
    [89] Q. Shen, L. Wei, R. Bibi, K. Wang, D. Hao, J. Zhou, N. Li, Boosting photocatalytic degradation of tetracycline under visible light over hierarchical carbon nitride microrods with carbon vacancies, J. Hazard. Mater., 2021, 413, 125376.
    [90] C. Du, Z. Zhang, S. Tan, G. Yu, H. Chen, L. Zhou, L. Yu, Y. Su, Y. Zhang, F. Deng, S. Wang, Construction of Z-scheme g-C3N4 / MnO2 /GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation, Environ. Res., 2021, 200, 111427.
    [91] J. Xing, X. Huang, X. Yong, X. Li, J. Li, J. Wang, N. Wang, H. Hao, N-doped synergistic porous thin-walled g-C3N4 nanotubes for efficient tetracycline photodegradation, Chem. Eng. J., 2023, 445, 140570.

    無法下載圖示 全文公開日期 2033/08/10 (校內網路)
    全文公開日期 2033/08/10 (校外網路)
    全文公開日期 2033/08/10 (國家圖書館:臺灣博碩士論文系統)
    QR CODE