簡易檢索 / 詳目顯示

研究生: 莊晉東
CHIN-TUN CHUANG
論文名稱: 沈積鈦薄膜於矽晶圓基材與氧化銦錫薄膜於撓性基材之殘留應力分析
Residual Stresses of Both Titanium Thin Films Deposited on Silicon Wafer and Indium Tin Oxide Thin Films Deposited on Flexible Substrates
指導教授: 趙振綱
Ching-Kong Chao
張瑞慶
Rwei-ching Chang
口試委員: 黃榮芳
Rong-Fung Huang
褚晴暉
Ching-Hwei Chue
楊錫杭
His-harng Yang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 146
中文關鍵詞: 電子束蒸鍍射頻濺鍍撓性基材奈米壓痕殘留應力低掠角X-ray繞射
外文關鍵詞: Electron Beam Evaporation, Radio Frequency Sputtering, Flexible substrates, Nanoindentation, Residual stresses, Grazing incident X-ray diffraction.
相關次數: 點閱:425下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討鈦(Ti)薄膜及氧化銦錫(Indium tin oxide, ITO)薄膜沈積於不同基材的殘留應力。鈦以電子束蒸鍍及射頻濺鍍製程沈積200nm厚度薄膜於矽晶圓基材表面上;氧化銦錫以射頻濺鍍製程沈積200nm厚度薄膜於聚碳酸酯(Polycarbonate, PC)及聚乙烯對苯二甲酸酯(Polyethylene Terephthalate, PET)撓性基材表面上;利用表面輪廓儀量測試片蒸鍍或濺鍍前後的曲率變化再反算其殘留應力及薄膜沈積厚度之誤差;奈米壓痕儀來量測薄膜的硬度與計算出楊氏係數;X-ray繞射儀檢測晶格結晶方向及低掠角X-ray繞射法量測薄膜之殘留應力。針對氧化銦錫薄膜試片增加使用微米刮痕儀量測薄膜之附著力;光譜儀量測薄膜的可見光穿透率(Visible transmittance);四點探針電阻儀量測通過薄膜之電壓和電流的變化值,可計算出薄膜片電阻Rs(Ω/□)。
    綜合實驗結果得知,沈積鈦薄膜在殘留應力檢測方面,兩種製程所產生的殘留應力與沈積過程、沈積參數有相當大的關係;在機械性質檢測方面,其硬度和楊氏係數等機械性質亦取決於薄膜之殘留應力;沈積鈦薄膜之最強結晶方向為(002),其最大繞射峰強度約在38°左右。
    沈積氧化銦錫薄膜在殘留應力檢測方面,隨著檢測溫度上升,氧化銦錫薄膜之壓縮殘留應力會有減少趨勢;在機械性質檢測方面,氧化銦錫薄膜會隨著檢測溫度升高,其楊氏係數及硬度會有下降趨勢;在光電特性檢測方面,各類製程所量測之透光率或片電阻值都與目前業者所訂之規範誤差在5%範圍內;沈積氧化銦錫薄膜之最強結晶方向為(222),其最大繞射峰強度約在30°左右。


    This work aims to study residual stresses of titanium and indium tin oxide thin films deposited on various substrates. A 200 nm thick titanium (Ti) thin film is deposited on silicon wafers by electron beam evaporation, and the same thick indium tin oxide (ITO) thin film is deposited on polycarbonate (PC) and polyethylene terephthalate (PET) substrates by sputtering. This work is aimed to study residual stresses of titanium and indium tin oxide thin film that was deposited on substrates. The residual stresses are calculated from the substrate curvature changes before and after the thin film deposition by a surface profiler. Nanoindenter and X-ray Diffraction are used to test the mechanical properties and microscopic structures of the thin films; meanwhile, micro scratch, spectroscope, and four-point probe were utilized to test the photoelectric properties of the indium tin oxide thin films.
    For the titanium thin films, the experimental results show that all the residual stresses are compressive and increase with deposition rate but decrease as the substrate temperature increases. The Young’s modulus increases but the hardness decreases as the deposition rate increases, which reveals that the hardness and elastic modulus sensitively depend on the parameters of deposition processes. Those X-ray diffraction patterns reveal that the crystalline phase major peak is always found to be (002) preferred orientation and a strong (002) spike is present at 2θ = 38º.
    For the ITO thin films, the residual stresses decrease by 38% and 50% in the cases of gradient power sputtering and the copper interlayer. In mechanical properties, both the elastic modulus and hardness decrease as the temperature increases. The transmittance was increased by using the gradient power sputtering method and elevating the sputtering temperature method. The conductivity was increased by adding the copper interlayer. Those X-ray diffraction patterns reveal that the crystalline phase major peak is always found to be (222) preferred orientation and a strong (222) spike is present at 2θ = 30º.

    中文摘要 I 英文摘要 III 誌 謝 V 目 錄 VI 圖目錄 IX 表目錄 XVII 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 3 1.2.1 沈積鈦薄膜於矽晶圓基材之文獻回顧 3 1.2.2 沈積氧化銦錫薄膜於撓性基材之文獻回顧 6 1.3 本論文架構及限制條件 14 第二章 基礎理論與檢測技術 18 2.1 沈積原理 18 2.1.1 蒸鍍原理 18 2.1.2 濺鍍原理 20 2.2 原子力顯微鏡原理 23 2.2.1 原子力顯微鏡 25 2.2.2 原子力顯微鏡實驗步驟 26 2.3 表面輪廓檢測技術 26 2.3.1 表面輪廓儀 30 2.3.2 表面輪廓儀實驗步驟 32 2.4 奈米壓痕理論 33 2.4.1 奈米壓痕儀 39 2.4.2 奈米壓痕儀實驗步驟 41 2.5 微米刮痕技術 43 2.5.1 微米刮痕儀 45 2.5.2 微米刮痕儀實驗步驟 45 2.6 X-ray繞射量測理論 46 2.6.1 X-ray繞射儀 54 2.6.2 X-ray繞射儀實驗步驟 55 2.7 透光率量測原理 56 2.7.1 光譜儀 57 2.7.2 光譜儀實驗步驟 58 2.8 片電阻量測原理 58 2.8.1 四點探針電阻儀 59 2.8.2 四點探針電阻儀實驗步驟 60 第三章 薄膜製作 61 3.1 薄膜製程儀器介紹 61 3.1.1 電子束蒸鍍機 61 3.1.2 射頻濺鍍機 63 3.2 試片製作 64 3.2.1 蒸鍍鈦薄膜於矽晶圓基材 64 3.2.2 濺鍍鈦薄膜於矽晶圓基材 66 3.2.3 濺鍍氧化銦錫薄膜於聚碳酸酯撓性基材 68 3.2.4 濺鍍氧化銦錫薄膜於聚乙烯對苯二甲酸酯撓性基材 72 第四章 實驗結果與討論 75 4.1 薄膜的膜厚與結構分析 75 4.2 薄膜硬度及楊氏係數分析 87 4.3 薄膜殘留應力分析 96 4.4 薄膜微米刮痕分析 111 4.5 薄膜X-ray繞射儀分析 116 4.6 薄膜透光率分析 126 4.7 薄膜片電阻值分析 130 第五章 結論與未來發展 137 5.1 結論 137 5.1.1 鈦薄膜結論 137 5.1.2 氧化銦錫薄膜結論 139 5.2 未來發展 140 參考文獻 141 作者簡介 147

    [1] 白木靖寬、吉田貞史編著、王建義編譯,薄膜工程學,全華科技圖書股份有限公司,台北市,第四章 (2004)。
    [2] Zhang, K., Zhu, F., Huan, C. H. A., and Wee, A. T. S., “Indium tin oxide films prepared by radio frequency magnetron sputtering method at a low processing temperature”, Thin Solid Films, Vol. 376, Issue 1-2, pp. 255-263 (2000).
    [3] Cho, Y. S., Yi, G. R., Hong, J. J., Jang, S. H., and Yang, S. M., “Colloidal indium tin oxide nanoparticles for transparent and conductive films”, Thin Solid Films, Vol. 515, Issue 4, pp. 1864-1871 (2006).
    [4] Djaoued, Y., Phong, V. H., Badilesucu, S., Ashrit, P. V., Girouard, F. E., and Truong, V., “Sol-gel-prepared ITO films for electrochromic systems”, Thin Solid Films, Vol. 293, Issue 1-2, pp. 108-112 (1997).
    [5] Bender, M., Seelig, W., Daube, C., Frankenberger, H., Ocker, B., and Tollenwerk, J. S., “Dependence of oxygen flow on optical and electrical properties of DC-magnetron sputtered ITO films”, Thin Solid Films, Vol. 326, Issue 1-2, pp. 72-77 (1998).
    [6] Meng, L. J., and Dos Santos, M. P., “Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures”, Thin Solid Films, Vol. 303, Issue 1-2, pp. 151-155 (1997).
    [7] 吳怡貞,「利用真空濺鍍法製備可見光奈米光觸媒進行丙銅分解之研究」,碩士論文,國立中山大學環境工程研究所,高雄市 (2007)。
    [8] 溫志中,「ITO透明導電膜之濺鍍技術展望」,工業材料,第166期,第140頁 (2000)。
    [9] 陳信吉,蕭忠信,「可撓性平面顯示器產品及製程設備介紹」,機械工業,第270期,第59-70頁 (2005)。
    [10] 朱桂瑩,「薄膜殘留應力量測與數值模擬」,碩士論文,國立台灣科技大學機械工程系,台北市 (2007)。
    [11] 董雅清,「濺鍍Ti與Ni/Ti薄膜之殘留應力分析」,碩士論文,聖約翰科技大學自動化及機電整合研究所,新北市 (2008)。
    [12] 葉甄佩,「氧化銦錫薄膜沈積於撓性基材之殘留應力量測與數值模擬」,碩士論文,聖約翰科技大學自動化及機電整合研究所,新北市 (2009)。
    [13] 杜誌祥,「氧化銦錫薄膜沈積於撓性基材之破裂分析」,碩士論文,聖約翰科技大學自動化及機電整合研究所,新北市 (2009)。
    [14] Guisbiers, G., Strehle, S., and Wautelet, M., “Modeling of residual stresses in thin films deposited by electron beam evaporation”, Journal of Microelectronic Engineering, Vol. 82, pp. 665-669 (2005).
    [15] Wang, Y. H., Moitreyee, M. R., Kumar, R., Wu, S. Y., Xie, J. L., Yew, P., Subramanian, B., Shen, L., and Zeng, K.,Y., “The mechanical properties of ultra-low-dielectric-constant films”, Thin Solid Films, Vol. 462, pp. 227-230 (2004).
    [16] Pienkos, T., Proszynski, A., Chocyk, D., Gladyszewski, L., and Gladyszewski, G., “Stress development during evaporation of Cu and Ag on silicon”, Journal of Microelectronic Engineering, Vol. 70, Issue 2-4, pp. 442-446 (2003).
    [17] Engelstad, R. L., Feng, Z., Lovell, E. G., Mikkelson, A. R., and Sohn, J., “Evaluation of intrinsic film stress distributions from induced substrate deformation”, Journal of Microelectronic Engineering, Vols. 78-79, pp.404-409 (2005).
    [18] Pauleau, Y., “Generation and evolution of residual stresses in physical vapour-deposited thin films”, Vacuum, Vol. 61, Issues 2-4, pp. 175-181 (2001).
    [19] Lee, A., Clemens, B. M., and Nix, W. D., “Stress induced delamination methods for the study of adhesion of Pt thin films to Si”, Acta Materialia, Vol. 52, Issue 7, pp. 2081-2093 (2004).
    [20] Fang, W., Tasi, H. C., and Lo, C.,Y., “Determining thermal expansion coefficients of thin films using micromachined cantilevers”, Sensors and Actuators A: Physical, Vol. 77, pp. 21-27 (1999).
    [21] Withers, P. J., and Bhadeshia, H. K.,D.,H., “Residual stress PartⅠ. measurement techniques”, Materials Science and Technology, Vol. 17, No. 4, pp. 355-365 (2001).
    [22] 邱柏凱,「薄膜之殘留應力分析」,儀科中心簡訊,第77期,國家實驗研究院儀器科技研究中心 (2006)。
    [23] Oliver, W. C., and Pharr, G. M., “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Vol. 7, No.6, pp. 1564-1583 (1992).
    [24] Cheng, Y. T., and Cheng, C.M., “A scaling approach to conical indentation in elastic-plastic solids with work-hardening”, Journal of Applied physics, Vol. 84, Issue 3, pp. 1284-1291 (1998).
    [25] Fischer-Cripps, A. C., “A review of analysis method for sub-micron indentation testing”, Vacuum, Vol. 58, Issues 4, pp.569-585 (2000).
    [26] Field, J. S., and Swain, M. V., “A simple predictive model for spherical indentation”, Journal of Materials Research, Vol. 8, Issue 2, pp. 297-306 (1993).
    [27] Tsui, T. Y., Olive, W. C., and Pharr, G. M., “Influences of stress on the measurement of mechanical properties using nanoindentation:PartⅠ. Experimental studies in an aluminum alloy”, Journal of Materials Research, Vol. 11, Issue 3, pp. 752-759 (1996).
    [28] Bolshakov, A., Oliver, W. C., and Pharr, G. M., “Influence of stress on the measurement of mechanical properties using nanoindentation:PartⅡ. Finite element simulations”, Journal of Materials Research, Vol. 11, Issue 3, pp. 760-768 (1996).
    [29] Ma, C. H., Huang, J. H., and Chen, H., “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, Vol. 418, Issue 2, pp. 73-78 (2002).
    [30] Vermeulen, A. C., “Assumptions in thin film residual stress methods”, Materials Science Forum, Vols. 404-407, pp. 35-42 (2002).
    [31] Welzel, U., Ligot, J., Lamparter, P., Vermeulen, A. C., and Mittemeijer, E. J., “Stress analysis of polycrystalline thin films and surface region by X-ray diffraction”, Journal of Applied Crystallography, Vol. 38, pp. 1-29 (2005).
    [32] Noyan, I. C., and Jerome, C.B., Residual Stress: Measurement by Diffraction and Interpretation, Springer Verlag, Ch6 (1987).
    [33] Malhotra, S. G., Rek, Z. U., Yalisove, S. M., and Bilello, J. C., “Analysis of thin film stress measurement techniques”, Thin Solid Films, Vol. 301, Issue 1-2, pp. 45-54 (1997).
    [34] 曲喜新、楊邦朝、姜節儉、張懷武,電子薄膜材料,北京科學出版社出版,中國大陸,第93頁 (1996)。
    [35] Kim, Y. S., Park, Y. C., Ansari, S. G., Lee, J. Y., Leec, B. S., and Shin, H. S., “Influence of O2 admixture and sputtering pressure on the properties of ITO thin films deposited on PET substrate using RF reactive magnetron sputtering”, Surface and Coatings Technology, Vol. 173, pp. 299-308 (2003).
    [36] Wong, F. L., Fung, M. K., Tong, S. W., Lee, C. S., and Lee, S. T., “Flexible organic light-emitting device based on magnetron sputtered indium-tin-oxide on plastic substrate”, Thin Solid Films, Vol. 466, Issue 1-2, pp. 225-230 (2004).
    [37] Yu, H. H., Hwang, S. J., Tseng, M. C. , Tseng, C. C., “The effect of ITO films thickness on the properties of flexible organic light emitting diode”, Optics Communications, Vol. 259, Issue 1, pp. 187-193 (2006).
    [38] 李智淵,「脈衝直流磁控濺鍍ITO透明導電膜於塑膠基板之研究」,碩士論文,國立彰化師範大學機電工程學系,彰化 (2006)。
    [39] Chen, J., and Bull, S. J., “Loading rate effects on the fracture behaviour of solar control coatings during nanoindentation”, Thin Solid Films, Vol. 516, Issue 2-4, pp. 128-135 (2007).
    [40] Chen, J., and Bull, S. J., “Assessment of the toughness of thin coatings using nanoindentation under displacement control”, Thin Solid Films, Vol. 494, Issue 1-2, pp. 1-7 (2006).
    [41] Stoney, G. G., “The tension of metallic films deposited by electrolysis”, Proceedings of the Royal Society of London. Series A, Vol. 82, Issue 553, pp. 172-175 (1909).
    [42] Chen, H. Y., Chen, J. H., and Lu, F. H., “Evaluation of Poisson’s ratio and Young’s modulus of nitride films by combining grazing incidence X-ray diffraction and laser curvature techniques”, Thin Solid Films, Vol. 516, Issue 2-4, pp. 345-348 (2007).
    [43] Le Boité, M. G., Traverse, A., Névot, L., Pardo, B., and Corno, J., “Grazing X-ray reflectometry and rutherford backscattering: two complementary techniques for the study of thin film mixing”, Nuclear Instruments and Methods in Physics Research Section B, Vol.29, Issue 4, pp. 653-660 (1988).
    [44] Bergman, L., and Nemanich, R. J., “Raman and Photoluminescence analysis of stress state and impurity distribution in diamond thin films”, Journal of Applied physics, Vol. 78, Issue 11, pp. 6709-6719 (1995).
    [45] 賴耿陽編著,薄膜製作工藝學,復漢出版社,台南市,第1-40頁,第110-225頁 (1983)。
    [46] 李正中編著,光學薄膜製鍍技術及應用,行政院國科會光電小組編印,台北市,第1-17頁,第28-29頁 (1983)。
    [47] 田民波、顏怡文,薄膜技術與薄膜材料,五南圖書出版公司,台北市,第八、十五章 (2007)。
    [48] 曾煥華,電漿的世界,銀禾文化事業有限公司,新北市,第一章 (1987)。
    [49] 陳光華、鄧金祥、張勁燕,奈米薄膜技術與應用,五南圖書出版公司,台北市,第二章 (2005)。
    [50] Tabor, D., The hardness of metals, Oxford Classic Texts, Oxford University Press (1951).
    [51] Sneddon, I. N., “The relaxation between load and penetration in the axisymmetric bussinesq problem for a punch of arbitrary profile”, International Journal of Engineering Science, Vol. 3, Issue 1, pp. 47-57 (1965).
    [52] Doerner, M. F., and Nix, W. D., “A method for interpreting the data from depth-sensing indentation instruments”, Journal of Materials Research, Vol. 1, Issue 4, pp. 601-609 (1986).
    [53] Mayo, M. J., Siegel, R. W., Narayanasmy, A., and Nix, W. D., “Mechanical properties of nanophase TiO2 as determined by nanoindentation”, Journal of Materials Research, Vol. 5, Issue 5, pp. 1073-1082 (1990).
    [54] Mayo M.J. and Nix W.D., “Measuring and understanding strain rate sensitive deformation with the nanoindenter, Strength of Metals and Alloys”, Proceedings of the 8th International Conference on the Strength of Materials, Pergamon Press, Oxford, pp. 1415-1420 (1988).
    [55] Karimi, A., Wang, Y., Cselle, T., and Morstein, M., “Fracture mechanisms in nanoscale layered hard thin films”, Thin Solid Films, Vols. 420-421, pp. 275-280 (2002).
    [56] Li, X., and Bhushan, B., “Measurement of fracture toughness of ultra-thin amorphous carbon films”, Thin Solid Films, Vol. 315, Issue 1-2, pp. 214-221 (1998).
    [57] 陳冠維,「掃描式探針顯微鏡摩擦力檢測應用於不鏽鋼氮離子佈值技術之建立及材料微/奈米機械性質檢測」,碩士論文,國立成功大學機械工程系,台南市 (2003)。
    [58] Pharr, G. M., Oliver, W. C., and Brotzen, F. R., “On the generality of the relationship among contact stiffness, contact area, and the elastic modulus during indentation”, Journal of Materials Research, Vol. 7, Issue 3, pp. 613-617 (1992).
    [59] Guentert, O. J., “Study of the anomalous surface reflection of X-rays”, Journal of Applied physics, Vol. 36, Issue 4, pp. 1361-1366 (1965).
    [60] 許樹恩,吳泰伯,「X光繞射原理與材料結構分析」,中國材料科學學會 (1993)。
    [61] 汪建民,「材料分析」,中國材料科學學會 (1998)。
    [62] 林文智,「X光繞射倒異空間圖譜分析」,科儀新知,第22卷,第二期,第14-16頁 (2000)。
    [63] Cruickshank, D. W. J., Juretschke, H. J., and Kato, N., P. P. Ewald and his Dynamical Theory of X-ray Diffraction, Oxford University Press, I.U.Cr and O.U.P. Book series, Oxford, pp. 114-123 (1992).
    [64] Lopes, C., Parreira, N. M. G., Carvallho, S., Cavaleiro, A., Rivière, J. P., Le Bourhis, E., and Vaz, F., “Magnetron sputtered Ti-Si-C thin films prepared at low temperatures”, Surface and Coatings Technology, Vol. 201, Issues 16-17, pp. 7180-7186 (2007).
    [65] Cowley, R. A., and Ryan, T.W., “X-ray scattering studies of thin films and surfaces: thermal oxides on silicon”, Journal of Physics D: Applied Physics, Vol. 20, Issue 1, pp. 61-68 (1987).
    [66] Stamm, M., Reiter, G., and Kunz, K., “The use of X-ray and neutron reflecto-metry for the investigation of polymeric thin films”, Physica B, Physics of Condensed Matter, Vol. 173, Issue 1-2, pp. 35-42 (1991).
    [67] Belaish, I., Entin, I., Goffer, R., Davidov, D., Selig, H., McCauley, J. P., Coustel, N., Fischer, J. E., and Smith, A. B., “Spin cast thin films of fullerenes and fluorinated fullerenes: Preparation and characterization by X-ray reflectivity and surface diffuse X-ray scattering”, Journal of Applied Physics, Vol. 71, Issue 10, pp. 5248-5250 (1992).
    [68] Zhou, X. L., and Chen, S. H., “Theoretical foundation of X-ray and neutron reflectometry”, Physics Reports, Vol. 257, Issue 4-5, pp. 223-348 (1995).
    [69] Vermeulen, A. C., and Götz, D., “Data collection requirements for the analysis of residual stress in polycrystalline coatings”, Materials Science Forum, Vols. 524 - 525 , pp. 795-800 (2006).
    [70] 郭俊頡,「利用RF濺鍍技術於室溫下將ITO成長在塑膠基板上之研究」,碩士論文,國立中山大學光電工程研究所,高雄市 (2005)。
    [71] Liao, Y. T., Four-point probe user manual, NSC Southern Region MEMS Research Center (2003).
    [72] Saha, R., and Nix, W. D., “Effect of the substrate on the determination of thin film mechanical properties by nanoindentation”, Acta Materialia, Vol. 50, Issue 1, pp. 23-38 (2002).
    [73] Kim, D. H., Yoon, H. K., Shin, D. H., and Murakami, R. I., “Mechanical properties of ITO/PET thin film deposited by DC MG method”, Electronics Materials and Packaging, pp. 174-178 (2005).
    [74] Tsui, Y. C., and Clyne, T. W., “An analytical model for predicting residual stresses in progressively deposited coatings”, Thin Solid Films, Vol. 306, Issue 1, pp. 23-33 (1997).
    [75] Cho, H., Kim, H. Y., and Miyazaki, S., “Alloying process of sputter-deposited Ti / Ni multilayer thin films”, Materials Science and Engineering A, Vols. 438-440, pp. 699-702 (2006).
    [76] Guille´n, C., and Herrero, J., “Comparison study of ITO thin films deposited by sputtering at room temperature onto polymer and glass substrates”, Thin Solid Films, Vol. 481, pp. 129-132 (2005).
    [77] Bolshakov, A. and Pharr, G. M., “Influence of pile-up on the measurement of mechanical properties by load and depth sensing indentation techniques”, Journal of Materials Research, Vol. 13, pp. 1049-1058, (1998).
    [78] 陳靜怡,「氧化鋅中介層對ITO透明導電膜性質之影響」,碩士論文,國立成功大學材料科學及工程學系,台南市 (2002)。
    [79] Rizzo, A., Sagace, M., Galietti, U., and Pappalettere, C., “Measurements of strain during vapour deposition of thin films and multilayers”, Thin Solid Films, Vol. 433, Issues 1-2, pp. 144-148 (2003).
    [80] Bai, M. W., Kato, K. J., Umehara, N., and Miyake, Y., “Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films”, Thin Solid Films, Vols. 377-378, Issue 1, pp. 138-147 (2000).
    [81] Hussain, S., Ahmad, S., Sharif, M., Sadiq, M., Waheed, A., and Zakaullah, M., “Comparative studies of X-ray emission from a plasma focus with different metal inserts at the anode tip”, Physics Letters A, Vol.349, Issues 1-4, pp. 236-244 (2006).

    QR CODE