簡易檢索 / 詳目顯示

研究生: 莊昀倩
Yun-Chien Chuang
論文名稱: 以奈米壓痕技術探討無機聚合物漿體之物化性質
Physicochemical Properties of Geopolymer Gel Characterized by Nanoindentation
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 陳君弢
張大鵬
朱瑾
王韡蒨
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 252
中文關鍵詞: 奈米壓痕微觀分析彈性模數硬度爐石基無機聚合物飛灰稻殼灰
外文關鍵詞: nanoindentation, microanalysis, elastic modulus, hardness, slag based geopolymer, coal fly ash, rice husk ash
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 II Abstract III 致謝 I 目錄 II 表目錄 VI 圖目錄 XII 第一章 緒論 23 1.1 研究動機 23 1.2 研究目的 24 1.3 研究方法與流程 24 第二章 文獻回顧 27 2.1 無機聚合物 27 2.1.1 無機聚合物的反應機理 27 2.1.2 無機聚合物反應機理 28 2.1.3 無機聚合物微觀結構型態 29 2.1.4 影響物化性質之因素 30 2.1.5 不同成分之無機聚合物 32 2.1.6 無機聚合物之特性與實務應用 34 2.2 奈米壓痕 34 2.2.1 奈米壓痕簡介 35 2.2.2 奈米壓痕操作原理 35 2.2.3 奈米壓痕分析模型Oliver & Pharr Model 37 2.2.4 水泥材料應用 38 2.2.5 無機聚合物材料應用 39 第三章 試驗計畫 47 3.1 試驗內容及變數 47 3.1.1 變數說明 47 3.1.2 編碼說明 49 3.2 試驗材料 50 3.3 試驗儀器與設備 51 3.4 奈米壓痕位置 54 3.5 樣品準備 55 3.5.1 無機聚合物拌和步驟 55 3.5.2 無機聚合物養護方式 56 3.5.3 冷鑲埋 56 3.5.4 研磨拋光 57 3.6 萬能試驗機抗壓 58 3.7 奈米壓痕機 59 3.7.1 單點壓痕(Indentation) 59 3.7.2 高速打點XPM (Accelerated Property Mapping) 60 3.7.3 斜方差矩陣 (Covariance Matrix) 61 3.8 微觀分析 62 3.8.1 高解析度場發射掃描式電子顯微鏡(FE-SEM) 62 3.8.2 能量色散X射線光譜(EDS) 63 3.8.3 X光繞射分析儀分析(XRD) 64 第四章 試驗結果與討論 87 4.1 前言 87 4.2 先期試驗 87 4.2.1 奈米壓痕參數的設定 87 4.2.2 白色區域奈米壓痕測試 88 4.2.3 黑色區域奈米壓痕試驗 89 4.2.4 無機聚合物於空氣養護 92 4.3 力學試驗 92 4.3.1 液固比例之影響 92 4.3.2 鹼激發劑種類之影響 93 4.3.3 鹼激發劑濃度之影響 93 4.3.4 鹼激發劑混合比例之影響 94 4.3.5 拌和順序之影響 95 4.3.6 不同基材之影響 96 4.4 奈米壓痕試驗 97 4.4.1 液固比例之影響 97 4.4.2 鹼激發劑種類之影響 105 4.4.3 鹼激發劑濃度之影響 112 4.4.4 鹼激發劑混合比例之影響 117 4.4.5 拌和順序之影響 127 4.4.6 不同基材之影響 134 4.5 微觀分析 143 4.5.1 掃描式電子顯微鏡分析 143 4.5.2 不同齡期之元素分析 150 4.6 物化性質比較 152 4.6.1 液固比例之影響 152 4.6.2 鹼激發劑種類之影響 153 4.6.3 鹼激發劑濃度之影響 154 4.6.4 鹼激發劑混合比例之影響 155 4.6.5 拌和順序之影響 156 4.6.6 不同基材料之影響 157 4.6.7 結語 158 第五章 結論與建議 237 5.1 結論 237 5.2 建議 239 參考文獻 240 附錄 245

    [1] Adesina, P. A., Olutoge, F. A. (2019). "Structural properties of sustainable concrete developed using rice husk ash and hydrated lime."Journal of Building Engineering 25: 100804.

    [2] Aliabdo, A. A., Elmoaty, A. E. M., Emam, M. A. (2019). "Factors affecting the mechanical properties of alkali activated ground granulated blast furnace slag concrete." Construction and Building Materials 197: 339-355.

    [3] Bakharev, T., Sanjayan, J. G., Cheng, Y. B. (1999). "Effect of elevated temperature curing on properties of alkali-activated slag concrete." Cement and Concrete Research 29: 1619-1625.

    [4] Banthia, N., Mindess, S., and Jiang, Z. W. (2011). "Influence of Feedback Control on Flexural Toughness of Fiber Reinforced Concrete in ASTM C1399 Tests." Journal of Testing and Evaluation 39: 664-670.

    [5] Bhushan, B. (1999). "Surface Forces and Nanorheology of Molecularly Thin Films " Handbook of mirco/nanotribology 2nd Edition, 21: 543-603

    [6] Berkovich, E. (1951). "Three faceted diamond pyramid for micro-hardness testing." Industrial Diamond Review 11: 129.

    [7] Brough, A. R., Holloway, M., Sykes, J., Atkinson, A. (2000). "The retarding effect of additions of sodium chloride or malic acid." Cement and Concrete Research 30: 1375-1379.

    [8] Cao, Y. Z. , Nannan, T., Bahr, D., Zavattieri, P. D. , Youngblood, J. , Moon, R. J. and Weiss, J. (2016). "The influence of cellulose nanocrystals on the microstructure of cement paste." Cement and Concrete Composites 74: 164-173.

    [9] Cheng, T. W., and Chiu, J. P . (2003). "Fire-resistant geopolymer produced by granulated blast furnace slag." Minerals Engineering 16: 205-210.

    [10] Chi, M. (2015). "Effects of modulus ratio and dosage of alkali-activated solution on the properties and micro-structural characteristics of alkali-activated fly ash mortars." Construction and Building Materials 99: 128-136.

    [11] Davidovits, J. (2008). Geopolymer Chemistry & Application. France, Institut Géopolymère.23

    [12] Davidovits, J., James, C.,Davidovits, R. (1999). Chemistry of geopolymer systems terminology. Proceedings Of Geopolymer 99 Second International Conference, Institut Geopolymere, Saint-Quentin, France.

    [13] Alex, J., Dhanalakshmi, J. and Ambedkar, B. (2016). "Experimental investigation on rice husk ash as cement replacement on concrete production." Construction and Building Materials" 127: 353-362.

    [14] Dey, A., and Mukhopadhyay, A. K. (2014). Nanoindentation of brittle solids ,CRC Press/Taylor & Francis Group: Boca Raton, FL, U.S.A.

    [15] Duxson, P., Provis, J. L., Lukey, G. C.,van Deventer, J. S. J. (2007). "The role of inorganic polymer technology in the development of ‘green concrete’." Cement and Concrete Research 37(12): 1590-1597.

    [16] Gautham, S., and Saptarshi S. (2019). "Recent Advances in Evaluation of intrinsic mechanical properties of cementitious composites using nanoindentation technique" Construction and Building Materials 223: 883-897.

    [17] Gebregziabiher, B. S., Thomas, R. J.,Peethamparan, S. (2016). "Temperature and activator effect on early-age reaction kinetics of alkali-activated slag binders." Construction and Building Materials 113: 783-793.

    [18] Haha, M. B., Lothenbach, B., Le Saout, G.,Winnefeld, F. (2011). "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part I: Effect of MgO." Cement and Concrete Research 41(9): 955-963.

    [19] Hu, C. and Li, Z. (2015). "A review on the mechanical properties of cement-based materials measured by nanoindentation." Construction and Building Materials 90: 80-90.

    [20] Hysitron, I. (2016). TI 980 TriboIndenter User Manual I. Hysitron, Hysitron, Inc.

    [21] Ishlinsky, A. (1944). "The axial-symmetrical problem in plasticity and the Brinell test. " Theoretical Research Translation 2: 47.

    [22] Jaroslav, M. (2012). "Uncertainties and Errors in Nanoindentation." in Nanoindentation in Materials Science, J. Nemecek, InTech, Rijeka, Croatia.

    [23] Kjellsen, K. O., Monsøy, A., Isachsen, K. and Detwiler, R. J. (2003). "Preparation of flat-polished specimens for SEM-backscattered electron imaging and X-ray microanalysis—importance of epoxy impregnation." Cement and Concrete Research 33: 611-616.

    [24] Knoop, F., Peters, C. G. and Emerson, W. B. (1939). "A sensitive pyramidal-diamond tool for indentation measurements." Journal of Research of the National Bureau of standards 23: 39-61.

    [25] Komnitsas, K., Zaharaki, D.,Perdikatsis, V. (2009). "Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers." Journal of Hazardous Materials 161(2): 760-768.

    [26] Li, C., Sun, H.,Li, L. (2010). "A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements." Cement and Concrete Research 40(9): 1341-1349.

    [27] Lips, E. and Sack, J. (1936). "A hardness tester for microscopical objects." Nature 138: 328.

    [28] Luo, Z., Li, W., Gan, Y., Mendu, K. and Shah, S.P. (2020). "Applying grid nanoindentation and maximum likelihood estimation for N-A-S-H gel in geopolymer paste: Investigation and discussion." Cement and Concrete Research 135: 106112.

    [29] Maragkos, I., Giannopoulou, I. P.,Panias, D. (2009). "Synthesis of ferronickel slag-based geopolymers." Minerals Engineering 22: 196-203.

    [30] Mondal, P., Shah, S. P. and Marks, L. (2007). "A reliable technique to determine the local mechanical properties at the nanoscale for cementitious materials." Cement and Concrete Research 37: 1440-1444.

    [31] Muthukrishnan, S., Gupta, S.,Kua, H. W. (2019). "Application of rice husk biochar and thermally treated low silica rice husk ash to improve physical properties of cement mortar." Theoretical and Applied Fracture Mechanics 104: 102376.

    [32] Newey, D., Wilkins, M. A. and Pollock, H. M. (1982). "An Ultra-Low-Load Penetration Hardness Tester." Journal of Physics E-Scientific Instruments 15: 119-122.

    [33] Oliver, W. C., and Pharr, G. M. (1992). "An Improved Technique for Determining Hardness and Elastic-Modulus Using Load and Displacement Sensing Indentation Experiments." Journal of Materials Research 7: 1564-1583.

    [34] Palomo, M. W. G. A.,Blanco, M. T. (1999). "Alkali-activated fly ashes: A cement for the future." Cement And Concrete Research 29: 1323-1329.

    [35] Phair, J. W., Smith, J. D.,Van Deventer, J. S. J. (2003). "Characteristics of aluminosilicate hydrogels related to commercial "Geopolymers"" Materials Letters 57: 4356-4367.

    [36] Phair, J. W.,Van Deventer, J. S. J. (2002). "Effect of the silicate activator pH on the microstructural characteristics of waste-based geopolymers." International Journal of Mineral Processing 66: 121-143.

    [37] Pharr, G. M. (1998). "Measurement of mechanical properties by ultra-low load indentation." Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 253: 151-159.

    [38] Purdon, A.O. (1940). "The action of alkali on the blast furnace slag." Journal Of The Society Of Chemical Industry 59: 191-202.

    [39] Richardson, I. G. (2000). "The nature of the hydration products in hardened cement pastes" Cement and Concrete Composites 22: 97-113.

    [40] Sakulich, A. R., and Li, V. C. (2011). "Nanoscale characterization of engineered cementitious composites (ECC)." Cement and Concrete Research 41: 169-175.

    [41] Scott, H., and Gray, T. (1939). "Relation between the Rockwell “C” and diamond pyramid hardness scales." Trans. ASM 27: 363-381.

    [42] Shi, C.,Day, R. L. (1995). "A calorimetric study of early hydration of alkali-slag cements." Cement and Concrete Research 25: 1333-1346.

    [43] Shi, C.,Day, R. L. (1996). "Some factors affecting early hydration of alkali-slag cements." Cement and Concrete Research 26(3): 439-447.

    [44] Smith, R. L., and Sandly, G. E. (1922). "An Accurate Method of Determining the Hardness of Metals, with Particular Reference to Those of a High Degree of Hardness." Proceedings of the Institution of Mechanical Engineers 102: 623-641.

    [45] Sneddon, I. N. (1965). "The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile." International journal of engineering science 3: 47-57.

    [46] Struble, L., and Stutzman, P. (1989). "Epoxy impregnation of hardened cement for microstructural characterization." Journal of Materials Science Letters 8: 632-634.

    [47] Swanepoel, J. C., and Strydom, C. A. (2002). "Utilisation of fly ash in a geopolymeric material." Applied Geochemistry 17: 1143-1148.

    [48] Van Jaarsveld, J. G. S., Van Deventer, J. S. J.,Lorenzen, L. (1997). "The potential use of geopolymeric materials to immobilise toxic metals: Part I. Theory and applications." Minerals Engineering 10(7): 659-669.

    [49] Van Jaarsveld, J. G. S., Van Deventer, J. S. J.,Lorenzen, L. (2003)."The characterisation of source materials in fly ash-based geopolymers." Materials Letters 57: 1272-1280.

    [50] Wang, S. D.,Scrivener, K. L. (1995). "Hydration products of alkali activated slag cement." Cement and Concrete Research 25: 561-571.

    [51] Xu, H.,Van Deventer, J. S. J. (2000). "The geopolymerisation of alumino-silicate minerals." International Journal Minerals Process 59: 247-266.

    [52] Xu, H., Van Deventer, J. S. J.,Lukey, G. C. (2001). "Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures." Industrial Engineering Chemical Research 40: 3749-3756.

    [53] Zhou, H., Wu, X., Xu, Z., and Tang, M. (1993). "Kinetic study on hydration of alkali-activated slag." Cement and Concrete Research 23(6): 1253-1258.

    [54] 代新祥、文梓芸 (2001). 土壤聚合物水泥. 新型建築材料. 北京. 6: 34-35.

    [55] 姚廷穎 (2020). 不同養護環境下含低溫煆燒稻殼灰無機聚合物漿體之抗壓強度與體積穩定性研究. 營建工程研究所, 國立台灣科技大學. 碩士論文.

    [56] 周侑婷 (2019). 以奈米壓痕技術探討C-S-H膠體之物化性. 營建工程研究所, 國立台灣科技大學. 碩士論文.

    [57] 張鈞浩 (2018). 含低溫煆燒稻殼灰無機聚合物漿體之力學與乾縮性質. 營建工程研究所, 國立台灣科技大學. 碩士論文.

    [58] 陳冠宇 (2010). 鹼激發爐石基膠體配比因子對其工程性質影響之研究. 營建工程研究所, 國立台灣科技大學. 碩士論文.

    [59] 陳姵華 (2017). 含低溫鍛燒稻殼灰漿體之力學與耐久性質. 營建工程研究所, 國立台灣科技大學. 碩士論文.

    [60] 黃兆龍 (2007). 混凝土性質與行為. 台北市, 詹氏書局.

    無法下載圖示 全文公開日期 2031/09/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE