簡易檢索 / 詳目顯示

研究生: 賴垣伊
Yuan-yi Lai
論文名稱: PCB板錫球破壞分析
Failure analysis of solder joint on PCB board
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 劉見賢
noen
張瑞慶
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 80
中文關鍵詞: 應變能密度因子錫球電路板裂縫應力強度因子
外文關鍵詞: strain energy density factor, pcb board, crack, solder joint, stress intensity factor
相關次數: 點閱:260下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 評估電子構裝可靠度,為電子構裝產業之重要課題,其中負責電性連結之錫球強度,對產品的好壞具有決定性之影響力。若焊錫界面黏著強度不足,在遭受溫度或外力負載時所發生之脫層破壞,將嚴重影響構裝體之可靠度。本研究引用破壞力學觀念,以數值模擬方法,評估構裝中焊墊與錫球間因迴焊缺失所形成之裂縫,當受到溫度循環作用時,裂縫尖端應力強度因子及應變能密度因子之變化趨勢。
    本模擬在封裝尺寸上,分別採用傳統塑性球柵陣列之大型封膠構裝,並與晶片級尺寸之塑性球柵陣列小型封膠構裝模型做比較。另外在錫球材料方面,傳統上所使用之含鉛錫球中鉛的成分,會對環境及人體健康造成危害,各先進國家莫不積極尋找無鉛之替代性材料。因此本文在兩種尺寸之構裝模型上,分別採用含鉛材料及未來勢必使用之無鉛材料錫球,以黏塑性質理論加以分析,比較各裂縫應力強度因子之趨勢變化,以探討上述模型存有裂縫時之壽命差異。
    經研究後發現,當錫球含有介面裂縫時,銲錫採用無鉛合金之應力強度因子,較含鉛合金材料為高。但隨循環次數的變化趨勢而言,含鉛材料之應變能密度因子斜率較大,上升較快。另外,在封裝尺寸上,大封膠構裝模型之裂縫所造成的破壞情形較為嚴重。


    In electronic packaging industry, it’s an important issue to estimate the reliability of the package. The strength of solder joint can influence the performance of products effectively. While the adhesive strength is not strong enough, the delamination may occur due to the severe temperature change or external load on the interface, which results in decreasing the reliability of the products. The study uses the concept of fracture mechanics and numerical simulation method to estimate the stress intensity factor and strain energy density factor around the crack tip due to the failure of reflow.
    The simulation includes two types of model, PBGA assembly and PBGA chip-scale package. Two kinds of material, lead-free solder and lead solder, are used to make the comparison. Since lead solder would cause the damage to the human body and the environmental pollution, lead-free solder becomes the trend in the future. The theory of viscoplasticity is applied to analyze the tendency of stress intensity factor and the difference of the life-cycle between the above models is discussed in detail.
    In conclusion, while the crack occurs at the interface of solder ball, the stress intensity factor of lead-free solder is higher. But, the strain energy density factor of lead–free solder joint is found to increase monotonously as increasing of thermal cycles. Furthermore, the crack of PBGA assembly would make the fracture become worse.

    中文摘要………………………………………………………………..Ⅰ 英文摘要………………………………………………………………..Ⅱ 誌謝…………………………………..…………………………………Ⅲ 目錄……………………………………..………………………………Ⅳ 圖表目錄………………………………………………………………..Ⅶ 第一章 緒論……………………………………………………………..1 1.1 前言……………………………………………………………...1 1.2 研究動機….……………………………………………………...3 1.3 文獻回顧…………………………………………………………5 1.4 研究方法…..……………….…………………………………… 7 1.5 章節提要…………………………………………………………8 第二章 理論介紹…….……….…………..……………………………..9 2.1 彈性封裝材料模型之建構………...……………………………9 2.2 黏塑性理論分析基礎……………..….……………………….13 2.2.1 牛頓-瑞佛森非線性求解理論…………………………….13 2.2.2 亞蘭德模型………………………………………………..18 2.3 估算封裝體材料承受脫層應力之強度因子.………..………..21 2.3.1 封裝結構破裂模式……….……………………………….21 2.3.2 單值封裝體之應力強度因子.…………………………….25 2.3.3 異質封裝體之應力強度因子……………………………..27 2.3.4 局部能量密度的特殊形式………………………………..29 第三章 分析模型與建立…….……………………………..…………32 3.1 分析模型建立…….…………………………………………….32 3.1.1 PBGA封裝結構模型及裂縫之假設……………………….32 3.1.2 基本假設條件……...……………………………………….36 3.1.3 邊界條件與負載……………………………………………37 3.2 軟體應用…….…………………………..……………………...39 3.2.1 ANSYS操作流程…………………..……………………...39 3.2.2 數值選取………………..…………………………………48 第四章 分析結果與討論………………………………………………49 4.1 無裂縫二維模型………………………………………………..50 4.2 含裂縫二維模型分析結果………………………...……..51 4.2.1 大封膠構裝模型最外側錫球邊緣裂縫分析結果...51 4.2.2 小封膠構裝模型最外側錫球邊緣裂縫分析結果…..60 4.2.3 大封膠構裝模型最外側錫球中央裂縫分析結果…68 4.3 結果討論………………………………………………………...69 4.3.1 62Sn36Pb2Ag含鉛及96.5Sn3.5Ag無鉛錫球裂縫之應力強度因子比較及討論………………………………………....70 4.3.2 62Sn36Pb2Ag含鉛錫球於大小封膠構裝模型時裂縫應變能密度因子S比較…………………………………………....71 4.3.3 96.5Sn3.5Ag無鉛錫球於大小封封膠構裝模型時裂縫應變能密度因子S比較.……………………………………….71 4.3.4 整體討論…………………………………………………..75 第五章 結論與未來展望………………………………………………79 5.1 結論…………………………………………………………….79 5.2 未來展望……………………………………………………….80 參考文獻………………………………………………………………..81 附錄…………………………..……………………………………..…..85

    [1] J.H.Lau,”Ball Grid Array Technology”,McGraw-Hill,1995
    [2] http://www.asetwn.com.tw/
    [3] Khadpe,S., “Semiconductor Packaging Update” ,Semiconductor Tech.Center Inc. Vol. 8, No. 4., 1993
    [4] Vardaman, E. J., “Ball Grid Array Package: Market and Technical Development”, Technology Search International, June, 1994
    [5] S. H. Fan, Y.C. Chan,J.K.L. Lai,” Open defects in PBGA Assemble”,Journal of Electronic Package, Vol 125, 2003
    [6] R. Darveaux, I. Turlik, Lih-Tyng Hwang and A. Reisman, ”Thermal Stress Analysis of a Multichip Package Design”, IEEE Transactions on Components, Hybrids and Manufacturing Technology, Vol.12, No.4, pp.663-672, 1989.
    [7] A. Kuo, “Thermal Stress at the Edge of a Bimetallic Thermostat”, Journal of Applied Mechanics, Vol.56, pp.585-589, 1989.
    [8] Harper,C.A.et al, Electronic packaging and Interconnection Handbook, McGraw-Hill, New York, pp.6.13-6.23, 2000
    [9] Michael Howieson, “CBGA to FR4 Printed Circuit Board with No Underfill Thermal Mismatch Study”, Electronic Components and Technology Conference, IEEE, 2001
    [10] R. Darveaux, “Solder Joint Fatigue Life Model,”in Design and Reliability of Solders and Solder Interconnections, The Minerals, Metals and Materials Society (TMS),pp.213-218,1997
    [11] Lee, H., Earmme, Y.Y., “A Fracture Mechanics Analysis of the Effects of Material Properties and Geometries of Components on Various Types of Package Cracks,” IEEE Transaction on Components, Packaging, and Manufacturing Technology – Part A, Vol. 19, No. 2, pp. 168-177, 1996.
    [12] Saitoh, T., Matsuyama, H., Toya, M., “Numerical Stress Analysis of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loading-PartIII: Material Properties and Package Geometries,” IEEE Transaction on Components, Packaging, and Manufacturing Technology – Part B, Vol. 21, No. 4, pp. 407-412, 1998
    [13] Wu, S. X., Chin, J., Grigorich, T., Wu, X., Mui, G. and Yeh, C. P. “Reliability Analysis for Fine Pitch BGA Package,” Electronic Components & Technology Conference, 1998. 48th IEEE, pp. 737 - 741
    [14] J.H. Lau and D.W. Rice,“ Thermal Fatigue Life Prediction of Flip Chip Solder Joints by Fracture Mechanics Method”, Advances in Electronic Packaging ASME, pp.385-392, 1992.
    [15] J.H. Lau,“Flip Chip Technologies”, McGraw-Hill Companies, Inc. New York, 1997.
    [16] S. Wiese, “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders -Experiments on Bulk Specimens and Flip-Chip Joints”, Electronic Components and Technology Conference, 2001
    [17] V. Vroonhoven, J. C. W., “Effects of Adhesion and Delamination on Stress Singularities in Plastic-Packaged Integrates Circurts,” Journal of Electronic Packaging, Vol. 115, pp. 28-32, March 1993.
    [18] A. A. O. Tay, G.. L. Tan, T. B. Lim, “Predicting Delamination in Plastic IC Packages and Determining Suitable Mold Compound Properties,” IEEE Transactions on Components, Packaging, and Manufacturing Technology - Part B, Vol. 172 , pp. 201 –208, May 1994.
    [19] T. Saitoh , H. Matsuyama and , M. Toya, “Linear Fracture Mechanics Analysis on Growth of Interfacial Delamination in LSI Plastic Packages under Temperature Cyclic Loadings,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vo l. 21, No. 4, pp. 422-427, November 1998.
    [20] T. Saitoh , “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loadings,” IEEE Transactions on Components, Packaging,and Manufacturing Technology – Part B, Vol. 19, No. 3, pp. 593-600, August 1996.
    [21] T. Saitoh and, M. Toya, “Numerical Stress of Resin Cracking in LSI Plastic Packages under Temperature Cyclic Loadings – PartⅡ : Using Alloy 42 as Leadframe Material,” IEEE Transactions on Components, Packaging, and Manufacturing Technology – Part B, Vol. 20, No. 2, pp. 176-183, May 1997.
    [22] Q.J. Yang ∗, X.Q. Shi, Z.P. Wang, Z.F. Shi Q.J. Yang et al., “Finite-element analysis of a PBGA assembly under isothermal/mechanical twisting loading”, Finite Elements in Analysis and Design, Vol.39, pp-819-833, May 2002
    [23] 張勳承, “田口方法應用與覆晶構裝錫球的熱應力分析”, 碩士論文, 國立成功大學, 2003.
    [24] 劉景玉,“溫度循環作用下黏塑性錫球結構與負載形式對MLBGA 構裝之可靠度探討”, 碩士畢業論文, 國立成功大學, 2000
    [25] ANSYS Menu, “Rate-Dependent Plasticity,” ANSYS Theory Reference, Reversion5.5, Ch. 4 , 1998
    [26] L. Anand,”Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperature,”Transactions of ASME, 12/Vol.104, pp.12-17, January 1982
    [27] Jurgen Wilde, Klaus Becker, “Rate Dependent Constitutive Relations Based on Anand Model for 92.5Pb5Sn2.5Ag Solder”, IEEE Transaction on Advanced Package, Vol. 23, No. 3, August 2002.
    [28] 徐梓青,” FC-BGA 構裝體的數值分析與最佳化研究”, 碩士論文, 國立成功大學, 2004
    [29] http://www.labs.nec.co.jp/ rel/english/topics/t22.html
    [30] 黃顯順,”黏彈塑性封裝體濕熱破壞之機制研究”,碩士論文,國立成功大學,2001
    [31]. Tay, A.A.O., Goh, K.Y., “A Study of Delemination Growth in the Die-Attach Layer of Plastic IC Packages Under Hygrothermal Loading During Solder Reflow,” Electronic Components and Technology Conference, pp. 694-701, 1999.
    [32] G.Z.Wang, Z.N.Cheng,”Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys”, Journal of Electronic Package, Vol.123,September 2001
    [33] Pucha, R. V., Tunga, K., Pyland, J., and Sitaraman, S. K., "Accelerated Thermal Cycling Guidelines for Electronic Packages in Military Avionics Thermal Environment," Transactions of the ASME - Journal of Electronic Packaging, Vol. 126, pp. 256-264, June 2004.
    [34] John H. Lau and S.-W. Ricky Lee,“Effects of Build-Up Printed Circuit Board Thickness on the Solder Joint Reliability of a Wafer Level Chip Scale Package (WLCSP)”, IEEE Transaction on Componets and Packaging Technologies, Vol. 25, No.1pp.3-14,Macch 2002
    [35] Zhang Liji, Member, “An Investigation on Thermal Reliability of Underfilled PBGA Solder Joints”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 4, October 2002
    [36] John H. Lau, “Critical Issues of Wafer Level Chip Scale Package(WLCSP) With Emphasis on Cost Analysis and Solder Joint Reliability”, IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 1, January 2002

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE