簡易檢索 / 詳目顯示

研究生: 蘇潤笙
John-Sirn Soo
論文名稱: 高溫純水中82合金與316低碳不銹鋼異材銲件之應力腐蝕研究
An Investigation into stress Corrosion Cracking of 316L SS-Alloy 82 Dissimilar Metal Weld in High Temperature Pure Water
指導教授: 王朝正
Chaur-Jeng Wang
口試委員: 葉宗洸
Tsung-kuang Yeh
郭俞麟
Yu-Lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 90
中文關鍵詞: 應力腐蝕龜裂沸水式反應器異材金屬銲件殘留應力
外文關鍵詞: Stress Corrosion Cracking, Boiling Water Reactor, Dissimilar Metal Weld, Residual Stress
相關次數: 點閱:350下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要目的為檢視316L不銹鋼與82合金所構成的異材銲接組件應用於核能電廠沸水式反應器(Boiling Water Reactor, BWR)環境中的應力腐蝕特性。試驗方法為於模擬BWR主冷卻水迴路之水化學環境中進行慢應變速率拉伸 (Slow Strain Rate Tensile, SSRT) 試驗,檢測試樣的拉伸應力應變曲線以及是否產生應力腐蝕龜裂(Stress Corrosion Cracking, SCC),據此探討316L異材銲接試樣於BWR環境中的機械性質與SCC行為。除此之外,對其他試樣進行不同溫度的熱處理與珠擊加工並進行SSRT拉伸試驗,將結果與未經前處理的316L異材銲接試樣比對,檢測各前處理對試樣造成的影響。

    試驗結果顯示,316L異材銲接試樣於BWR環境下能維持一定水準的機械性質,且不易產生IGSCC。650 ℃熱處理可使延性稍微提升,且未產生明顯的IGSCC。珠擊處理則因加工過度使強度上升,在邊緣處可發現部份IGSCC。固溶退火處理的試樣,不易產生IGSCC且延展性大幅提升,並可改善銲接熱影響區的殘留應力與元素分佈不均問題。


    The primary objective of this study is to investigate the stress corrosion characteristics of dissimilar metal welds (DMWs) comprising Type 316L stainless steel as the base metal and Alloy 82 as the weld metal in simulated boiling water reactor (BWR) environments. Slow strain rate tensile (SSRT) tests were conducted to explore the mechanical properties and stress corrosion cracking (SCC) behavior of the DMWs. Some DMW samples were pretreated by shot peening and thermal treatments at different temperatures prior to the SSRT tests, and the influences of these pretreatments on the samples were examined.

    Test results showed that the mechanical property of the DMW sample did not exhibit any significant difference from that of a pure 316L stainless steel sample in the same environment. Furthermore, transgranular SCC was found on the fractured surface of the sample, but no intergranular SCC (IGSCC) was observed. A post-weld heat treatment at 650 oC slightly improved the ductility of the treated DMW sample during the SSRT test. A shot peening treatment aversely led to a more serious SCC on the treated sample with distinct traces of IGSCC. A pretreatment of solution annealing resulted in a much better performance as expected for the treated sample in terms of ductility and immunity to IGSCC, since the treatment helped relieved the residual stresses and led to a more even distribution of the alloying elements in the regions adjacent to the weld.

    目 錄 頁次 第一章 前言…………………………………………………………1 第二章 文獻回顧……………………………………………………4 2.1 應力腐蝕龜裂…………………………………………… 4 2.1.1 定義.………………………………………………4 2.1.2 應力腐蝕龜裂的型態……………………………11 2.1.3 防治方法…………………………………………11 2.2 應力應變曲線圖(Stress - Strain curve diagram)…15 2.2.1 拉伸試驗簡介………………………………………15 2.2.2 應力 - 應變行為(Stress-Strain Behavior) …17 2.2.3 彈性變形(Elastic Deformation) ………………17 2.2.4 塑性變形﹙Plastic Deformation﹚……………18 2.2.5 延性破裂(Ductile Fracture)…………………19 2.3 慢應變速率拉伸試驗(Slow Strain Rate Test,SSRT) …22 2.4 試樣前處理…………………………………………………23 2.4.1 650。C熱處理(650。C Heat Treatment)…………23 2.4.2珠擊處理(Shot Peening Treatment)………………27 2.4.2.1原理…………………………………………27 2.4.2.2 精密珠擊理論………………………………29 2.4.3 冷作加工(Cold Working)…………………………31 2.4.4 表面研磨(Surface Polishing)……………………34 2.4.5 固溶退火處理(Solution Annealing) ……………36 2.5 動態應變時效(Dynamic Strain Aging,DSA) …………36 2.6 304L異材銲接試樣之SSRT試驗……………………………37 第三章 實驗方法……………………………………………………39 3.1 實驗設計及方法……………………………………………39 3.2 拉伸試樣製作………………………………………………40 3.3 試樣前處理加工方式………………………………………42 3.4 試樣預長氧化膜……………………………………………43 3.5 慢應變速率拉伸測試………………………………………43 3.6 高溫高壓水循環系統………………………………………44 3.7 實驗用試樣一覽……………………………………………46 3.7.1拉伸試樣列表………………………………………46 3.7.2試樣性質比較………………………………………46 3.8 試樣拉斷後分析……………………………………………48 3.8.1 SEM表面顯微結構與EDX成份分析…………………48 3.8.2敏化程度測試(DL-EPR)……………………………49 第四章 結果與討論…………………………………………………51 4.1 316L異材銲接標準試樣……………………………………51 4.2 650 ℃熱處理………………………………………………57 4.3噴砂處理、珠擊處理………………………………………61 4.4固溶退火處理………………………………………………69 4.5拉伸曲線的浮動現象………………………………………80 4.6敏化程度試驗(DL-EFR) ……………………………………81 4.7用於BWR組件之最佳處理……………………………………83 第五章 結論………………………………………………………84 參考文獻……………………………………………………………85 作者簡介……………………………………………………………90

    [1] Miwa, Y., Tsukada, T., Jitsukawa, S., Kita, S., Hamada, S.,Matsui, Y., and Shindo, M., “Effect of Minor Elements on Irradiation Assisted Stress Corrosion Cracking of Model Austenitic Stainless Steels,” Journal of Nuclear Materials pp.233-237, 1393-1396 (1996).
    [2] Al-Anezi, M. A., Frankel, G. S., and Agrawal, A. K., ”Susceptibility of Conventional Pressure Vessel Steel to Hydrogen-Induced Cracking and Stress-Oriented Hydrogen-Induced Cracking in Hydrogen Sulfide-Containing Diglycolamine Solutions,” Corrosion. Vol.55, No.11, pp. 1101-1109 (1999).
    [3] Arsene S., Bai J. B., and Bompard P., “Hydride Embrittlement and Irradiation Effects on the Hoop Mechanical Properties of Pressurized Water Reactor (PWR) and Boiling-Water Reactor (BWR)ZIRCALOY Cladding Tubes: Part I. Hydride Embrittlement in Stress-Relieved,Annealed, and Recrystallized ZIRCALOYs at 20 ℃and 300 ℃,Metallurgical and Materials Transactions A, Vol. 34, No 3, pp. 553-566 (2003).
    [4] Andresen, P. L., and Briant, C. L., Corrosion, pp. 448~463 (1989).
    [5] Katsura, R., Kodama, M., and Nishimura, S., Corrosion, pp. 384-390 (1992).
    [6] Ljungberg, L. G., Nuclear Engineering and Design81, pp.121-125 (1984).
    [7] Andresen, P .L., “Factors Governing the Prediction of LWR Component SCC Behavior from Laboratory Data”,CORROSION/99, Houston, TX, NACE International, Paper No.145 (1999).
    [8] Fontana, M. G., Corrosion Engineering, 3rd ed., McGraw-Hill International (1986).
    [9] Sprowls, D. O., Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH, pp. 245-279 (1987).
    [10] Jones, R. H., Metals Handbook, Vol.13, Corrosion, 9th ed., ASM International, Metals Park, OH, pp.145-162 (1987).
    [11] Uhlig, H. H., and Revie, R. W., Corrosion and Corrosion Control, 3rd ed., John Wiley & Sons, Canada (1985).
    [12] ASME ER N1 Cr3 “An Investigation into Stress Corrosion Cracking of 304L SS-Alloy 82 Dissimilar Metal Weld in High Temperature Pure Water” (2008).
    [13] Rooyan, D. V., and Cragnolino, C., Stress Relief Treatment of Alloy 600Steam Generator Tubing. EPRI Report, TR-103645.Palo Alto, CA, USA (1994).
    [14] Champaigne, J.,"Almen gage Accuracy And Repeatability",the 5th international conference On Shot Peening, pp. 16-27 (1993).
    [15] 蔡忠毅,「微珠擊對印刷電路板碳化鎢鑽頭耐久性的影響」
    碩士論文,國立臺灣科技大學,台北 (2006)。
    [16] 黃冠儒,「高溫純水中82合金與304低碳不銹鋼異材銲件之應力腐蝕研究」碩士論文,國立清華大學,新竹 (2008)。
    [17] William D. Callister, Jr, Materials Science and Engineering An Introduction 5th ed, chapter 6, John Wiley & Sons (1999).
    [18] William D. Callister, Jr, Materials Science and Engineering An Introduction 5th ed, chapter 8, John Wiley & Sons (1999).
    [19] Robert E. Read-Hill, Reza Abbaschian, Physical Metallurgy Principles 3rd ed, chapter 22, THOMSON (1991).
    [20] Saito, N., Tsuchiya1, Y., Kano, F., and Tanaka, N.,“Variation of Slow Strain Rate Test Fracture Mode of Type 304L Stainless Steel in 288 ℃ Water,” Corrosion-Vol.56, No.1, pp.57-69 (2000).
    [21] Hur, D. H., Choi, M. S., Lee, D. H., Song, M. H., Kim, S. J., and Han, J. H., Nuclear Engineering and Design 227, pp.155-160 (2004).
    [22] Novotny, R., Debarberis L., Sajdl P., Macak J., and Kytka M., “Stress Corrosion Cracking of AISI Type 316L and Cold Worked AISI Type 304 Stainless Steel in High Temperature Pressurised Water”, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Whistler, British Columbia, pp. 19-23, (2007).
    [23] Haruna, T., Zhang, S., and Shibata, T., “Analysis of Initiation and Propagation of Stress Corrosion Cracks in Sensitized Type 304 Stainless Steel in High-Temperature Water” ,Corrosion , pp. 1104(2004).
    [24] Li, G. F., Charles, E. A., and Congleton, J., Corrosion science 43, pp.1963-1983 (2001).
    [25] Yamada, T., Terachi, T., and Arioka, K., “SCC Growth of 308L/316L Weld Metals in Hydrogenated and Oxygenated
    High-Temperature Water”, Proceedings of Japan Society of
    Corrosion Engineering Materials and Environment (2008).
    [26] Offer, H. P., Horn, R. M., and Chen, A. Q., Assessment of the Mitigation of SCC by Surface Stress and Material Improvements, 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems Whistler, British Columbia pp. 19-23 (2007).
    [27] ASTM E8M-04, “Standard Test Methods for Tension Testing of Metallic Materials” (2008).
    [28] Majidi, A. P., and Streicher, M. A., Corrosion 40, pp. 584 (1984).
    [29] Jones, D. A., Principles and Prevention of Corrosion, 2nd ed., Prentice Hall, Upper Saddle River, NJ. (1996).
    [30] Hixton, J. R., Kim, J.H., Ballinger R.G., Proc. of the 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems, Whistler, British Columbia(2007).
    [31] Ishibashi, R., Kato, T., Kuniya, J., Fujimori, H., Kitsunai, Y., Karasuma T. and Kodama, M., Proceedings of the 52nd Japan Conference on Materials and Environments, B-208. (2005).
    [32] Palumbo, G., Gonzalez, F., Brennenstuhl, A. M., Erb, U., Shmayda, W., and Lichtenberger, P. C., In-Situ Nuclear Steam Generator Repair Using Electrodeposited Nanocrystalline Nickel. In: Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, ANS, pp. 500-506 (1997).
    [33] ASM Committee on Heat Treating, Metals Hand Book, 9th Ed., ASM, Metals Park, OH, pp. 647(1981).
    [34] Cihal, V.,Intergranular Corrosion of steel and alloys Material Science Monograph, Elsevier, Vol. 18, New York, NY. (1984).
    [35] Sedricks, A. J., Corrosion of Stainless Steel, 2nd Ed., John Wiley, NY, (1996).
    [36] Lundin, C. D., Welding Research Supplement, 61(2), 58. (1982).
    [37] Faber, G., and Gooch, T., Welding in the World 20(5/6) , 88 (1982).
    [38] Castro, R. J., de Cadenent, J. J. , Welding Metallurgy of Stainless and Heat-Resisting Steels, Cambridge University Press, Cambridge, pp. 158 (1974).
    [39] Hearns, W. H.(Ed.), Metal and Their Weldability, Vol. 4, Welding Handbook, seventh ed., American Welding Society, pp. 514(1982).
    [40] Huang, M. L., and Wang, L., Metallurgical and Materials Transactions A, Vol. 29A(12), pp.3037 (1998).
    [41] An Assessment of the Integrity of PWR Pressure Vssels, Second Report by a Study Group Under the Chairmanship of Dr. W. Marshall, United Kingdom Atomic Energy Authority, Section 5, pp.14 (1982).
    [42] Hernalsteen, P., PWSCC in the Tube Expansion Zone—an
    Overview. Nucl. Eng. Design. 143, pp. 131-142 (1993).
    [43] Miner, M. A., Cumulative Damage in Fatigue, Journal of Applied Mechanics, 12, A-159. (1945).

    QR CODE