簡易檢索 / 詳目顯示

研究生: 呂孟謙
Meng-Chien Lu
論文名稱: 預浸料薄化對鉚接至3D列印鋁合金部件之偽延性CFRP於開孔敏感性和承載行為之影響
Effect of reducing prepreg size on notch sensitivity and load-bearing behavior of pseudo-ductile CFRP riveted to 3D printed aluminum alloy component
指導教授: 何羽健
Yu-Chien Ho
口試委員: 鄭逸琳
蔡榮庭
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 147
中文關鍵詞: 薄型預浸料碳纖維強化聚合物偽延性開孔敏感性積層製造接合承載行為破壞
外文關鍵詞: Thin-ply, Carbon Fiber Reinforced Polymer (CFRP), Pseudo-ductility, Notch Sensitivity, Additive Manufacturing, Joining, Load-bearing, Fracture
相關次數: 點閱:287下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 碳纖維強化聚合物具有強度高質量輕的特性,而鋁合金則是質量輕且具良好的可加工性,兩者常於輕量化構造設計中廣泛合併應用,其中薄層碳纖維預浸料通常只有標準層預浸料之30%~50%厚,且薄層設計的碳纖維層壓板可更有效抵抗受力後應力集中所造成的致災性損壞,在追求輕量化目的下更確保其強度,具比標準層預浸料更靈活的鋪層設計應用。因此本研究將標準型[0°/90°]8S碳纖維層壓板之90˚層混合引入單向薄型預浸料(Unidirectional Thin-ply Prepreg),以檢視混合型[0°/90°x2]8S碳纖維層壓板在單向纖維方向垂直於軸向力之下,90˚層對比標準型薄化後之影響;並進一步鍛壓鉚接開孔碳纖維層壓板及3D列印鋁合金部件為Single-lap輕結構件,為分析比較標準型與混合型碳纖維層壓板之承載能力(Load-bearing)及其破壞行為。首先,對此兩款碳纖維層壓板進行開孔拉伸(Open-hole Tension)試驗,在都呈現偽延性(Pseudo-ductility)特徵下得混合型碳纖維層壓板在偽延性的表現上優於標準型;且兩者的開孔敏感性(Notch Sensitivity)皆不高,即對開孔損壞的表現不敏感,甚或是混合不同厚度預浸料所製備之疊層板亦不受影響;此外,藉由各階段性的拉伸,探討開孔拉伸時碳纖維層間的損壞演化,釐清標準型碳纖維層壓板在承受單軸開孔拉伸時將橫向層(90˚層)薄化所改變之破壞抵抗能力。另一方面,有限元素輔助分析接合製程以建置鉚接開孔碳纖維層壓板於3D列印鋁合金零件上之實驗,由Single-lap構件發現鋁合金於塑性成形接合過程中產生一定程度的側擠進而導致纖維層產生波浪紋,量化側擠造成的擴孔尺寸,與原鉚接頭直徑之設計值定義為干涉量,結果闡明混合型碳纖維層壓板在搭接過程中具有吸收鍛壓力之優勢。最後,將鉚接後之Single-lap構件進行關鍵階段之承載拉伸試驗,實驗結果得知混合型之偽延性較標準型高,而真實承載應力的展現亦優於標準型2.61%;綜合微觀組織的破壞裂痕形貌亦證明混合型碳纖維層壓板在吸收能量能力及偽延性特質較佳的情況下,提升整體承載行為之表現。


    The way to widely used in lightweight structural design by applying carbon fiber reinforced polymer (CFRP) with its high strength-to-weight ratio and good processability aluminum light alloy. Thin-ply carbon fiber prepreg is usually only 30%~50% thickness than standard prepreg, and a CFRP laminate with thin-ply design performing effectively resist catastrophic damage caused by stress concentration after being subjected load-bearing, further to pursue the lightweight structure as well as to ensure its strength, thus it has more flexible to lay-up design and application than standard one. In this study, the 90˚-layer of standard [0°/90°]8S CFRP laminate was designed with unidirectional (UD) thin-ply prepreg, the hybrid [0°/90°x2]8S CFRP laminate for investigating the influence of 90°-layer thinning on mechanical properties of standard CFRP laminate under the state of UD thin-ply prepreg perpendicular to the axial force. Further, the open-hole CFRP laminate was riveted to 3D-printed aluminum alloy component through joining by forming process. The Single-lap lightweight structures were fabricated for testing the load-bearing capacity and failure behavior between standard and hybrid CFRP laminates. Initially, the open-hole tension tests were carried out on the standard and hybrid CFRP laminates, and the hybrid CFRP laminate held the pseudo-ductility superior to the standard one. Also, the notch sensitivities of both types were examined, in which the steady sensitivity to the damage response even the hybrid CFRP laminate prepared by mixing different thicknesses of prepregs was performed. In addition, the damage evolution for describing the damage resistance of standard CFRP laminate with thinning the transverse layer (90˚-layer) while subjected to uniaxial open-hole tension was clarified as well. On the other hand, finite element-assisted analysis of the joining process to construct riveting of additively manufactured aluminum alloy part to perforated CFRP laminate was presented. Joint section of riveted Single-lap was cut for quantifying interference after the joining process, which was defined hole expansion by lateral interference / original diameter, besides, the wave characteristics were observed in layers of CFRP laminate. Subsequently, the hybrid CFRP laminate performed better energy absorption from forging pressure during the joining process was elucidated. Finally, the riveted Single-lap systems were subjected to a load-bearing tensile tests at various critical stages. The experimental results shown that the pseudo-ductility of the hybrid type contributed better than that of the standard type, and the performance of the true load-bearing stress offered 2.61% higher than that of the standard type overall. Hence, the damage (crack morphology) of the comprehensive microstructure evolution, the hybrid CFRP laminate possessed the advantages of energy absorption capacity and pseudo-ductility for enhancing the total load-bearing behavior compared to the standard one.

    摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2文獻回顧 1.3研究動機與目的 1.4本文架構 第二章 研究方法及實驗步驟 2.1碳纖維強化聚合材料介紹 2.1.1標準型與混合型之碳纖維層壓板設計 2.1.2碳纖維層壓板熱壓製程 2.1.3碳纖維層壓板之基本性質 2.2開孔拉伸(Open-hole Tension, OHT)試驗 2.3金屬積層製造部件 2.3.1積層製造鋁矽合金(AlSi10Mg)部件 2.3.2高溫壓縮變形試驗 2.4有限元素分析輔助鉚接成形接合之模具設計 2.4.1有限元素模擬模型建立與收斂性測試 2.4.2鍛壓模具之塑性成形接合模擬結果 第三章 碳纖維疊層板之偽延性與開孔敏感性 3.1開孔標準型碳纖維與混合型碳纖維之偽延性 3.2碳纖維層壓板之開孔敏感性 3.3開孔碳纖維強化聚合材料之損壞演化 第四章 碳纖維搭接件鍛壓實驗結果及驗證 4.1塑性成形接合之實驗設置與驗證 4.1.1模具設置與試片加熱 4.1.2實驗驗證 4.2塑性成形接合之結果分析 4.2.1塑性成形接合之試片外觀 4.2.2機械式鉚接/側擠/干涉接合之差異(標準/混合) 第五章 碳纖維搭接件之承載(Load-bearing)分析 5.1鉚接結合試片承載能力試驗 5.1.1碳纖維搭接板承載能力之比較 5.1.2承載損壞演化 5.1.3破壞模式與薄型層強化之機制 第六章 結論 參考文獻

    [1] Kesarwani, S. (2017). Polymer composites in aviation sector. International Journal of Engineering Research and Technology, 6(06), 518-525.
    [2] Friedrich, K., and Almajid, A. A. (2013). Manufacturing aspects of advanced polymer composites for automotive applications. Applied Composite Materials, 20, 107-128.
    [3] Chen, H., Patel, S., Vlasea, M., and Zou, Y. (2022). Enhanced tensile ductility of an additively manufactured AlSi10Mg alloy by reducing the density of melt pool boundaries. Scripta Materialia, 221, 114954.
    [4] Wang, S., Li, Y., Zhang, D., Yang, Y., Manladan, S. M., and Luo, Z. (2022). Microstructure and mechanical properties of high strength AlCoCrFeNi2. 1 eutectic high entropy alloy prepared by selective laser melting (SLM). Materials Letters, 310, 131511.
    [5] Raja, A., Cheethirala, S. R., Gupta, P., Vasa, N. J., and Jayaganthan, R. (2022). A review on the fatigue behaviour of AlSi10Mg alloy fabricated using laser powder bed fusion technique. Journal of Materials Research and Technology, 17, 1013-1029.
    [6] Měsíček, J., Čegan, T., Ma, Q. P., Halama, R., Skotnicová, K., Hajnyš, J., and Pagáč, M. (2022). Effect of artificial aging on the strength, hardness, and residual stress of SLM AlSi10Mg parts prepared from the recycled powder. Materials Science and Engineering: A, 855. 143900.
    [7] Qin, D., and Chen, C. (2022). Research on the mechanical property and failure mechanism of the dieless clinched joints of various aluminum alloys. Engineering Failure Analysis, 137, 106384.
    [8] Roth, C. C., Tancogne-Dejean, T., and Mohr, D. (2021). Plasticity and fracture of cast and SLM AlSi10Mg: High-throughput testing and modeling. Additive Manufacturing, 43, 101998.
    [9] Patakham, U., Palasay, A., Wila, P., and Tongsri, R. (2021). MPB characteristics and Si morphologies on mechanical properties and fracture behavior of SLM AlSi10Mg. Materials Science and Engineering: A, 821, 141602.
    [10] Ze, G. K., Pramanik, A., Basak, A. K., Prakash, C., Shankar, S., and Radhika, N. (2023). Challenges associated with drilling of carbon fiber reinforced polymer (CFRP) composites-A review. Composites Part C: Open Access, 100356.
    [11] Kapidžić, Z., and Nylander, A. M. (2023). Fatigue and failure testing of a hybrid CFRP-aluminum wing box at elevated temperature. Composite Structures, 305, 116469.
    [12] Aoki, R., Higuchi, R., Yokozeki, T., Aoki, K., Uchiyama, S., and Ogasawara, T. (2022). Effects of ply thickness and 0°-layer ratio on failure mechanism of open-hole and filled-hole tensile tests of thin-ply composite laminates. Composite Structures, 280, 114926.
    [13] Arteiro, A., Furtado, C., Catalanotti, G., Linde, P., and Camanho, P. P. (2020). Thin-ply polymer composite materials: A review. Composites Part A: Applied Science and Manufacturing, 132, 105777.
    [14] Galos, J. (2020). Thin-ply composite laminates: a review. Composite Structures, 236, 111920.
    [15] Wang, A., Wang, Z., Zhao, Y., Chang, Z., Shao, X., and Kang, Y. (2022). Fatigue behaviour and failure mechanism of the thin/thick-ply hybrid laminated composite bolted joints. Composite Structures, 295, 115636.
    [16] Cugnoni, J., Amacher, R., Kohler, S., Brunner, J., Kramer, E., Dransfeld, C., and Botsis, J. (2018). Towards aerospace grade thin-ply composites: Effect of ply thickness, fibre, matrix and interlayer toughening on strength and damage tolerance. Composites Science and Technology, 168, 467-477.
    [17] Furtado, C., Arteiro, A., Catalanotti, G., Xavier, J., and Camanho, P. P. (2016). Selective ply-level hybridisation for improved notched response of composite laminates. Composite Structures, 145, 1-14.
    [18] Czél, G., and Wisnom, M. R. (2013). Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Composites Part A: Applied Science and Manufacturing, 52, 23-30.
    [19] Michael, R. Wisnom., Gergely, Czél., Jonathan, D. Fuller., and Meisam, Jalalvand. (2015). 20th International Conference on Composite Materials Copenhagen.
    [20] Zhou, Y. G., Wang, C. Y., Zhang, J. N., and Wu, H. H. (2020). Experimental and theoretical investigation on tensile properties and fracture behavior of carbon fiber composite laminates with varied ply thickness. Composite Structures, 249, 112543.
    [21] Montagne, B., Lachaud, F., Paroissien, E., Martini, D., and Congourdeau, F. (2020). Failure analysis of single lap composite laminate bolted joints: Comparison of experimental and numerical tests. Composite Structures, 238, 111949.
    [22] Guillamet, G., Turon, A., Costa, J., and Linde, P. (2016). A quick procedure to predict free-edge delamination in thin-ply laminates under tension. Engineering Fracture Mechanics, 168, 28-39.
    [23] Aoki, R., Higuchi, R., and Yokozeki, T. (2023). Progressive damage and residual strength of open-hole thin-ply CFRP laminates under tensile fatigue loading. Composite Structures, 314, 116973.
    [24] Wang, A., Wang, Z., Zhao, Y., Chang, Z., Shao, X., and Kang, Y. (2022). Fatigue behaviour and failure mechanism of the thin/thick-ply hybrid laminated composite bolted joints. Composite Structures, 295, 115636.
    [25] Paul, H., Luke, M., and Henning, F. (2015). Combining mechanical interlocking, force fit and direct adhesion in polymer–metal-hybrid structures–evaluation of the deformation and damage behavior. Composites Part B: Engineering, 73, 158-165.
    [26] Kupski, J., and De Freitas, S. T. (2021). Design of adhesively bonded lap joints with laminated CFRP adherends: Review, challenges and new opportunities for aerospace structures. Composite Structures, 268, 113923.
    [27] de Freitas, S. T., and Sinke, J. (2015). Failure analysis of adhesively-bonded skin-to-stiffener joints: Metal–metal vs. composite–metal. Engineering Failure Analysis, 56, 2-13.
    [28] Yang, Y., Zheng, W., Liang, B., Luo, B., Hu, W., Zhang, K., and Cheng, H. (2022). Topography characteristics and formation mechanism of the bolt-hole contact interface during the bolt installation of interference-fit composite structure. Thin-Walled Structures, 179, 109642.
    [29] Hallett, S. R., Green, B. G., Jiang, W. G., and Wisnom, M. R. (2009). An experimental and numerical investigation into the damage mechanisms in notched composites. Composites Part A: Applied Science and Manufacturing, 40(5), 613-624.
    [30] Geier, N., Davim, J. P., and Szalay, T. (2019). Advanced cutting tools and technologies for drilling carbon fibre reinforced polymer (CFRP) composites: A review. Composites Part A: Applied Science and Manufacturing, 125, 105552.
    [31] Wu, X., Fuller, J. D., Longana, M. L., and Wisnom, M. R. (2018). Reduced notch sensitivity in pseudo-ductile CFRP thin ply angle-ply laminates with central 0 plies. Composites Part A: Applied Science and Manufacturing, 111, 62-72.
    [32] Xu, G., Zhang, K., Cheng, H., Luo, B., Zou, P., and Liang, B. (2021). An efficient physically-based damage model for interface damage of composites sleeved interference joint and influence analysis of its interface friction. Composite Structures, 275, 114425. [33] Seidlitz, H., Ulke-Winter, L., and Kroll, L. (2014). New joining technology for optimized metal/composite assemblies. Journal of Engineering, Article ID 958501.
    [34] ASTM D5766/D5766M-11. (2018). Standard Test Method for Open-Hole Tensile Strength of Polymer Matrix Composite Laminates.
    [35] Hadadzadeh, A., Amirkhiz, B. S., Li, J., and Mohammadi, M. (2018). Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: effect of building direction. Additive Manufacturing, 23, 121-131.
    [36] Delahaye, J., Tchuindjang, J. T., Lecomte-Beckers, J., Rigo, O., Habraken, A. M., and Mertens, A. (2019). Influence of Si precipitates on fracture mechanisms of AlSi10Mg parts processed by Selective Laser Melting. Acta Materialia, 175, 160-170.
    [37] ASTM E8/E8M − 13a. (2013) Standard Test Methods for Tension Testing of Metallic Materials.
    [38] Aboulkhair, N. T., Everitt, N. M., Ashcroft, I., and Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive manufacturing, 1, 77-86.
    [39] ASTM E9 – 89a (Reapproved 2000). Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature.
    [40] Li, D., Qin, R., Xu, J., Chen, B., and Niu, X. (2022). Effect of heat treatment on AlSi10Mg lattice structure manufactured by selective laser melting: Microstructure evolution and compression properties. Materials Characterization, 187, 111882.
    [41] Castro, G., Nutt, S. R., and Wenchen, X. (2013). Compression and low-velocity impact behavior of aluminum syntactic foam. Materials Science and Engineering: A, 578, 222-229.
    [42] JIS B 1214.(1995). Hot headed rivets (六角穴付きショルダボルト).
    [43] Silva, D. F., Braganca, I. M., Silva, C. M., Alves, L. M., and Martins, P. A. (2019). Joining by forming of additive manufactured ‘mortise-and-tenon’joints. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(1), 166-173.
    [44] Nasr, M. N., Ng, E. G., and Elbestawi, M. A. (2008). A modified time-efficient FE approach for predicting machining-induced residual stresses. Finite Elements in Analysis and Design, 44(4), 149-161.
    [45] Na, Y. S., Yeom, J. T., Park, N. K., and Lee, J. Y. (2003). Simulation of microstructures for Alloy 718 blade forging using 3D FEM simulator. Journal of Materials Processing Technology, 141(3), 337-342.
    [46] Xiaohui, J., Chunbo, Y., Honglan, G., Shan, G., and Yong, Z. (2022). Effect of supporting structure design on residual stresses in selective laser melting of AlSi10Mg. The International Journal of Advanced Manufacturing Technology, 1-12.
    [47] Liu, X., Zhao, C., Zhou, X., Shen, Z., and Liu, W. (2019). Microstructure of selective laser melted AlSi10Mg alloy. Materials and Design, 168, 107677.
    [48] Roy, R., Raj, L. P., Jo, J. H., Cho, M. Y., Kweon, J. H., and Myong, R. S. (2021). Multiphysics anti-icing simulation of a CFRP composite wing structure embedded with thin etched-foil electrothermal heating films in glaze ice conditions. Composite Structures, 276, 114441.
    [49] Widerøe, F., and Welo, T. (2012). Conditions for sticking friction between aluminium alloy AA6060 and tool steel in hot forming. Key Engineering Materials, 491, 121-128.
    [50] Yovanovich, M. M. (1999). Thermal interface (joint) conductance and resistance. ECE 309 Course Notes, 1-4.
    [51] Fong, K. S., Atsushi, D., Kumar, D., Ong, W. K., and Jirathearanat, S. (2021). Mechanical Properties of Aluminium/Stainless Steel Bimetal Composite Fabricated by Extrusion Process. In Forming the Future: Proceedings of the 13th International Conference on the Technology of Plasticity (pp. 1383-1394). Springer International Publishing.
    [52] Wolfgang, K., and Andreas, S. (2015, May). 6xxx-crash alloys from HAI: An example of the success storey of the complete value chain under one roof. In Proceedings of the Aluminium 2000 Conference, Florence, Italy (pp. 12-16).
    [53] Dai, P., Wang, Y., Li, S., Lu, S., Feng, G., and Deng, D. (2020). FEM analysis of residual stress induced by repair welding in SUS304 stainless steel pipe butt-welded joint. Journal of Manufacturing processes, 58, 975-983.
    [54] Jalalvand, M., Czél, G., and Wisnom, M. R. (2015). Reducing the notch sensitivity of quasi-isotropic layups using thin-ply hybrid laminates.
    [55] Hu, J., Mi, S., Yang, Z., Wang, C., Yang, Y., and Tian, W. (2022). An experimental investigation on bearing behavior and failure mechanism of bolted composite interference-fit joints under thermal effects. Engineering Failure Analysis, 131, 105830.
    [56] Xu, G., Cheng, H., Zhang, K., Liang, B., Cheng, Y., Hu, J., and Liu, C. (2020). Modeling of damage behavior of carbon fiber reinforced plastic composites interference bolting with sleeve. Materials and Design, 194, 108904.
    [57] Cao, Y., Zuo, D., Zhao, Y., Cao, Z., Zhi, J., Zheng, G., and Tay, T. E. (2021). Experimental investigation on bearing behavior and failure mechanism of double-lap thin-ply composite bolted joints. Composite Structures, 261, 113565.
    [58] Yang, Y., Cheng, H., Du, K., Liang, B., Hu, W., Luo, B., and Zhang, K. (2022). Microscale damage modeling of bolt-hole contact interface during the bolt installation process of composite structure. Composite Structures, 291, 115561.
    [59] Liu, Y., and Zhuang, W. (2019). Self-piercing riveted-bonded hybrid joining of carbon fibre reinforced polymers and aluminium alloy sheets. Thin-Walled Structures, 144, 106340.
    [60] Giannopoulos, I. K., Grafton, K., Guo, S., and Smith, H. (2020). Damage tolerance of CFRP airframe bolted joints in bearing, following bolt pull-through failure. Composites Part B: Engineering, 185, 107766.
    [61] Frizzell, R. M., McCarthy, C. T., and McCarthy, M. A. (2008). An experimental investigation into the progression of damage in pin-loaded fibre metal laminates. Composites Part B: Engineering, 39(6), 907-925.
    [62] Lei, L., He, X., Yu, T., and Xing, B. (2019). Failure modes of mechanical clinching in metal sheet materials. Thin-Walled Structures, 144, 106281.
    [63] Zou, P., Li, Y., Zhang, K., Liu, P., and Zhong, H. (2017). Mode I delamination mechanism analysis on CFRP interference-fit during the installation process. Materials and Design, 116, 268-277.
    [64] Liu, Y., Li, M., Lu, X., Li, Q., and Zhu, X. (2021). Pull-out performance and optimization of a novel Interference-fit rivet for composite joints. Composite Structures, 269, 114041.

    無法下載圖示 全文公開日期 2025/08/07 (校內網路)
    全文公開日期 2025/08/07 (校外網路)
    全文公開日期 2025/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE