簡易檢索 / 詳目顯示

研究生: 陳孟科
Meng-Ke Chen
論文名稱: 應用GIXRD量測薄膜殘留應力 與化學機械拋光的影響分析
Residual Stress Measurement of Thin Film on Silicon Wafer with CMP Process Using GIXRD
指導教授: 陳炤彰
Chao-Chang A. Chen  
口試委員: 林原慶
Yuan-Ching Lin
傅尉恩
Wei-En Fu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 132
中文關鍵詞: 鎢薄膜殘留應力低掠角繞射法化學機械拋光
外文關鍵詞: Tungsten thin film, GIXRD, Residual Stress, CMP
相關次數: 點閱:238下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體元件是由數層不同的厚度且材質互異的薄膜所構成,鎢薄膜做為柱塞(Plug)的用途,化學機械拋光(Chemical Mechanical Polishing, CMP)是半導體製程中全面平坦化(Global Planarization)的方法。但薄膜經CMP之後,表面材料移除同時伴隨有殘留應力的變化,殘留應力對薄膜結構及材料性質具有關鍵的影響。本研究量測鎢薄膜殘留應力,探討鎢薄膜化學機械拋光對其影響。研究方法規劃化學機械拋光與電化學拋光(Electrochemical Polishing, ECP)兩組實驗,以低掠角繞射法(Grazing Incidence X-Ray Diffraction, GIXRD)量測薄膜次表面殘留應力,將量測結果由LabView7.0軟體編輯程式,計算殘留應力值,計算結果與分析軟體(PANalytical X'Pert Stress)比較結果一致,計算值誤差來自不同的近似方式。化學機械拋光殘留應力量測結果,薄膜CMP殘留應力分佈為張應力的狀態,隨著深度的增加而遞減,次表面由於拋光液與薄膜之間化學作用生成氧化物,同時也受到磨料顆粒刮損的影響產生次表面破壞,由GIXRD檢測結果,次表面變質層分佈約21.3nm。電化學拋光殘留應力量測結果,薄膜ECP殘留應力分佈隨著深度的增加而遞減,次表面因為電解過程中受到電化學作用,電解液與薄膜之間生成氧化物,次表面變質層分佈約16nm。比較薄膜CMP與薄膜ECP殘留應力分佈曲線,去除移除厚度變化的影響,得知薄膜CMP製程參數殘留應力。由實驗設計,改變下壓力與相對轉速,得到薄膜CMP殘留應力變化的迴歸方程式作為預測式。未來研究可應用GIXRD量測不同材料薄膜殘留應力梯度的分佈,作為化學機械拋光製程參考,改善薄膜拋光後的品質。


    Thin film layers with different properties and thickness are deposited on substrates for fabricate the semiconductor components. Tungsten thin film is usually as a plug. Chemical Mechanical Polishing (CMP) is widely applied in the semiconductor process to removal material for good planarization. But material property and residual stress state are affected by CMP process. This research is to estimate the residual stress of tungsten thin film deposited on the silicon wafer and investigate the effect induced by CMP. The Grazing Incidence X-Ray Diffraction (GIXRD) method is used in the research to measure the residual stress from CMP and electrochemical polishing (ECP) experiments. Residual stress is calculated by a developed method by Labview program and compared that with that by the PANalytical X'Pert Stress software. Results are very close and residual is from different fitting method. Residual stress distribution measurement results after CMP experiment are tensile and decrease gradually. The transition zone reveals the chemical oxidization layer interacted by slurry and the subsurface damage scratched by abrasive during CMP process. Results from ECP experiment reveal the chemical oxidization layer and the subsurface residual stress distribution affected during ECP process. From the residual stress distribution curves of W-films by CMP and ECP, the residual stress induced by abrasive reaction process can be obtained. Finally the regression model provides the estimation of residual stress due to the variation after CMP process. The residual stress distribution results of tungsten thin film can further be a reference in the CMP process to achieve desired thin films.

    摘 要 I Abstract II 目 錄 III 圖目錄 VI 表目錄 XII 符號表(Nomenclature) XIV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 3 1.3 論文架構 5 第二章 薄膜拋光之殘留應力 8 2.1 薄膜化學機械拋光製程 8 2.2 薄膜拋光與文獻探討 9 2.3 薄膜拋光之殘留應力 19 2.4 薄膜殘留應力量測文獻探討 23 2.4.1 殘留應力量測方法 23 2.4.2 應用GIXRD量測薄膜殘留應力 24 2.5 文獻回顧總結 26 第三章 薄膜殘留應力量測分析 31 3.1 薄膜雙軸向平面應力狀態 31 3.2 GIXRD量測鎢薄膜試片 35 3.2.1 實驗試片準備 35 3.2.2 量測設備簡介 37 3.2.3 殘留應力量測規劃 38 3.3 GIXRD量測結果 43 3.4 殘留應力計算程式之編輯與結果 46 第四章 實驗規劃 52 4.1 實驗規劃流程 52 4.2 化學機械拋光 56 4.3 電化學拋光 60 4.4 薄膜試片量測 62 4.5 實驗迴歸設計 65 第五章 實驗結果與討論 70 5.1 薄膜化學機械拋光結果與討論 70 5.1.1 化學機械拋光時間與殘留應力關係實驗結果 70 5.1.2 改變下壓力和相對轉速實驗結果 71 5.2 薄膜電化學拋光結果與討論 86 5.3 化學機械拋光對薄膜殘留應力的影響之討論 93 5.4 實驗迴歸分析結果 97 5.5 結果與討論總結 102 第六章 結論與建議 104 6.1 結論 104 6.2 建議 104 參考文獻 106 附錄A GIXRD規格說明 111 附錄B GIXRD校正結果 112 附錄C 鎢薄膜試片的d0值 113 附錄D 四點探針量測簡介 114 附錄E 殘留應力梯度分佈量測值 115 作者簡介 116

    [1] Wagner, T., “Thin Film Science”, Materials Synthesis and Processing, 196-200.
    [2] 莊逹人, “VLSI製造技術” ,高立圖書.
    [3] 謝耀儀, “薄膜應力與拋光應力對銅化學機械拋光行為影響之研究” ,國立中興大學機械工程學系碩士論文, 2002.
    [4] Quirk, M., J., Serda, “Semiconductor Manufacturing Technology”, Prentice Hall, chapter 12, 2001.
    [5] 蔡宏榮, “顆粒流體在粗糙表面之潤滑理論模式的建立與應用”, 國立中正大學機械工程研究所博士論文, 2003.
    [6] 許厲生, “矽晶圓薄化與平坦化加工研究”, 國立台灣科技大學機械工程研究所博士論文, 2003.
    [7] Preston, F. W., “The Theory and Design of Plate Glass Polishing Machine”, Journal of the Society of Glass Technology, Vol. 11, 214, 1927.
    [8] Srinivasa, C., D., Wang, S. P., Beaudoin, T., Bibby, K., Holland, T. S., Cale, “Stress distribution in chemical mechanical polishing”, Thin Solid Films, 308–309, 533–537, 1997.
    [9] Lin, Y. Y., S. P., Lo, “A study of a finite element model for the chemical mechanical polishing process”, Int J Adv Manuf Technol, 23, 644–650, 2004.
    [10] Seok, J., P. S., Cyriaque, A. T., Kim, J. A., T. S. Cale, “Material removal model for chemical–mechanical polishing considering wafer flexibility and edge effects”, Wear, 257, 496–508, 2004.
    [11] Larsen, J., H. Liang, “Probable role of abrasion in chemo-mechanical polishing of tungsten”, Wear 233–235, 647–654, 1999.
    [12] Runnels, S. R., M. L., Eyman, “Tribology Analysis of Chemical-Mechanical Polishing”, J. Electrochem. Soc., Vol. 141, No. 6, 1994.
    [13] Yu et al., T. K. Yu, C. C., Yu, M. Orlowski, “A Statistical Polishing Pad Model for Chemical Mechanical Polishing,” International Electron Devices Meeting Technical Digest, pp. 865-868, 1993.
    [14] Kaufman et al., F. B. Kaufman, D. B. Thmpson, R. E. Broadie, M.A. Jaso, W. L. Guthrie, D. J. Pearson, and M. B. Small, “Chemiacl- Mechanical Polishing for Fabricating Patterned withMetal Feature as Chip Interconnects”, Journal of Electrochemical Society, Vol. 138, No.11, 1991.
    [15] Can, D., S. Yoon, P. S. Ho, “Effects of passivation layer on stress relaxation in Cu line structures”, IEEE, 0~7803~7797~4103, 2003.
    [16] Haapalinna, A., S. Nevas, D. Pähler, “Rotational grinding of silicon wafers—sub-surface damage inspection”, Materials Science and Engineering, B107, 321–331, 2004.
    [17] Ring, T. A., P. Feeney, D. Boldridge, J. Kasthurirangan, S. Li, J. A. Dirksenb, “Brittle and Ductile Fracture Mechanics Analysis of Surface Damage Caused During CMP”, Journal of The Electrochemical Society, H239-H248, 154-3, 2007.
    [18] Shen, Z., B. Ma, Z. Wang, Y. Ji, T. Liu, H. Liu, “Fabrication of supersmooth surfaces with low subsurface damage”, SPIE, Vol 6722, 67223W, 2007.
    [19] 朱樹敏, “電化學加工技術”, 化學工業出版社, 2006.
    [20] Kao, P. S., H. Hocheng, “Optimization of electrochemical polishing of stainless steel by grey relational analysis”, Journal of Materials Processing Technology, 140, 255–259, 2004.
    [21] The, W. H., L.T. Koh, S.M. Chen, J. Xie, C.Y. Li, P.D. Foo, “Study of microstructure and resistivity evolution for electroplated copper films at near-room temperature”, Microelectronics Journal, 32, 579-585, 2001.
    [22] Sutta, P., Q. Jackuliak, “Macrostress Formation in Thin Films arid Its Investigation by X-ray Diffraction”, IEEE, 227-230, 1998.
    [23] Birkholz, M., “Thin Film Analysis by X-Ray Scattering”, Wiley, 2006.
    [24] Behnken, H., V. Hauk, “Determination of steep stress gradients by X-ray diffraction results of a joint investigation_Gradient”, Materials Science and Engineering, A300, 41–51, 2000.
    [25] Ekmekci, B., N. Ekmekçi, A. E. Tekkaya, A. Erden, “Residual Stress Measurement with Layer Removal Method”, Proceedings of the First Cappadocia International Mechanical Engineering Symposium,14-16, 2004.
    [26] Warrendable, P., “Residual Stress Measurement by X-Ray Diffraction”, SAE International, HS-784, 2003.
    [27] Stoney, G. G., Proc. “R. Soc. (Lond.)”, A82, 172, 1909.
    [28] Vrinceanu, I. D., S. Danyluk, “Measurement of residual stress in single crystal silicon wafers”, IEEE, 297-301, 2002.
    [29] Kusaka, K., T. Hanabusa, M. Nishida, F. Inoko, “Residual stress and in-situ thermal stress measurement of aluminum film deposited on silicon wafer”, Thin Solid Film, 248-253, 1996.
    [30] Welzel, U., J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer, “Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction”, Journal of Applied Crystallography, 38, 1-29, 2004.
    [31] Cullity, B. D., S. R. Stock, “Elements of X-Ray Diffraction”, Prentice Hall, 2001.
    [32] Ma, C. H., J. H. Huang, H. Chen, “Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction”, Thin Solid Films, 418, 73–78, 2002.
    [33] Chen, C-C. A., W. E. Fu, M. K. Chen, “Study on Residual Stress of Metal Thin Film on Silicon Wafer with CMP”, Advanced Materials Research, Vol 32, 75-78, 2008.
    [34] William, D., C. Jr., “Materials science and engineering and introduction”, Wiley, 2003.
    [35] Montgomery, “Design and Analysis of Experiments”, John Wiley, 241-300, 1996.
    [36] Yu, D. Y. W., Spaepen, F., “The yield strength of thin copper films on Kapton”, JOURNAL OF APPLIED PHYSICS, Vol 95, 2991-2997, 2004.

    QR CODE