簡易檢索 / 詳目顯示

研究生: 柯伊鴻
Yi-hung Ke
論文名稱: 分子動力學模擬應變率對不同晶體結構的機械行為之影響
Molecular Dynamics Simulation of Strain Rate Effect on Mechanical Properties of Different Crystal Structures
指導教授: 林原慶
Yuan-ching Lin
口試委員: 向四海
Su-hai Hsiang
蘇侃
Hon So
呂道揆
Daw-kwei Leu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 299
中文關鍵詞: 分子動力學應變率奈米線彈性係數挫曲行為
外文關鍵詞: Molecular dynamics, Strain rate, Nanowire, Elasticity modulus, Buckling behavior
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用分子動力學(Molecular Dynamics, MD)的EAM模型模擬奈米鐵和鎢線之機械行為。並分析其拉伸與壓縮狀態下的原子尺度之變形機制,探討不同結晶方向、材料長度與不同應變率下的強度與塑變行為。針對不同晶體結構(BCC、FCC)的結晶方向(晶面效應)與彈性係數對應變率的影響加以分析比較。
    模擬結果顯示,BCC晶體結構的<100>和<110>結晶方向拉伸過程中,奈米鎢線在彈性變形時,會發生彈性波傳現象,導致應力曲線呈現鋸齒狀般形貌;而奈米鐵線則無此現象,拉伸至降伏時,以差排形式直接發射至材料內部。而在<100>結晶方向上,奈米鐵和鎢線易誘發差排糾結,而形成加工硬化的現象;<110>結晶方向的奈米鐵及鎢線則無此現象產生,但降伏應力遠高於<100>結晶方向。奈米線頸縮破斷前,已失去原有BCC晶體結構,並以原子間鍵結直接拉斷為主要模式。
    BCC晶體結構的壓縮變形,<100>結晶方向的奈米鐵和鎢線容易發生"挫曲"行為,較長的奈米線產生"挫曲"現象的力量比短的奈米線低;<110>結晶方向的奈米鐵和鎢線會有雙晶變形的產生,雙晶變形引發的原子排列方向轉換會導致流動應力的下降,並且<100>與<110>結晶方向,壓縮應變率越高,降伏應力則越高。降伏應力對應變率的敏感度,拉伸變形中,針對<100>結晶方向(含BCC及FCC晶體),奈米鎢線為最高;然而,在<110>結晶方向(含BCC及FCC晶體)則奈米鎳線最高。壓縮變形中,針對<100>結晶方向(含BCC及FCC晶體)以奈米鎳線最高;但在<110>結晶方向(含BCC及FCC晶體),奈米銅線為最高。


    This study analyzes mechanical properties and deformation behaviors of iron and tungsten nanowires with uniaxial loading states (tension and compression), orientations、length and different strain rates by molecular dynamics (MD) of the EAM model. Additionally, in the different crystal structures (BCC、FCC), crystal orientations (effects of crystal face) and the elasticity modulus of strain rate are compared.
    Results show that during the tensile process, the propagation of elastic wave are obviously observed in <100> and <110> orientations for BCC crystal structure when tungsten nanowires are in the elastic deformation range, leading to zigzag stress curves; However this phenomenon is not observed for iron nanowires. When reaching to yielding tensile stress, dislocations are directly emitted into the material. In <100> crystal orientation, dislocation tangles are easily induced for iron and tungsten nanowires forming of work hardening phenomenon; However, it is not happened in <110> crystal orientation of yet the yield stress is far higher than in <100> crystal orientation. BCC crystal structure has been changed before the fracture of nanowires necking, and the primary failure mode is directly atomic bonding breakage.
    When at BCC crystal structure compression deformation, "buckling" behaviors are prone to in <100> crystal orientation for iron and tungsten nanowires, and longer nanowires have smaller "buckling" forces; there is twinning deformation in <110> crystal orientation, leading to the decrease of the flow stress caused by the atomic rearrangement. In <100> and <110> crystal orientations, higher compressive strain rate has higher yielding stress. In tensile deformation tungsten nanowires have the highest strain rate sensitivity of yielding stress, in the <100> crystal orientation (including BCC and FCC crystals); However, nickel nanowires do so in <110> crystal orientation (including BCC and FCC crystals). In compressive deformation, nickel nanowires have the highest strain rate sensitivity of yielding stress in <100> crystal orientation (including BCC and FCC crystals); copper nanowires do so in <110> crystal orientation (including BCC and FCC crystals).

    摘要 I Abstract III 致謝 V 目錄 VI 表索引 X 圖索引 XII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻回顧 4 第二章 分子動力學基礎理論 10 2.1 分子動力學之基本假設 10 2.2 分子間作用力與勢能函數 10 2.3 運動方程式及演算法 17 2.4 Verlet 表列法 21 2.5 無因次化 23 2.6 原子級應力計算方法 25 2.7 Centrosymmetry Parameter (CSP) 29 第三章 模擬步驟與模型建立 35 3.1 程式模擬步驟 35 3.1.1 初始設定(Initialization) 37 3.1.1.1 預備(Preliminaries) 37 3.1.1.2 初始條件(Initial Conditions) 42 3.1.2 平衡(Equilibration) 47 3.1.3 動態模擬(Production) 48 3.2 奈米線模型建構 49 第四章 結果與討論 53 4.1 奈米鐵線單軸受拉狀態行為分析 53 4.1.1 應變率條件為6×10^9s^-1與9×10^9s^-1下<100>奈米鐵線之拉伸行為分析 53 4.1.1.1 拉伸應變率為6×10^9s^-1下<100>奈米鐵線的降伏機制與應力變動情形之分析 53 4.1.1.2 拉伸應變率為9×10^9s^-1下<100>奈米鐵線的降伏機制與應力變動情形之分析 66 4.1.1.3 拉伸應變率9×10^9s^-1下<100>兩倍長奈米鐵線的降伏機制與應力變動情形之分析 75 4.1.2 應變率條件為6×10^9s^-1與9×10^9s^-1下<110>奈米鐵線之拉伸行為分析 86 4.1.2.1 拉伸應變率為6×10^9s^-1下<110>奈米鐵線的降伏機制與應力變動情形之分析 86 4.1.2.2 拉伸應變率為9×10^9s^-1下<110>奈米鐵線的降伏機制與應力變動情形之分析 93 4.1.2.3 拉伸應變率9×10^9s^-1下<110>兩倍長奈米鐵線的降伏機制與應力變動情形之分析 101 4.2 奈米鎢線單軸受拉狀態行為分析 109 4.2.1 應變率條件為6×10^9s^-1與9×10^9s^-1下<100>奈米鎢線之拉伸行為分析 109 4.2.1.1 拉伸應變率為6×10^9s^-1下<100>奈米鎢線的降伏機制與應力變動情形之分析 109 4.2.1.2 拉伸應變率為9×10^9s^-1下<100>奈米鎢線的降伏機制與應力變動情形之分析 119 4.2.1.3 拉伸應變率9×10^9s^-1下<100>兩倍長奈米鎢線的降伏機制與應力變動情形之分析 128 4.2.2 應變率條件為6×10^9s^-1與9×10^9s^-1下<110>奈米鎢線之拉伸行為分析 135 4.2.2.1 拉伸應變率為6×10^9s^-1下<110>奈米鎢線的降伏機制與應力變動情形之分析 135 4.2.2.2 拉伸應變率為9×10^9s^-1下<110>奈米鎢線的降伏機制與應力變動情形之分析 142 4.2.2.3 拉伸應變率9×10^9s^-1下<110>兩倍長奈米鎢線的降伏機制與應力變動情形之分析 150 4.3 不同晶體對拉伸應變率機制影響之綜合比較 157 4.3.1 不同晶體結構的結晶方向對拉伸應變率效應之影響 157 4.3.1.1 BCC晶體結構的結晶方向對拉伸應變率效應的影響 157 4.3.1.2 FCC晶體結構的結晶方向對拉伸應變率效應的影響 164 4.3.1.3 BCC和FCC晶體結構依不同結晶方向對拉伸應變率效應之綜合比較 171 4.3.2 BCC和FCC晶體結構依彈性係數對拉伸應變率效應之綜合比較 178 4.4 BCC晶體結構單軸受壓狀態的行為分析 183 4.4.1 奈米鐵線之壓縮行為分析 183 4.4.1.1 壓縮應變率9×10^9s^-1下<100>奈米鐵線的降伏機制、應力變動情形與"挫曲行為"之分析 183 4.4.1.2 壓縮應變率為9×10^9s^-1下<100>兩倍長奈米鐵線的降伏機制、應力變動情形與"挫曲行為"之分析 190 4.4.1.3 壓縮應變率9×10^9s^-1下<110>奈米鐵線的降伏機制與應力變動情形之分析 196 4.4.1.4 壓縮應變率為9×10^9s^-1下<110>兩倍長奈米鐵線的降伏機制與應力變動情形之分析 202 4.4.2 奈米鎢線之壓縮行為分析 210 4.4.2.1 壓縮應變率9×10^9s^-1下<100>奈米鎢線的降伏機制、應力變動情形與"挫曲行為"之分析 210 4.4.2.2 壓縮應變率為9×10^9s^-1下<100>兩倍長奈米鎢線的降伏機制、應力變動情形與"挫曲行為"之分析 217 4.4.2.3 壓縮應變率9×10^9s^-1下<110>奈米鎢線的降伏機制與應力變動情形之分析 224 4.4.2.4 壓縮應變率為9×10^9s^-1下<110>兩倍長奈米鎢線的降伏機制與應力變動情形之分析 231 4.4.3 不同晶體結構的結晶方向對壓縮應變率效應之影響 240 4.4.3.1 BCC晶體結構的結晶方向對壓縮應變率效應的影響 240 4.4.3.2 FCC晶體結構的結晶方向對壓縮應變率效應的影響 247 4.4.3.3 BCC和FCC晶體結構依不同結晶方向對壓縮應變率效應之綜合比較 252 4.4.4 BCC和FCC晶體結構的彈性係數對壓縮應變率效應之綜合比較 260 第五章 結論與建議 263 5.1 結論 263 5.2 未來研究方向與建議 266 參考文獻 268 作者簡介 275

    1.C. M. Liber, "Nanoscale Science and Technology: Building a Big Future from Small Things", MRS Bull, Vol.28, pp.486-491(2003) .
    2.Dehong Huo, Yingchun Liang and Kai Cheng, "An Investigation of Nanoindentation Tests on The Single Crystal Copper Thin Film Via an AFM and MD Simulation", Journal of Mechanical Engineering Science, Vol.221, pp.259-266(2007).
    3.Loannis N. Mastorakos, Hussein M. Zbib, David F. Bahr, Jessica Parsons and Mased Faisal, "Pseudoelastic Behavior of Cu-Ni Composite Nanowires", Applied Physics Letters, 94, 043104(2009).
    4.H. Rafii-Tabar, "Modelling The Nano-Scale Phenomena in Condensed Matter Physics Via Computer-Based Numerical Simulations", Physics Reports, Vol.325, pp.239-310(2000).
    5.Y. Kondo and K. Takayanagi, "Synthesis and Characterization of Helical Multi-Shell Gold Nanowires", Science, Vol.289, pp.606-608(2000).
    6.V. Rodrigues, T. Fuhrer and D. Ugarte, "Signature of Atomic Structure in the Quantum Conductance of Gold Nanowires", Physical Review Letters, Vol.85, No.19, pp.4124-4127(2000).
    7.Zhiliang Pan, Yulong Li and Q. Wei, "Tensile Properties of Nanocrystalline Tantalum from Molecular Dynamics Simulations", Acta Materialia, Vol.56, pp.3470-3480(2008).
    8.Lin Yuan, Debin Shan and Bin Guo, "Molecular Dynamics Simulations of Tensile Deformation of Nano-Single Crystal Aluminum", Journal of Materials Processing Technology, Vol.184, pp.1-5(2007).
    9.J. Dian, K. Gall, M. L. Dunn and J. A. Zimmerman, "Atomistic Simulations of The Yielding of Gold Nanowires", Acta Materialia, Vol.54, pp.643-653(2006).
    10.Y. H. Wen, Z. Z. Zhu and R. Z. Zhu, "Molecular Dynamics Study of The Mechanical Behavior of Nickel Nanowire: Strain Rate Effects", Computational Materials Science, Vol.41, pp.553-560(2008).
    11.Z. C. Lin and J. C. Hung, "A Study On A Rigid Body Boundary Layer Interface Force Model For Stress Calculation and Stress-Strain Behaviour of Nanoscale Uniaxial Tension", Nanotechnology, Vol.15, pp.1509-1518(2004).
    12.Y. H. Lin, S. R. Jian and Y. S. Lai, "Molecular Dynamics Simulation of Nanoindentation-Induced Mechanical Deformation and Phase Transformation", Nano Express, Vol.3, pp.71-75(2008).
    13.Y. X. Shen, H. R. Gong, L. T. Kong and B. X. Liu, "Structural Phase Transitions in The Cu-Based Cu-V Solid Solutions Studied By Molecular Dynamics Simulation", Journal of Alloys And Compounds, Vol.366, pp.205-212(2004).
    14.J. Wang, W. Hu, X. Li, S. Xiao and H. Deng, "Strain-Driven Phase Transition of Molybdenum Nanowire Under Uniaxial Tensile Strain", Computational Materials Science, Vol.50, pp.373-377(2010).
    15.黃再利., "分子動力學模擬奈米銅線結晶型態及機械行為研究",國立台灣科技大學碩士論文, (2009).
    16.Te-Hua Fang, Cheng-I Weng and Jee-Gong Chang, "Molecular Dynamics Analysis of Temperature Effects on Nanoindentation Measurement", Materials Science Engineering, Vol.357, pp.7-12(2003).
    17.G. Chevrot, E. Bourasseau, N. Pineau and J. B. Maillet, "Molecular Dynamics Simulations of Nanocarbons at High Pressure and Temperature", Carbon, Vol.47, pp.3392-3402(2009).
    18.A. BrÓdka, J. Kołoczek, A. Burian, J. C. Dore, A. C. Hannon and A. Fonseca, "Molecular Dynamics Simulation of Carbon Nanotube Structure", Journal of Molecular Structure, Vol.792-793, pp.78-81(2006).
    19.K. Mylvaganam and L. C. Zhang, "Important Issues in a Molecular Dynamics Simulation for Characterising The Mechanical Properties of Carbon Nanotubes", Carbon, Vol.42, pp.2025-2032(2004).
    20.D. Frenkel and B. Smit, "Understanding Molecular Simulation (Second Edition)", Academic Press: San Diego, pp.63-107(2002).
    21.J. H. Irving and J. G. Kirkwood, "The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics", The Journal of chemical physics, Vol.18, No.6, pp.817-829(1950).
    22.N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth and A. H. Teller, "Equation of Calculations By Fast Computing Machines", Journal of Chemical Physics, Vol.21, No.6, pp.1087-1092(1953).
    23.Loup Verlet, "Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules", Physical Review, Vol.159, No.1, pp.98-103(1967).
    24.B. Quentrec and C. Brot, "New Method for Neighbors in Molecular Dynamics Computations", Journal of Computational Physics, Vol.13, pp.430-432(1973).
    25.D. C. Rapaport, "Large-Scale Molecular Dynamics Simulation Using Vector and Parallel Computers", Computer Physics Reports, 2001, Vol.9, pp.1-53(1988).
    26.M. Meyer and V. Pontikis, "Computer Simulation in Material Science: Interatomic Potentials, Simulation Techniques and Applications", Kluwer Academic Publishers, USA, (1991).
    27.R. Komanduri, N. Chandrasekaran and L. M. Raff, "Molecular Dynamics (MD) Simulations of Uniaxial Tension of Some Single-Crystal Cubic Metals at Nanolevel", International Journal of Mechanical Sciences, Vol.43, pp.2237-2260(2001).
    28.S. L. Frederiksen, K. W. Jacobsen and J. Schiotz, "Simulations of Intergranular Fracture in Nanocrystalline Molybdenum", Acta Materialia, Vol.52, pp.5019-5029(2004).
    29.H. A. Wu, A. K. Soh, X. X. Wang and Z. H. Sun, "Strength and Fracture of Single Crystal Metal Nanowire", Key Engineering Materials, Vol.261-263, pp.33-38(2004).
    30.V. V. Stegaĭlov ans A. V. Yanilkin, "Structural Transformations in Single-Crystal Iron during Shock-Wave Compression and Tension: Molecular Dynamics Simulation", Journal of Experimental and Theoretical Physics, Vol.104, No.6, pp.928-935(2007).
    31.Te-Hua. Fang, Chang-Da. Wu and Win-Jin. Chang, "Molecular Dynmaics Analysis of Nanoimprinted Cu-Ni Alloys", Applied Surface Science, Vol.253, pp.6963-6968(2007).
    32.J. J. Zhang, T. Sun, Y. D. Yan, Y. C. Liang and S. Dong, "Molecular Dynamics Simulation of Subsurface Deformed Layers in AFM-Based Nanometric Cutting Porcess", Applied Surface Science, Vol.254, pp.4774-4779(2008).
    33.Y. Gao, C. Lu, A. K. Tieu and H. Zhu, "Molecular Dynamics Simulation of Crack Propagation on Different Slip Planes of BCC Iron", Nanoscience and Nanotechnology, pp.226-229(2008).
    34.Yunhang Jing, Qingyuan Meng and Yufei Gao, "Molecular Dynamics Simulation on The Buckling Behavior of Silicon Nanowires Under Uniaxial Compression", Computational Materials Science, Vol.45, pp.321-326(2009).
    35.Bin Shen and Fanghong Sun, "Molecular Dynamics investigation on The Atomic-Scale Indentation and Friction Behaviors Between Diamond Tips and Copper Substrate", Diamond and Related Materials, Vol.19, pp.723-728(2010).
    36.J. E. Jones, "On The Determination of Molecular Fields. I. From the Variation of the Viscosity of a Gas with Temperature", Proceedings of the Royal Society of Physical Character, Vol.106, No.738, pp.441-462(1924).
    37.J. E. Jones, "On The Determination of Molecular Fields. II. From the Equation of State of a Gas", Proceedings of the Royal Society of London. Series A. Containing Papers of a Mathematical and Physical Character, Vol.106, No.738, pp.463-477(1924).
    38.Philip M. Morse, "Diatomic Molecules According to the Wave Mechanics. II. Vibrational Levels", Phtsical Review, Vol.34, pp.57-64(1929).
    39.Murray S. Daw and M. I. Baskes, "Semiempirical Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals", Physical Review Letters, Vol.50, No.17, pp.1285-1301(1983).
    40.Murray S. Daw and M. I. Baskes, "Eambedded-Atom Method: Derivation and Application to Impurities, Surface, and Other Defects in Metals", Physical Review B, Vol.29, No.12, pp.6443-6453(1984).
    41.V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and Structural Properties of FCC Transition Metals Using A Simple Tight-Binding Model", Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, Vol.59, pp.321-336(1989).
    42.J. Tersoff, "New Empirical Model for The Structural Properties of Silicon", Physical Review Letters, Vol.56, No.6, pp.632-635(1986).
    43.Murray S. Daw, "Model of Metallic Cohesion: The Embedded-Atom Method", Physical Review B, Vol.39, No.11, pp.7441-7452(1989).
    44.R. A. Johnson, "Analytic Nearest-Neighbor Model for FCC Metals", Physical Review B, Vol.37, No.8, pp.3924-3931(1988).
    45.R. A. Johnson, "Alloy Models with The Embedded-Atom Method", Physical Review B, Vol.39, No.17, pp.12554-12559(1989).
    46.R. A. Johnson and D. J. Oh, "Analytic Embedded Atom Method Model for BCC Metals", Journal of Materials Research Sociery, Vol.4, No.5, pp.1195-1201(1989).
    47.M. W. Finnis and J. E. Sinclair, "A Simple Empirical N-Body Potentials for Transition Metals", Philosophical Magazine A, Vol.50, pp.45-55(1984).
    48.Y. Mishin and D. Farkas, "Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations", Physical Review B, Vol.59, No.5, pp.3393-3407(1999).
    49.C. W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, (1971).
    50.J. M. Haile, Molecular Dynamics Simulation: Elementrary Methods(A Wiley-Interscience Publication), John Wiley & Sons, Inc, USA, (1992).
    51.R. Calusius, "On a Mechanical Theory Applicable to Heat", Philosophical Magazine, Vol.40, pp.122-127(1870).
    52.Z. S. Basinski, M. S. Duesbery and R. Taylor, "Influence of Shear Stress on Screw Dislocations in a Model Sodium Lattice", Canadian Journal of Physics, Vol.49, pp.2160-2180(1971).
    53.D. Srolovitz, K. Maeda, V. Vitek and T. Egami, "Structural Defects in Amorphous Solids Statistical Analysis of a Computer Model", Philosophical Magazine A, Vol.44, pp.847-866(1981).
    54.N. Miyazaki and Y. Shiozaki, "Calculation of Mechanical Properties of Solids Using Molecular Dynamics Method", JSME International Journal Series A, Vol.39, No.4, pp.606-612(1996).
    55.Y. C. Lin and D. J. Pen, "Atomic Behavior Analysis of Cu Nanowire Under Uniaxial Tension with Maximum Local Stress Method", Molecular Simulation, Vol.33, pp. 979-988(2007).
    56.T. Iwaki, "Molecular Dynamics Study on Stress-Strain in Very Thin Film(Size and location of Region for Defining Stress and Strain)", JSME International Journal Series A, Vol.39, No.3, pp.346-353(1996).
    57.Cynthia L. Kelchner, S. J. Plimpton and J. C. Hamilton, "Dislocation Nucleation and Defect Structure During Surface Indentation", Physical Review B, Vol.58, No.17, pp.11085-11088(1998).
    58.彭達仁., "分子動力學模擬奈米銅線單軸受力狀態之微觀行為分析", 國立台灣科技大學博士論文, (2008).
    59.A. M. Guellil and J. B. Adams, "The Application of The Analytic Embedded Atom Method to BCC Metals and Alloys", Journal of Materials Research Sociery, Vol.7, No.3, pp.639-652(1992).
    60.Zhang Bangwei and Ouyang Yifang, "Theoretical Calculation of Thermodynamic Data for BCC Binary Alloys with The Embedded-Atom Method", Physical Review B, Vol.48, No.5, pp.3022-3029(1993).
    61.Ibrahim H. Dursun, Ziya B. Güvenç and E. Kasap, "A Simple Analytical EAM Model for Some BCC Metals", Commun Nonlinear Sci Numer Simulat, Vol.15, pp.1259-1266(2010).
    62.R. A. Johnson and D. J. Oh, "Atomistic Simulation of Materials Beyond Pair Potentials", World Materials Congress, ASM, (1988).
    63.J. P. Hirth and J. Lothe, Theory of Dislocation(2nd ed.), Wiley, New York, pp.835-839(1982).
    64.K. Christmann, Introduction to surface physical chemistry, Springr-Verlag, New York, pp.34-40(1991).
    65.Y. H. Wen, Z. Z. Zhu and R. Z. Zhu, "Molecular Dynamics Study of the Mechanical Behavior of Nickel Nanowire: Strain Rate Effects", Computational Materials Science, Vol.41, pp.553-560(2008).

    無法下載圖示 全文公開日期 2014/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE