簡易檢索 / 詳目顯示

研究生: 梁祺安
Chi-an Liang
論文名稱: 聚乳酸-聚丙二醇-聚乳酸三團聯共聚物之硬段長度對結晶成長及表面能量的影響
Effect of Hard Segment Length on Crystallization Growth and Surface Energy in Poly(L-lactide) -Poly(propylene glycol) -Poly(L-lactide) Triblock Copolymers
指導教授: 胡孝光
Shiaw-guang Hu
口試委員: 何明樺
Ming-hua Ho
許貫中
Kuan-chung Hsu
朱一民
I-ming Chu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 三團聯共聚物聚乳酸結晶度晶片厚度接觸角表面能量
外文關鍵詞: triblock copolymer, Poly(L-lactide), Crystallinity, thickness of lamellae, contact angle, surface energy
相關次數: 點閱:258下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究合成不同聚合度的聚乳酸( PLLA,聚合度= 59~450 )與聚丙二醇( PPG,分子量= 4000 g/mol )三團聯共聚物( PLLA-PPG-PLLA)。使用DSC觀察共聚物熱性質與PLLA鏈段長度的關係,以實驗求得之熔融焓估算出PLLA鏈段之結晶度,討論PLLA鏈段的結晶度與PLLA鏈段長度的關係。再利用偏光顯微鏡,觀察改變PLLA鏈段長度對球晶成長動力學參數的影響。以Hoffman-Weeks方法估平衡熔點,再估計平衡晶片厚度,討論平衡晶片厚度與PLLA鏈段長度之標度關係。另外,使用接觸角測量儀,觀察不同PLLA鏈段長度的共聚物之接觸角,藉由Girifalco-Good- Fowkes -Young equation 估算共聚物的表面能量及表面能量中極性成份與非極性成份,討論表面能量與PLLA鏈段長度及PLLA鏈段結晶度之關係。
    以DSC測量共聚物的熱性質,結果顯示,共聚物的熔融溫度及結晶溫度均隨著PLLA鏈段長度增加而愈大,其共聚物的分子量愈大,熔融溫度愈大。共聚物的結晶溫度大約為其熔融溫度的0.8倍。其熔融焓與結晶焓也隨著PLLA鏈段長度增加而愈大。以△HmPLLA對PLLA鏈段長度作圖,發現△HmPLLA隨著PLLA鏈段長度增加而愈大。共聚物中PLLA鏈段的結晶度會隨著PLLA鏈段愈短而愈小,其PLLA鏈段的結晶度受非晶PPG影響愈大。
    根據Lauritzen-Hoffman成核現象理論分析共聚物球晶成長速率,發現隨著PLLA鏈段長度減少,共聚物的球晶成長動力學參數愈小。藉由Gibbs-Thomson-Tammann 及 Hoffman-Weeks方程式其得共聚物的平衡晶片厚度,會隨著PLLA鏈段長度減少而愈小,且求得平衡晶片厚度Lc與PLLA鏈段長度的標度指數α 為1.360,非平衡晶片厚度L與PLLA鏈段長度的標度指數α'為0.733。
    在接觸角實驗中,水及甲醯胺與共聚物的接觸角均會隨PLLA鏈段愈短愈大,顯示PLLA鏈段愈短,共聚物的極性愈小。利用Girifalco-Good-Fowkes-Young equation求出共聚物的表面能量,共聚物的總表面能量會隨著PLLA鏈段愈短而減少,約有20%的下降。
    以共聚物的總表面能量對非平衡晶片厚度作圖,可知共聚物的總表面能量會隨著非平衡晶片厚度愈厚而愈大。共聚物的總表面能量不但受到PLLA鏈段長度的影響,也會受PLLA鏈段的結晶度影響。


    Poly(L-lactide)-poly(propylene glycol)-poly(L-lactide) (PLLA-PPG-PLLA) triblock copolymers with PPG (the number average molecular weight ‾= 4000 g/mol) and various PLLA length (degree of polymerization = 59 to 450 ) were synthesized. We observe the relationship between thermal properties of copolymers and length of PLLA segment with differential scanning calorimetry (DSC). Using the melting enthalpy to estimate crystallinity of PLLA segment we discuss relationship between length of PLLA segments and crystallinity of PLLA segments. The equilibrium melting point and spherulitic growth rate of copolymers were examined with polarizing microscopy. In conjunction with data, the Hoffman nucleation theory was used to obtain kinetic parameters such as nucleation constants (Kg), pre-exponential factor(G0), and fold surface energy(σe). The thickness of equilibrium lamellae was calculated, via equations by Hoffman-Weeks and Gibbs-Thomson-Tammann. In addition, we measure the liquid-drop contact angles of copolymers with goniometry. Finally, using Girifalco-Good-Fowkes-Young equation we calculate the surface energies and discuss the relationship between the surface energy and length of PLLA segments.
    DSC measurement showed that the melting temperature and crystallization temperature of copolymers increased with the increasing length of PLLA segments. The crystallization temperature of copolymer is 0.8 times the melting temperature. The melting enthalpy and crystallization enthalpy also increase with the increasing length of PLLA segment. We plot melting enthalpy per unit mass of PLLA (△HmPLLA) versus the length of PLLA segment. It is found that △HmPLLA increases with the increasing length of PLLA segments. The crystallinity of PLLA segment decreases with the decreasing length of PLLA segments, showing that the crystallinity of PLLA segment was affected by amorphous PPG significantly.
    According to the Lauritzen-Hoffman nucleation theory we analyze the spherulitic growth rate of copolymers, showing that, as long as length of PLLA segments decrease, Kg and σe of copolymers decrease. The thickness of equilibrium lamellae (Lc) decreases with the decreasing length of PLLA segments. The scaling exponent value α between Lc and length of PLLA segment is 1.360 and the scaling exponent value α' between thickness of non-equilibrium lamellae (L) and length of PLLA segment is 0.733.
    In contact angle experiments, the contact angle of copolymers with water and formamide increase with the increasing length of PLLA segments, showing that, as long as length of PLLA segments decrease, the polarity of copolymers becomes smaller. The total surface energy of copolymers decreases with the decreasing length of PLLA segments. There is a 20% decrease.
    We plot the total surface energy versus thickness of non-equilibrium lamellae. It is found that the surface energy increases with thickness of non-equilibrium lamellae. The surface energy of copolymers is affected not only by length of PLLA segments but also by the crystallinity of PLLA segments.

    目錄 中文摘要....................................................................................................I 英文摘要...................................................................................................III 致謝..........................................................................................................V 目錄.........................................................................................................VI 圖表索引..................................................................................................VIII 聚乳酸-聚丙二醇-聚乳酸三團聯共聚物之硬段長度對結晶成長及表面能量的影響 一、前言 ......................................................................................1 二、實驗步驟 ................................................................................6 2.1 三團聯共聚物PLLA-PPG-PLLA之聚合反應 .................................6 2.2 質子核磁共振光譜分析 ............................................................7 2.3 紅外線光譜分析 ......................................................................7 2.4 微分掃描熱卡計 ......................................................................7 2.5 球晶平衡熔點測定 ...................................................................8 2.6 球晶成長實驗 .........................................................................8 2.7 接觸角測量的製膜 ...................................................................8 2.8 接觸角測量實驗 ......................................................................9 三、結果與討論 ............................................................................10 3.1 PLLA-PPG-PLLA三團聯共聚物聚合反應與組成分析 .....................10 3.2 FTIR分析 ..............................................................................11 3.3 DSC 分析 ..............................................................................13 3.3.1 熱性質 ...........................................................................13 3.3.2 共聚物中PLLA鏈段之結晶度 ..............................................14 3.4 結晶動力學分析 ......................................................................15 3.4.1 平衡熔點的測量 ...............................................................15 3.4.2 球晶成長速率 ..................................................................16 3.4.3 成核分析 ........................................................................17 3.5 計算平衡與非平衡晶片厚度 ......................................................19 3.6 平衡與非平衡晶片厚度與硬段長度之標度關係 .............................20 3.7 非平衡晶片厚度與PLLA鏈段結晶度之關係 ..................................22 3.8 共聚物的接觸角與表面能量 ......................................................22 3.8.1 共聚物的接觸角 ...............................................................22 3.8.2 共聚物的表面能量計算 ......................................................23 3.8.3 共聚物表面能量與非平衡晶片厚度之關係 .................................25 四、結論 .......................................................................................26 五、參考文獻 .................................................................................28 附錄A Gibbs-Thomson-Tammann equation 推導 .......................64 附錄B 在均聚物與共聚物中的平衡晶片厚度 .....................................66 附錄C 本體型態與表面的示意圖 .....................................................67 附錄D 符號表 ..............................................................................68 圖表索引 Table 1. Characteristics of PLLA-PPG-PLLA triblock copolymers. .........................33 Table 2. Peak Height and ratio of PLLA-PPG-PLLA in FTIR spectra. ......................34 Table 3. Melting temperature and crystallization temperature data of PLLA-PPG-PLLA copolymers. (20 degrees C per minute heated up from 0 to 180, and then immediately cooled down from 180 to 0 degree at 20 degrees C per minute) ........................................35 Table 4. Melting enthalpy and crystallization enthalpy data of PLLA-PPG-PLLA copolymers. ......................................36 Table 5. Crystallinity of PLLA segment in PLLA-PPG-PLLA copolymers. .................37 Table 6. Extrapolated equilibrium melting temperature and thickening coefficient in PLLA-PPG-PLLA triblock copolymers, using Hoffman-Weeks method. ..............................38 Table 7. Calculated values of nucleation constants Kg,pre-exponential factors G0,σσe and σe. .....................39 Table 8. The thickness of equilibrium (Lc) and non-equilibrium lamellae (L) . ........40 Table 9. Data of contact angle (degree) using two liquids for PLLA-PPG-PLLA copolymers at 25℃. The deviation are less than 0.3°. ....................................................................41 Table 10. Values of the solubility parameters at 25℃. The data are from the reference35. ...............................................................42 Table 11. Values of the solubility parameters at 25℃. The data are from the reference35,40 . ............................................................43 Table 12. Values of the surface tension and their components at 20℃. The data are from the reference15. .........................................44 Figure 1. Schematics of synthesized PLLA-PPG-PLLA copolymers. ..........................45 Figure 2. 1H-NMR spectra of (A) PPG10 and (B) PPG30. ..........................................46 Figure 3. Molecular weight dependence of copolymers on PPG content in feeds. ....47 Figure 4. FTIR spectra of (A) PLLA and (B) PPG05 (C) PPG30. ....................................48 Figure 5. FTIR spectra of (A) PLLA (B) PPG05 (C) PPG30. ...........................................49 Figure 6. DSC spectra of (A) PLLA (B) PPG20. .........................................................50 Figure 7. Plot of melting temperature versus reciprocal of the degrees of polymerization of hard segment in PLLA-PPG-PLLA copolymers. ..........................................................51 Figure 8. Plot of crystallization temperature versus melting temperature of PLLA-PPG-PLLA copolymers. ..........................................52 Figure 9. Plot of △HmPLLA versus degrees of polymerization of PLLA segment in PLLA-PPG-PLLA copolymers. ..................................53 Figure 10. Melting point as function of the crystallization temperature for pure PLLA and PLLA-PPG-PLLA copolymers : (▲) PLLA; (■) PPG05; (●) PPG10; (△) PPG20; (□) PPG30. ...............................................................54 Figure 11. Polarized optical micrographs of PPG05 at 120℃ crystallized isothermally for (A) 3min (B) 7min (C) 11min. ( supercool temperature = 43.8 K ) ...................................55 Figure 12. Polarized optical micrographs of PPG20 at 110℃ crystallized isothermally for (A) 3min (B) 7min (C) 11min. ( supercool temperature = 42.2K ) ....................................56 Figure 13. Typical growth curves of (A) PLLA (B) PPG05 showing linear behavior. .....57 Figure 14. Growth rate data plotted as logG+U*/[2.3R(Tc-T∞)] versus 105/[Tc(△T) f ] for pure PLLA and PLLA-PPG-PLLA copolymers. ..............................................................58 Figure 15. Plot of crystallinity of PLLA segment versus thickness of non-equilibrium lamellae of PLLA-PPG-PLLA copolymers. .................................................................................59 Figure 16. Contact angle using two liquids on copolymer PPG10 at10s and 25℃ (A) H2O (B) Formamide. .............................................60 Figure 17. Contact angle using two liquids on copolymer PPG10 at 25s and 25℃ (A) H2O (B) Formamide. .............................................61 Figure 18. Surface energies versus ZPLLA of PLLA-PPG-PLLA copolymers. .................62 Figure 19. Surface energy versus thickness of non-equilibrium lamellae of PLLA-PPG-PLLA copolymers. .............................................63 Figure I. Schematic of chain-folded lamellar structure in semi-crystalline polymers with lateral dimensions X, Y and thickness l. σ and σe are the surface free energies associated with lateral and fold surfaces, respectively. ........................................................................64 Figure II. 3D Schematic of lamellar structure in PLLA-PPG-PLLA polymers. L is the thickness of equilibrium lamellae in PLLA. ................................................................................67 Figure III. Top view schematic of lamellar structure in PLLA-PPG-PLLA polymers . .......67

    1. L.-T. Lim, R. Auras, M. Rubino, “Processing Technologies for Poly(lactic acid)”, Prog. Polym. Sci., 33, 820 (2008).
    2. Th. F. Vandarmne and R. Legras, “Physico-Mechanical Properties of Poly(ε-caprolactone) for The Construction of Rumino-Reticulum Devices for Grazing Animals”, Biomaterials, 16, 1395 (1995).
    3. Z.-X. Du, J.-T. Xu, Y. Yang, Z.-Q. Fan, “Synthesis and Characterization of Poly(ε-caprolactone)-b-Poly(ethylene glycol) Block Copolymers Prepared by a Salicylaldimine-Aluminum Complex”, J. Appl. Polym. Sci., 104, 2986 (2007).
    4. E. Helfand and J. I. Lauritzen, Jr., “Theory of Copolymer Crystallization”, Macromolecules, 6, 631 (1973).
    5. T. Vilgis and A. Halperin, “Aggregation of Coil-Crystalline Block Copolymers: Equilibrium Crystallization”, Macromolecules, 24, 2090 (1991).
    6. E. A. DiMarzio, C. M. Guttman, and J. D. Hoffman, “Calculation of Lamellar Thickness in a Diblock Copolymer, One of Whose Components Is Crystalline”, Macromolecules, 13, 1194 (1980).
    7. R.-M. Ho, Y.-W. Chiang, “Crystallization and Melting Behavior of Poly(ε-caprolactone) under Physical Confinement”, Macromolecules, 38, 4769 (2005).
    8. J. D. Hoffman, “Role of Reptation in The Rate of Crystallization of Polyethylene Fractions from The Melt”, Polymer, 23, 656 (1982).
    9. W. Zhu, W. Xie, X. Tong, Z. Shen, “Amphiphilic Biodegradable Poly(CL-b-PEG-b-CL) Triblock Copolymers Prepared by Novel Rare Earth Complex: Synthesis and Crystallization Properties”, Eur. Polym. J., 43, 3522 (2007).
    10. 鄭弘隆, “聚己內酯-聚丙二醇-聚己內酯三團聯共聚物之合成與固體行為”, 國立台灣工業技術學院纖維及高分子研究所碩士論文 (1995).
    11. 林國華, “聚乳酸/聚乙二醇三團聯共聚物與聚摻合物中聚乙二醇對求晶成長與平衡型態之影響”, 國立台灣工業技術學院纖維暨高分子工程技術研究所碩士論文 (1997).
    12. S. Nojima, K. Kato, S. Yamamoto, and T. Ashida, “Crystallization of Block Copolymers. 1. Small-Angle X-ray Scattering Study of an ε-Caprolactone-Butadiene Diblock Copolymer”, Macromolecules, 25, 2237 (1992).
    13. R. Unger, D. Beyer, and E. Donth, “Phase Behaviour in Poly(ethylene oxide-b-t-butyl methacrylate) Block Copolymers”, Polymer, 32, 3305 (1991).
    14. Y. C. Ko, B. D. Ratner, and A. S. Hoffman, “Characterization of Hydrophilic-Hydrophobic Polymeric Surfaces by Contact Angle Measurements”, J. Colloid Interface Sci., 82, 25 (1981).
    15. H. Ni, X. Wang, “Surface Wetting Behavior of The Poly(styrene-b -isoprene-b-styrene) Triblock Copolymer with Different Chemical Structures of The Polyisoprene Block Chain”, Surface Science, 601, 1560 (2007).
    16. M. Khayet, M. Vazquez Alvarez, K.C. Khulbe, T. Matsuura, “Preferential Surface Segregation of Homopolymer and Copolymer Blend Films”, Surface Science, 601, 885 (2007).
    17. K. Li, P. Wu, Z. Han, “Preparation and Surface Properties of Fluorine-Containing Diblock Copolymers”, Polymer, 43, 4079 (2002).
    18. L. Bes, K. Huan, E. Khoshdel, M. J. Lowe, C. F. McConville, D. M. Haddleton, “Poly(methylmethacrylate-dimethylsiloxane) Triblock Copolymers Synthesized by Transition Metal Mediated Living Radical Polymerization: Bulk and Surface Characterization”, Eur. Polym. J., 39, 5 (2003).
    19. R. de Juana and M. Cortazar, “Study of the Melting and Crystallization Behavior of Binary Poly( ε-caprolactone) /Poly(hydroxy ether of Bisphenol A) Blends”, Macromolecules, 26, 1170 (1993).
    20. J.D. Hoffman and J. J. Weeks, “Rate of Spherulitic Crystallization with Chain Folds in Polychlorotrifluoroethylene”, J. Chem. Phys., 37, 1723 (1962).
    21. E. Meaurio, E. Zuza, N. Lόpez-Rodrίguez, and J. R. Sarasua, “Conformational Behavior of Poly(L-lactide) Studied by Infrared Spectroscopy”, J. Phys. Chem. B, 110, 5790 (2006).
    22. E. Meaurio, N. Lόpez-Rodrίguez, and J. R. Sarasua, “Infrared Spectrum of Poly(L-lactide): Application to Crystallinity Studies”, Macromolecules, 39, 9291 (2006).
    23. X. M. Shi, J. Zhang, J. Jin, S. J. Chen, “Non-isothermal Crystallization and Melting of Ethylene-Vinyl Acetate Copolymers with Different Vinyl Acetate Contents”, eXPRESS Polym. Lett., 2, 623 (2008).
    24. T. Miyata and T. Masuko, “Crystallization Behaviour of Poly(L-lactide)”, Polymer, 39, 5515 (1998).
    25. R. Vasanthakumari and A. J. Pennings, “Crystallization Kinetics of Poly(L-lactic acid)”, Polymer, 24, 175 (1983).
    26. J. I. Lauritzen Jr. and J. D. Hoffman, “Extension of Theory of Growth of Chain-folded Polymer Crystals to Large Undercoolings”, J. Appl. Phys., 44, 4340 (1973).
    27. J.D. Hoffman, G. T. Davis and J. I. Lauritzen Jr., in “Treatise on Solid State Chemistry”, N. B. Hannay, ed., Plenum press, New York, Vol 3, Chapter 7, 1976.
    28. M. L. Williams, R. F. Landel, and J. D. Ferry, “The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids”, J. Am. Chem. Soc., 77, 3701 (1955).
    29. B. S. Hsiao and B. B. Sauer, “Glass Transition, Crystallization, and Morphology Relationships in Miscible Poly ( aryl ether ketones) and Poly( ether imide) Blends”, J. Polym. Sci. Part B:Polym. Phys., 31, 901 (1993).
    30. T. Kawai, N. Rahman, G. Matsuba, K. Nishida, T. Kanaya, M. Nakano, H. Okamoto, J. Kawada, A. Usuki, N. Honma, K. Nakajima, and M. Matsuda, “Crystallization and Melting Behavior of Poly (L-lactic acid)”, Macromolecules, 40, 9463 (2007).
    31. B. Kalb and A. J. Pennings, “General Crystallization Behaviour of Poly(L-lactic acid)”, Polymer, 21, 607 (1980).
    32. P. D. Santis and A. J. Kovacs, “Molecular Conformation of Poly (S-lactic acid)”, Biopolymer, 6, 299 (1968).
    33. D. B. Roitman, H. Marand, R. L. Miller, and J. D. Hoffman, “Kinetics of Crystallization and Morphology of Poly(piva1olactone): Regime II → III Transition and Nucleation Constants”, J. Phys. Chem., 93, 6919 (1989).
    34. M. D. Whitmore and J. Noolandi, “Theory of Crystallizable Block Copolymer Blends”, Macromolecules, 21, 1482 (1988).
    35. Y. Du, Y. Xue, and H. L. Frisch, in “Physical Properties of Polymers Handbook”, J. E. Mark, ed., AIP Press, Woodbury, New York, Chapter 16, 1996.
    36. S. Wu, “Polymer Interface and Adhesion”, Marcel Dekker, New York, Chapter 3, 1982.
    37. D. B. Macleod, “On a Relation between Surface Tension and Density”, Trans. Faraday Soc., 19, 38 (1923).
    38. B. W. Cherry, “Polymer Surfaces”, Cambridge University Press, Chapter 1, 1981.
    39. J. R. Sarasua, R. E. Prud’homme, M. Wisniewski, A. Le Borgne, N. Spassky, “Crystallization and Melting Behavior of Polylactides”, Macromolecules, 31, 3895 (1998).
    40. S. Schenderlein, M. Luck, B. W. Muller, Int. J. Pharm., 286, 19 (2004).

    無法下載圖示 全文公開日期 2014/07/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE