簡易檢索 / 詳目顯示

研究生: 李亞倫
YA-LUN LEE
論文名稱: 生物可降解性高分子/黏土奈米複合材料植入於消化道固定之研究
Study of biodegradable polymer/clay nanocomposite implanted in gastro intestinal (GI) tract fixation
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 蔡協致
Hsieh-Chih Tsai
張浩銘
Hao-Ming Chang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 95
中文關鍵詞: 生物可降解性高分子奈米黏土腸套管聚己內酯聚乳酸第二型糖尿病大鼠十二指腸
外文關鍵詞: biodegradable polymer, duodenal barrier, polycaprolactone, poly(D,L-lactic acid), Laponite®, Obesity, type II diabetes
相關次數: 點閱:214下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用生物可降解性高分子與奈米黏土摻混物複合材料製成生物可降解性高分子腸套管,植入於第二型糖尿病肥胖大鼠十二指腸中,改善其體重與血糖,達到治療第二型糖尿病以及肥胖的效果。肥胖及第二型糖尿病為近年來越趨嚴重的醫療問題,而目前治療肥胖及肥胖所導致第二型糖尿病,外科手術是目前對於病態性肥胖病人較為有效治療方法,其目的在改變消化道結構與操縱胃腸生理運行,然而如此侵入式的治療會對於病患生理以及心理層面產生較大傷害,因此開發非侵入性治療用來治療肥胖及第二型糖尿病具有其重要性。聚己內酯與聚乳酸是現今普遍應用於生醫方面的高分子材料,兩者皆具有良好的生物相容性以及生物可降解的特性,並且皆具有不錯的機械性質,因此本研究將聚己內酯與聚乳酸摻混奈米黏土Laponite®,探討不同比例的高分子以及Laponite®在複合材料中的交互作用,以及不同比例的複合材料所增強的機械性質,在拉伸測試中提升最強的拉伸強度增加了109%。第二型糖尿病肥胖大鼠在植入高分子腸套管四周後腸套管的位移程度不一,而體重以及血糖均較控制組之第二型糖尿病肥胖大鼠有明顯的改善,組織病理切片報告則未有急性的發炎症狀。


    This research aim to control body weight and blood glucose of diabetic obesity rats by implant biodegradable polymer duodenal barrier, which is made by polycaprolactone/poly(D,L-lactic acid) blend clay nanocomposite. Obesity and type II diabetes is the serious medical problems in recent years. Surgery is still the gold-standard treatment for morbid obesity and obesity related type II diabetes, which changes the structure of the digestive tract and gastrointestinal physiology. But surgical risk and complication may cause the physiological and psychological stress of patients. Non-invasive therapy may be an alternative treatment for obesity and diabetes mellitus. Some research have already proved that implants a barrier, covering partial of the duodenum can alter intestinal hormones and reduce body weight and blood glucose. Polycaprolactone and poly(D,L-lactic acid) are two well-known biodegradable polymer, having great biocompatibility and fine mechanical properties. To enhance the mechanical properties of biodegradable polymer, polycaprolactone and poly(D,L-lactic acid) blend with nano-clay Laponite® under different content ratio. PCL/PDLLA/Laponite® nanocomposite has largest improvement of 109% in tensile test. Four weeks after duodenal barrier implant in intestine of diabetic obesity rats, body weight and blood glucose both have obvious improvement. Histopathological section report showed no acute symptoms of inflammation.

    總目錄 I 圖目錄 IV 表目錄 VI 摘要 VII 第一章 前言 1 1.1研究動機與目的 1 第二章 文獻回顧 3 2.1生醫高分子介紹 3 2.1.1生物可降解性高分子(Biodegradation polymers) 3 2.1.2生物降解性 4 2.1.3聚己內酯(Polycaprolactone, PCL) 5 2.1.4聚乳酸(Poly-lactic acid, PLA) 7 2.2高分子奈米複合材料 10 2.2.1高分子奈米複合材料介紹 10 2.2.2黏土複合材料 10 2.2.3奈米顆粒的分層 11 2.2.4奈米複合材料的機械性質 13 2.2.5高分子奈米複合材料的應用 14 2.2.6高分子摻混及相溶性 15 2.2.7生醫的應用 18 2.2.8 Laponite®的介紹 20 2.3糖尿病與肥胖症的介紹 23 2.3.1糖尿病的類型 23 2.3.2肥胖症的介紹 26 2.3.3市售用於減重與治療肥胖症或第二型糖尿病的醫療產品 29 2.3.3.1胃束帶(Laparoscopic Adjustable Gastric Band) 31 2.3.3.2胃水球(Bioenterics Intragastric Balloon) 32 2.3.3.3腸套管(duodenal-jejunal sleeve bypass/EndoBarrier®) 34 第三章 實驗方法 38 3.1實驗藥品及耗材 38 3.2實驗儀器 38 3.2.1微型混煉機(Xplore MC-15) 38 3.2.2拉曼光譜儀(JASCO NRS5100) 38 3.2.3掃描式電子顯微鏡分析(JEOL JSM-6500F) 38 3.2.4萬能材料試驗機(Testometric M500-25AT) 39 3.2.5 X光繞射分析儀(BRUKER D2 PHASER) 39 3.2.6穿透式電子顯微鏡分析(HITACH H-600) 39 3.2.7熱重分析儀(TA Q500) 39 3.2.8動態熱機械分析儀(TA Q800) 40 3.3實驗設計 41 3.3.1聚己內酯/聚D,L乳酸/Laponite®高分子奈米複合材料製備 41 3.3.2生物可降解高分子腸套管製備 42 3.3.3動物飼養 43 3.3.4動物實驗 43 3.4實驗流程圖 45 第四章 結果與討論 46 4.1聚己內酯/聚D,L乳酸/Laponite®高分子奈米複合材料性質分析 46 4.1.1掃描式電子顯微鏡成像分析 46 4.1.2拉曼光譜元素成像分析 49 4.1.3穿透式電子顯微鏡成像分析 52 4.1.4 X光繞射分析 54 4.1.5拉伸試驗 56 4.1.6 DMA分析 60 4.1.7熱重分析 62 4.2動物實驗 64 4.2.1利用X光觀察腸套管在大鼠體內的位置 64 4.2.2體重變化 67 4.2.3血糖控制 69 4.2.4組織切片 72 第五章 結論 75 第六章 參考文獻 76

    [1] W.H. Organization, Global report on diabetes, (2016).
    [2] R. G, M. Radin, C. E, L. Ragoli, Understanding the Effects of Roux-en-Y Gastric Bypass (RYGB) Surgery on Type 2 Diabetes Mellitus, (2013).
    [3] Y.A. Henry Buchwald, Eugene Braunwald, et al, Bariatric surgery a systematic review and meta-anlysis, JAMA 292(14) (2004) 1724-1737.
    [4] M. Labet, W. Thielemans, Synthesis of polycaprolactone: a review, Chem Soc Rev 38(12) (2009) 3484-504.
    [5] I. Castilla-Cortázar, J. Más-Estellés, J.M. Meseguer-Dueñas, J.L. Escobar Ivirico, B. Marí, A. Vidaurre, Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network, Polymer Degradation and Stability 97(8) (2012) 1241-1248.
    [6] J.Z.B. D.R Chen, S.G Wang, Polycaprolactone microparticles and their biodegradation, Polymer Degradation and Stability 67(3) (2000) 455-459.
    [7] H.-M. Chang, C.-C. Huang, V.R. Parasuraman, J.-J. Jhu, C.-Y. Tsai, H.-Y. Chao, Y.-L. Lee, H.-C. Tsai, In vivo degradation of poly (ε-caprolactone) films in Gastro Intestinal (GI) tract, Materials Today Communications 11 (2017) 18-25.
    [8] H.-M. Chang, A. Prasannan, H.-C. Tsai, J.-J. Jhu, Ex vivo evaluation of biodegradable poly(ɛ-caprolactone) films in digestive fluids, Applied Surface Science 313 (2014) 828-833.
    [9] J. Peña, T. Corrales, I. Izquierdo-Barba, A.L. Doadrio, M. Vallet-Regí, Long term degradation of poly(ɛ-caprolactone) films in biologically related fluids, Polymer Degradation and Stability 91(7) (2006) 1424-1432.
    [10] C.A.C.Z. E.A.R Duek, W.D Belangero, In vitro study of poly(lactic acid) pin degradation, polymer 40(23) (1999) 6465-6473.
    [11] S.J. Wolfgang Heidemann, Kurt RuffieuxcJürgen, Hartmut Fischer, Mathias Wagner, G Krügerd, Erich Wintermantel, Klaus Louis Gerlach, Degradation of poly(d,l)lactide implants with or without addition of calciumphosphates in vivo, Biomaterials 22(17) (2001) 2371-2381.
    [12] R. Munoz, J.S. Carmody, N. Stylopoulos, P. Davis, L.M. Kaplan, Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats, Am J Physiol Regul Integr Comp Physiol 303(10) (2012) R985-93.
    [13] H.B. Klinke, A.B. Thomsen, B.K. Ahring, Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass, Appl Microbiol Biotechnol 66(1) (2004) 10-26.
    [14] H.A. K. Sudesh, Y. Doi, Synthesis structure and properties of polyhydroxyalkanoates biological polyesters, Progress In Polymer Science 25 (2000) 1503-1555.
    [15] L. Avérous, E. Pollet, Biodegradable Polymers, Progress In Polymer Science 23 (2012) 13-39.
    [16] R. Mehta, V. Kumar, H. Bhunia, S.N. Upadhyay, Synthesis of Poly(Lactic Acid): A Review, Journal of Macromolecular Science, Part C: Polymer Reviews 45(4) (2005) 325-349.
    [17] C.L. Salgado, E.M. Sanchez, C.A. Zavaglia, P.L. Granja, Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels, J Biomed Mater Res A 100(1) (2012) 243-51.
    [18] T.M. James L. Hedrick, Eric F. Connor, Thierry Glauser, Willi Volksen, Craig J. Hawker, Victor Y. Lee, and Robert D. Miller, Application of Complex Macromolecular Architectures for Advanced Microelectronic Materials, Chemistry 8(15) (2002) 3308-19.
    [19] P. Joshi, G. Madras, Degradation of polycaprolactone in supercritical fluids, Polymer Degradation and Stability 93(10) (2008) 1901-1908.
    [20] R.A.G.a. BhanuKalra, Biodegradable polymers for the environment, Science 297(5582) (2002) 803-7.
    [21] D. Garlotta, A Literature Review of Poly(Lactic Acid), Journal of Polymers and the Environment 9(2) (2001).
    [22] S. Farah, D.G. Anderson, R. Langer, Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review, Adv Drug Deliv Rev 107 (2016) 367-392.
    [23] P. Saini, M. Arora, M. Kumar, Poly(lactic acid) blends in biomedical applications, Adv Drug Deliv Rev 107 (2016) 47-59.
    [24] H. Tsuji, Poly(lactide) stereocomplexes: formation, structure, properties, degradation, and applications, Macromol Biosci 5(7) (2005) 569-97.
    [25] a.G.L.W. Jianye Wen, Organic Inorganic Hybrid Network Materials by the Sol−Gel Approach, Chem. Mater 8(8) (1996) 1667-1681.
    [26] S. Sinha Ray, M. Okamoto, Polymer/layered silicate nanocomposites: a review from preparation to processing, Progress in Polymer Science 28(11) (2003) 1539-1641.
    [27] H. Olphen, Internal mutual flocculation in clay suspensions, Journal of Colloid Science 19(4) (1964) 313-322.
    [28] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer 49(15) (2008) 3187-3204.
    [29] T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories, Polymer 44(17) (2003) 4993-5013.
    [30] K.Y. Lee, D.R. Paul, A model for composites containing three-dimensional ellipsoidal inclusions, Polymer 46(21) (2005) 9064-9080.
    [31] P.J.Y. T.D Fornes, H Keskkula, D.R Paul, Nylon 6 nanocomposites-the effect of matrix molecular weight, Polymer 42(25) (2001) 09929-09940.
    [32] H.A. Stretz, D.R. Paul, R. Li, H. Keskkula, P.E. Cassidy, Intercalation and exfoliation relationships in melt-processed poly(styrene-co-acrylonitrile)/montmorillonite nanocomposites, Polymer 46(8) (2005) 2621-2637.
    [33] S.P.M. Rene´e T. MacDonald, and Richard A. Gross, Enzymatic Degradability of Poly(lactide): Effects of Chain Stereochemistry and Material Crystallinity, Macromolecules 29 (1996) 7356-7361.
    [34] S.A. Masaru Hosokawa, Miscibility of Ternary Amorphous Nylon/Poly(methyl methacrylate)/Poly(4-vinylphenol) Blends, Polymer 31 (1999) 13-20.
    [35] D.R.P. J. W. BARLOW, Mechanical compatibilization of immiscible blends, Polymer Engineering And Science 24 (1984) 8.
    [36] O. Olabisi, Polymer-Polymer Miscibility, Academic Press: New York (1979).
    [37] E.U.OkoroaforJ.-P.VillemaireJ.-F.Agassant, The viscosity of immiscible polymer blends: influences of the interphase and deformability, Polymer 33(24) (1992) 5264-5271.
    [38] S. Sinha Ray, M. Bousmina, Effect of Organic Modification on the Compatibilization Efficiency of Clay in an Immiscible Polymer Blend, Macromolecular Rapid Communications 26(20) (2005) 1639-1646.
    [39] T.A. Mayu Si, Harald Ade, A. L. D. Kilcoyne, Robert Fisher, Jonathan C. Sokolov, and Miriam H. Rafailovich, Compatibilizing Bulk Polymer Blends by Using Organoclays, Macromolecules 39(14) (2006) 4793-4801.
    [40] C. Damm, H. Münstedt, A. Rösch, The antimicrobial efficacy of polyamide 6/silver-nano- and microcomposites, Materials Chemistry and Physics 108(1) (2008) 61-66.
    [41] Y.H. Lee, J.H. Lee, I.-G. An, C. Kim, D.S. Lee, Y.K. Lee, J.-D. Nam, Electrospun dual-porosity structure and biodegradation morphology of Montmorillonite reinforced PLLA nanocomposite scaffolds, Biomaterials 26(16) (2005) 3165-3172.
    [42] Q. Zhang, L. Zha, J. Ma, B. Liang, A Novel Route to the Preparation of Poly(N-isopropylacrylamide) Microgels by Using Inorganic Clay as a Cross-Linker, Macromolecular Rapid Communications 28(1) (2007) 116-120.
    [43] H.-J.L. Kazutoshi Haraguchi, Mechanical Properties and Structure of Polymer-Clay Nanocomposite Gels with High Clay Content, Macromolecules 39(5) (2006) 1898-1905.
    [44] C.C. Berry, Possible exploitation of magnetic nanoparticle–cell interaction for biomedical applications, J. Mater. Chem. 15(5) (2005) 543-547.
    [45] M.S. Toprak, B.J. McKenna, M. Mikhaylova, J.H. Waite, G.D. Stucky, Spontaneous Assembly of Magnetic Microspheres, Advanced Materials 19(10) (2007) 1362-1368.
    [46] R.E.S.a.T.E. Mallouk, Prying Apart Ruddlesden-Popper Phases: Exfoliation into Sheets and Nanotubes for Assembly of Perovskite Thin Films, Chem. Mater 12 (2000) 3427-3434.
    [47] Y.E. Tomohiro Tanaka, Kazunori Takada, Keiji Kurashima, , T. Sasaki, Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals, Chem. Mater 15(18) (2003) 3564-3568.
    [48] H. Tomás, C.S. Alves, J. Rodrigues, Laponite®: A key nanoplatform for biomedical applications?, Nanomedicine: Nanotechnology, Biology and Medicine (2017).
    [49] J.T. Dudley WThompson, The nature of laponite and its aqueous dispersions, Journal of Colloid and Interface Science 151(1) (1992) 236-243.
    [50] R.P. Mohanty, Y.M. Joshi, Chemical stability phase diagram of aqueous Laponite dispersions, Applied Clay Science 119 (2016) 243-248.
    [51] S. Jatav, Y.M. Joshi, Chemical stability of Laponite in aqueous media, Applied Clay Science 97-98 (2014) 72-77.
    [52] A.K. Gaharwar, S.M. Mihaila, A. Swami, A. Patel, S. Sant, R.L. Reis, A.P. Marques, M.E. Gomes, A. Khademhosseini, Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells, Adv Mater 25(24) (2013) 3329-36.
    [53] D.L. Colin D Mathers Projections of Global Mortality and Burden of Disease from 2002 to 2030, PLoS Medicine 3(11) (2006) e442.
    [54] D.W. Haslam, W.P.T. James, Obesity, The Lancet 366(9492) (2005) 1197-1209.
    [55] S.Z. Yanovski, J.A. Yanovski, Long-term drug treatment for obesity: a systematic and clinical review, JAMA 311(1) (2014) 74-86.
    [56] J.L. Colquitt, K. Pickett, E. Loveman, G.K. Frampton, Surgery for weight loss in adults, Cochrane Database Syst Rev (8) (2014) CD003641.
    [57] F. Rubino, M. Gagner, Potential of surgery for curing type 2 diabetes mellitus, Ann Surg 236(5) (2002) 554-9.
    [58] D.E. Cummings, J. Overduin, K.E. Foster-Schubert, Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution, J Clin Endocrinol Metab 89(6) (2004) 2608-15.
    [59] F. Rubino, A. Forgione, D.E. Cummings, M. Vix, D. Gnuli, G. Mingrone, M. Castagneto, J. Marescaux, The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the proximal small intestine in the pathophysiology of type 2 diabetes, Ann Surg 244(5) (2006) 741-9.
    [60] G. Abdeen, C.W. le Roux, Mechanism Underlying the Weight Loss and Complications of Roux-en-Y Gastric Bypass. Review, Obes Surg 26(2) (2016) 410-21.
    [61] N.A.R.D.W.P.M.L.P.W.U.F.V.J.P.B.K.J.S.D.S.P.J.H.V.K. Knop, Effect of Roux-en-Y gastric bypass on the distribution and hormone expression of small-intestinal enteroendocrine cells in obese patients with type 2 diabetes, Diabetologia 58(10) (2015) 2254-2258.
    [62] J.B. Cavin, A. Couvelard, R. Lebtahi, R. Ducroc, K. Arapis, E. Voitellier, F. Cluzeaud, L. Gillard, M. Hourseau, N. Mikail, L. Ribeiro-Parenti, N. Kapel, J.P. Marmuse, A. Bado, M. Le Gall, Differences in Alimentary Glucose Absorption and Intestinal Disposal of Blood Glucose After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy, Gastroenterology 150(2) (2016) 454-64 e9.
    [63] S. Manning, A. Pucci, R.L. Batterham, Roux-en-Y gastric bypass: effects on feeding behavior and underlying mechanisms, J Clin Invest 125(3) (2015) 939-48.
    [64] P.R. Schauer, B. Burguera, S. Ikramuddin, D. Cottam, W. Gourash, G. Hamad, G.M. Eid, S. Mattar, R. Ramanathan, E. Barinas-Mitchel, R.H. Rao, L. Kuller, D. Kelley, Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus, Ann Surg 238(4) (2003) 467-84; discussion 84-5.
    [65] A. Chapman, Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review, Surgery 135(3) (2004) 326-351.
    [66] S.H. Kim, H.J. Chun, H.S. Choi, E.S. Kim, B. Keum, Y.T. Jeen, Current status of intragastric balloon for obesity treatment, World J Gastroenterol 22(24) (2016) 5495-504.
    [67] N. Crea, G. Pata, D. Della Casa, L. Minelli, G. Maifredi, E. Di Betta, F. Mittempergher, Improvement of metabolic syndrome following intragastric balloon: 1 year follow-up analysis, Obes Surg 19(8) (2009) 1084-8.
    [68] N. Patel, A. Mohanaruban, H. Ashrafian, C. Le Roux, J. Byrne, J. Mason, J. Hopkins, J. Kelly, J. Teare, EndoBarrier(R): a Safe and Effective Novel Treatment for Obesity and Type 2 Diabetes?, Obes Surg (2018).
    [69] U. Rohde, N. Hedback, L.L. Gluud, T. Vilsboll, F.K. Knop, Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: protocol for systematic review and meta-analysis of clinical studies, BMJ Open 3(9) (2013) e003417.
    [70] U. Rohde, N. Hedback, L.L. Gluud, T. Vilsboll, F.K. Knop, Effect of the EndoBarrier Gastrointestinal Liner on obesity and type 2 diabetes: a systematic review and meta-analysis, Diabetes Obes Metab 18(3) (2016) 300-5.
    [71] D.M. Ezra Fishman, Ron Lamport, Andy Levine, GI Dynamics, Inc, A novel endoscopic delivery system for placement of a duodenal-jejunal implant for the treatment of obesity and type 2 diabetes, 30th Annual International IEEE EMBS Conference (2008) 2501-2503.
    [72] R. Montana, M. Slako, A. Escalona, Implantation of the duodenal-jejunal bypass sleeve under conscious sedation: a case series, Surg Obes Relat Dis 8(5) (2012) e63-5.
    [73] M. Tarnoff, S. Shikora, A. Lembo, Acute technical feasibility of an endoscopic duodenal-jejunal bypass sleeve in a porcine model: a potentially novel treatment for obesity and type 2 diabetes, Surg Endosc 22(3) (2008) 772-6.
    [74] S.R. Patel, J. Mason, N. Hakim, The Duodenal-Jejunal Bypass Sleeve (EndoBarrier Gastrointestinal Liner) for Weight Loss and Treatment of Type II Diabetes, Indian J Surg 74(4) (2012) 275-7.
    [75] R.E.J. Ryder, M. Yadagiri, S.P. Irwin, W. Burbridge, H. Gandhi, R.A. Allden, J.P. Bleasdale, E.N. Fogden, M.R. Anderson, P.S. Gupta, Maintenance of efficacy after duodenal– jejunal bypass liner explantation in the first NHS EndoBarrier service, British Journal of Diabetes 18(1) (2018) 14-17.
    [76] B. Betzel, J. Homan, E.O. Aarts, I.M.C. Janssen, H. de Boer, P.J. Wahab, M.J.M. Groenen, F.J. Berends, Weight reduction and improvement in diabetes by the duodenal-jejunal bypass liner: a 198 patient cohort study, Surg Endosc 31(7) (2017) 2881-2891.
    [77] S.L. Nitin Kumar, Gareth McKinley Methods to disperse and exfoliate nanoparticles, in: U. Application (Ed.) Massachusetts Institute of Technology, 2004.
    [78] S. Skovso, Modeling type 2 diabetes in rats using high fat diet and streptozotocin, J Diabetes Investig 5(4) (2014) 349-58.
    [79] J.-Y.C. Chien-Chung Chen, How Tseng, Haw-Ming Huang, Sheng-Yang Lee, Preparation and characterization of biodegradable PLA polymeric blends, Biomaterials 24 (2003) 1167-1173.
    [80] Y.I. Hideto Tsuji Blends of aliphatic polyesters. I. Physical properties and morphologies of solution‐cast blends from poly(DL‐lactide) and poly(ε‐caprolactone), Journal of Applied Polymer Science 60(13) (1996) 2367-2375.
    [81] G.C.a.M.V. G. Kister, Effects of morphology, conformation and configuration on the IR and Raman spectra of various poly(lactic acid)s, Polymer 39(2) (1998) 267-273.
    [82] M. Broz, Structure and mechanical properties of poly(d,l-lactic acid)/poly(ɛ-caprolactone) blends, Biomaterials 24(23) (2003) 4181-4190.
    [83] B.P. Nair, M. Sindhu, P.D. Nair, Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications, Colloids Surf B Biointerfaces 143 (2016) 423-430.
    [84] S.C.W. Avinash Baji, Tianxi Liu, Tingcheng Li, T. S. Srivatsan, Morphological and X‐ray diffraction studies of crystalline hydroxyapatite‐reinforced polycaprolactone, Journal of Biomedical Materials Research 81B(2) (2007) 343-350.
    [85] D. Newman, E. Laredo, A. Bello, A.l. Grillo, J.L. Feijoo, A.J. Müller, Molecular Mobilities in Biodegradable Poly(dl-lactide)/Poly(ε-caprolactone) Blends, Macromolecules 42(14) (2009) 5219-5225.
    [86] M.D. Bénédicte Lepoittevin, Nadège Pantoustier, Michaël Alexandre, Dana Kubies, Poly(ε-caprolactone)_clay nanocomposites prepared by melt intercalation_ mechanical, thermal and rheological properties, Polymer 43 (2002) 4017-4023.
    [87] P.D. Michael Alexandre, Polymer-layered silicate nanocomposites_ preparation, properties and uses of a new class of materials, Materials Science and Engineering 28 (2000) 1-63.
    [88] G.J.N.O.H.K.T. Ogihara, Structure and thermalmechanical properties of poly (ϵ‐caprolactone)‐clay blend, Journal of Applied Polymer Science 64(11) (1997) 2211-2220.
    [89] P. Bordes, E. Pollet, L. Averous, Nano-biocomposites: Biodegradable polyester/nanoclay systems, Progress in Polymer Science 34(2) (2009) 125-155.
    [90] V. Aguirre, N. Stylopoulos, R. Grinbaum, L.M. Kaplan, An endoluminal sleeve induces substantial weight loss and normalizes glucose homeostasis in rats with diet-induced obesity, Obesity (Silver Spring) 16(12) (2008) 2585-92.

    無法下載圖示 全文公開日期 2023/10/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE