簡易檢索 / 詳目顯示

研究生: 謝春鸞
DWIE - ASTUTI
論文名稱: 聚乳酸老化與冷結晶效應對其機械性質影響之研究
STUDIES OF AGING AND COLD CRYSTALLIZATION EFFECTS ON MECHANICAL PROPERTIES OF POLY (L-LACTIC ACID) FILMS
指導教授: 洪伯達
Po-Da Hong
口試委員: 陳志堅
Jyh-Chien Chen
石淦生
Kan-Shan Shin
莊偉綜
Wei-Tsung Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 45
中文關鍵詞: PLLA冷結晶老化機械性質
外文關鍵詞: PLLA, Cold Crystallization, aging, mechanical properties
相關次數: 點閱:185下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Temperature and time have important distribution to mechanical properties of Poly(L-Lactic Acid), PLLA films. The aging effect on the properties of PLLA films were investigated by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Tensile Test. It was found that during isothermal heating at the temperatures below Tg, aging effects significantly affected the mechanical properties of PLLA films. The PLLA system tends to reach equilibrium state by chains arrangement. This process induces the rigidity of the sample. The effect of physical aging on PLLA films were shown in DMA and tensile result. The yield strength and tensile modulus increased with time and temperature of aging, while, the tensile strain decreased. The effects of cold crystallization condition were also studied at temperature above Tg. The crystallinity increased with crystallization time and temperature. DSC curves of cold crystallized PLLA films depicted a clear double melting behavior at Tc between 70° and 95° C. The results of DMA and tensile test revealed that the crystallinity affect the mechanical and dynamical properties of PLLA films. The crystallinity constrained the amorphous chains in the semicrystalline system. The strain of PLLA films decreased gradually with crystallization time and temperature. The tensile result has shown ductile failure behavior changed to brittle failure behavior.


    Temperature and time have important distribution to mechanical properties of Poly(L-Lactic Acid), PLLA films. The aging effect on the properties of PLLA films were investigated by using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Tensile Test. It was found that during isothermal heating at the temperatures below Tg, aging effects significantly affected the mechanical properties of PLLA films. The PLLA system tends to reach equilibrium state by chains arrangement. This process induces the rigidity of the sample. The effect of physical aging on PLLA films were shown in DMA and tensile result. The yield strength and tensile modulus increased with time and temperature of aging, while, the tensile strain decreased. The effects of cold crystallization condition were also studied at temperature above Tg. The crystallinity increased with crystallization time and temperature. DSC curves of cold crystallized PLLA films depicted a clear double melting behavior at Tc between 70° and 95° C. The results of DMA and tensile test revealed that the crystallinity affect the mechanical and dynamical properties of PLLA films. The crystallinity constrained the amorphous chains in the semicrystalline system. The strain of PLLA films decreased gradually with crystallization time and temperature. The tensile result has shown ductile failure behavior changed to brittle failure behavior.

    ABSTRACT ..................................i CONTENTS ..................................iv CHART CATALOGUES ...........................v Chapter 1...................................v Chapter 3...................................vi SYMBOLS TABLE FOR THE THESIS ...............vii Chapter 1 ...................................1 GENERAL INTRODUCTION........................1 1.1 The Physical Aging of polymers.....1 1.1.1 Introduction.......................1 1.1.2 The Free Volume Concept............2 1.1.3 Physical aging of semicrystalline polymers......2 1.2 Crystalline Polymer.............................3 1.3 Mechanical Properties of Polymer................4 1.4 Purpose of the Study............................7 Chapter 2 AGING EFFECT ON MECHANICAL PROPERTIES OF AMORPHOUS POLY(L-LACTIC ACID) FILMS ................................................8 2.1 Introduction.........................................8 2.2 Experimental Methods.................................9 2.2.1 Materials .......................................9 2.2.2 Measurements....................................9 2. 3 Results and Discussion..........................10 2.4 Conclusion...........................................19 Chapter 3 MECHANICAL PROPERTIES OF COLD CRYSTALLIZED POLY (L-LACTIC ACID) FILMS.... 20 3.1 Introduction....................................................20 3.2 Experimental Methods............................................21 3.2.1 Materials .......................................................21 3.2.2 Measurements....................................................21 3.3 Results and Discussion..........................................22 3.4 Conclusion......................................................35 Chapter 4 OVERVIEW.................................................................36 REFERENCES...............................................................38

    [1] Sperling, L.H., Introduction to Physical Polymer Science, 2006.
    [2] Pan, P.; Zhu B.; Yoshio I., Macromolecules, 40, 9664, 2007.
    [3] Struik, L. C. E., Polym. Eng. Sci., 17, 165, 2004.
    [4] Kraus. G., Advance in Polymer Science, 1971.
    [5] Struik, L. C. E., Plas. Rubber. Process. Appl., 2, 41, 1982.
    [6] Schael, G. W., J. Appl. Polym. Sci., 10, 901, 1966.
    [7] Struik, L. C. E., Physical Aging of Amorphous Polymers and other Materials, Elsevier, Amsterdam, 1978.
    [8] Ward, I. M., An Introduction to the Mechanical Properties of Solid Polymers, 2004.
    [9] Nielsen, L. E.; Landel R. F., Mechanical Properties of Polymers and Composites, Dekker, 1994.
    [10] Menard, K.P., Dynamic Mechanical Analysis: A Practical Introduction, CRC Press LLC, New York, 1998.
    [11] Matsuoka, S., Relaxation Phenomena in Polymers, Hanser, New York, 1992.
    [12] Brostow, W., Failure of Plastics, Hanser, New York, 1986.
    [13] Lim, L.T.; Auras, R.; Rubino, M., Prog. Polym. Sci., 33, 820, 2008.
    [14] Cowie, J. M. G., Harris S., McEwen, I. J., Macromolecules, 31, 2611, 1998.
    [15] Ho, C. H., Vu, K. T., Theor. Appl. Fract. Mec., 39,107, 2003.
    [16] Greiner, R.; Schwarzl, F. R., Colloid. Polym. Sci, 267, 39, 1989.
    [17] Tsuji, H., Takai H., Saha S. K., Polymer, 47, 3826, 2006.
    [18] Struik, L. C. E., Polymer, 28, 1521, 1987.
    [19] Shafee, E. E., Polymer, 44, 3727, 2003.
    [20] Schwarz, I.; Stranz M.; Bonnet, M.; Petermann, J., Colloid. Polym. Sci, 279, 506, 2001.
    [21] McGonigle, E. A., Polymer, 40, 4977, 1999.
    [22] Basset, D. C., Principles of polymer Morphology, Cambridge University Press, New York, pp 124, 1981.
    [23] Young R. J., Introduction to Polymers, Chapman and Hall, Ltd, New York, pp 193, 1981.
    [24] Encyclopedia of Polymer Science and Engineering, John Wiley & Sons, New York, vol 2, pp 43, 1985.
    [25] Liu, T.; Peterman J., Polymer, 42, 6453, 2001.
    [26] Bonnet, M.; Rogausch, K. D.; Petermann, J., Colloid. Polym. Sci., 277, 513, 1999.
    [27] Yasuniwa, M.; Sakamo. K.; Ono, Y.; Kawahara. W., Polymer, 49, 1943, 2008.
    [28] Kawai, T.; Rahman, N.; Matsuba G.; Nishida K.; Kanaya, T.; Nakano, M.; Okamoto M.; Kawada J.; Usuki A.; Honma N.; Nakajima, K.; Matsuda M., Macromolecules, 40, 9463, 2007.
    [29] Mano, J. F.; Wang, Y.; Viana, C. J.; Zlatan, D.; Maria, J. O., Macromol. Mater. Eng., 289, 910, 2004.
    [30] Sodegard, A.; Stolt, M., Prog. Polym. Sci., 27, 1123, 2002.
    [31] Tsujo, H.; Ikada Y., Polymer, 36, 2709, 1995.
    [32] Pan, P.; Zhu, B; Inoue, Y., Macromolecules, 41, 429, 2008.
    [33] Peterlin A., J. Polym. Sci., 9C, 61, 1965.
    [34] Men, Y. PhD., Thesis, University of Freiburg, 2001.
    [35] Men, Y.; Strob, G., J. Polym. Sci., 20,161, 2002.
    [36] Annette, C.; Glausera, R.; Roseb, J.; Farrarb, D. F.; Camerona, R. E.,Biomaterials, 26, 5771, 2005.
    [37] Yasuniwa, M.; Iura, K.; Dan, Y., Polymer, 48, 5398, 2007.
    [38] Wulderlich, B., Macromolecular Physics: Crystal melting, New York, Academic Press.

    QR CODE