簡易檢索 / 詳目顯示

研究生: 戴佩瑜
Pei-Yu Tai
論文名稱: 1,2,4-Triazole抑制劑之拋光液於銅膜晶圓化學機械拋光後清洗製程影響研究
Study on 1,2,4-Triazole Slurry for Post Clean of Cu CMP Process
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊棋銘
none
郭俞麟
none
李瑨
none
丘群
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 162
中文關鍵詞: 抑制劑124三氮唑化學機械拋光後清洗製程界面活性劑拋光液
外文關鍵詞: Inhibitor, Surfactant, Post Clean of CMP process, 124-Triazole, Slurry
相關次數: 點閱:275下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 晶圓經過化學機械拋光(CMP)製程後,晶圓表面通常殘留大量拋光液中之磨料、金屬離子及其他污染物,若無有效去除CMP製程後之殘留污染物以及拋光所產生之表面損傷,則將影響後續薄膜沈積、微影等製程之良率,因此CMP後清洗製程為應用於CMP製程後的關鍵技術。本研究針對拋光液中能有效降低表面粗糙度之抑制劑進行平坦化製程研究,同時藉由蝕刻實驗得知抑制劑附著的時間參數,以此減少拋光製程時間。將銅膜晶圓以及兩款拋光液應用於CMP製程中,發現1,2,4-Triazole及BTA在相同製程下,添加1,2,4-Triazole抑制劑之銅膜表面平均粗糙度比原先降低28.3%。最終將一般型以及混合型界面活性劑應用於清洗製程中,由結果發現混合型非離子界面活性劑能有效去除1,2,4-Triazole抑制劑,且能保持良好之表面粗糙度。本研究相關成果可驗證拋光液中1,2,4-Triazole抑制劑能提升化學機械平坦化製程之效益,並且發現混合型界面活性劑能有效運用在化學機械拋光後清洗製程,未來研究可著重於1,2,4-Triazole抑制劑應用在不同拋光液基底及溫度的影響。


    The wafer surface usually leaves abundant particles, metal ions and contaminations after chemical mechanical polishing (CMP) process. Once each contaminations and the scratches can not be removed clearly, it can affect the following photolithography or doping process. Thus the post clean of CMP process plays a significant role in high volume manufacturing. In this study, 1,2,4-Triazole inhibitor has been investigated for post clean of CMP process and etching experiments can obtain the optimal parameters to reduce the polishing time. Copper blanket wafers are need for testing. Two different kinds of inhibitor 1,2,4-Triazole and BTA have been utilized in slurry for CMP process. Result indicates that the 1,2,4-Triazole inhibitor can obtain better surface roughness Sa reducing 28.3% from 2.47nm to 1.77nm under the same condition of slurry with BTA inhibitor. In addition, result of applying normal nonionic or mix-nonionic surfactant in cleaning procedure indicate that the mix-nonionic surfactant is capable of removing 1,2,4-Triazole inhibitor and maintains the same quality of surface roughness as well. Finally the 1,2,4-Triazole inhibitor is able to improve the efficiency and the mix-nonionic surfactant can be employed in post clean of CMP process. Future study can focus on different slurry and temperature effects on 1,2,4-Triazole inhibitor application.

    目錄 摘要 I Abstract II 誌謝 III 目錄 VI 圖目錄 X 表目錄 XVI 第一章 導論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 拋光相關文獻回顧 8 2.1.1 化學機械拋光 (CMP) 8 2.1.2 無磨料化學機械拋光 (AFCMP) 11 2.2 腐蝕抑制劑相關文獻回顧 17 2.3 拋光後清洗製程相關文獻回顧 25 2.4 後清洗製程相關專利 32 2.5 文獻回顧總結 34 第三章 CMP後清洗實驗相關原理介紹 36 3.1 鈍化膜理論與動電位極化曲線 36 3.1.1 鈍化膜理論 36 3.1.2 動電位極化曲線 37 3.2 表面殘留汙染物介紹 39 3.2.1 抑制劑 40 3.2.2 磨粒吸附原理 46 3.3 界面活性劑 48 3.4 空穴效應 53 3.5 總結 54 第四章 CMP後清洗實驗設備與規劃 55 4.1 實驗設備 55 4.1.1 拋光機 55 4.1.2 超音波清洗機 56 4.2 實驗耗材 57 4.2.1 拋光墊 57 4.2.2 拋光液 58 4.2.3 界面活性劑 61 4.2.4 鑽石修整器 62 4.2.5 銅片與銅膜晶圓 63 4.3 量測設備 64 4.4 實驗規劃 65 4.4.1 實驗A. 抑制劑對於銅膜晶圓表面化學反應影響 67 4.4.2 實驗B. 銅膜晶圓於拋光製程分析 68 4.4.3 實驗C. 銅膜晶圓於CMP後清洗製程分析 69 第五章 CMP後清洗實驗結果與討論 70 5.1 實驗A. 抑制劑對於銅膜晶圓表面化學反應影響 71 5.1.1 蝕刻反應速率 72 5.1.2 銅膜晶圓表面接觸角量測 76 5.1.3 銅膜晶圓表面粗糙度影響 79 5.1.4 拋光液內銅離子濃度量測分析 81 5.2 實驗B. 銅膜晶圓於拋光製程分析 84 5.2.1 銅膜晶圓材料移除率分析 85 5.2.2 銅膜晶圓表面接觸角量測 87 5.2.3 銅膜晶圓表面粗糙度影響 89 5.2.4 拋光液內銅離子濃度量測分析 91 5.2.5 銅膜晶圓表面殘留物 93 5.3 實驗C. 銅膜晶圓於CMP後清洗製程分析 94 5.3.1 非離子型界面活性劑CMC濃度的探討 95 5.3.2 非離子型界面活性劑的界達電位量測 97 5.3.3 混合型界面活性劑於接觸角量測結果 98 5.3.4 混合型界面活性劑於晶圓表面粗糙度的影響 100 5.3.5 混合型界面活性劑對於晶圓去除磨料的影響 102 第六章 結論與建議 106 6.1 結論 106 6.2 建議 108 參考文獻 109 附錄A 拋光液相關資訊 114 附錄B 清洗製程相關資訊 115 附錄C 本研究所使用之量測設備及儀器 116 附錄D 銅晶圓預處理流程 121 附錄E 銅膜晶圓蝕刻實驗的數據 122 附錄F 銅膜晶圓拋光實驗的數據 130 附錄G 銅膜晶圓CMC實驗的數據 134 附錄H 銅膜晶圓CMP後清洗製程實驗的數據 136 附錄I 拋光液電化學分析 141 作者簡介 142

    參考文獻
    [1] E. L. Banks, "Method of polishing a semiconductor wafer", US 4256535 A, 1979.
    [2] 林彥德,“應用X-Ray量測技術研究薄膜應力特性與銅薄膜化學機械拋光製程之影響”,國立台灣科技大學,機械工程系所碩士論文,2007。
    [3] 謝啟祥,“電場輔助化學機械拋光製程於銅模平坦化之研究”, 國立台灣科技大學,機械工程系所碩士論文,2011。
    [4] D. Ng, P. Y. Huang, Y. R. Jeng, and H. Liang, "Nanoparticle Removal Mechanisms during Post-CMP Cleaning", Electrochemical and Solid-State, vol. 10, pp. 227-231, 2007.
    [5] Y. Ein-Eli and D. Starosvetsky, "Review on copper chemical–mechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated (ULSI)—An electrochemical perspective", Electrochimica Acta, vol. 52, pp. 1825-1838, 2007.
    [6] S. Choi, F. M. Doyle, and D. Dornfeld, "A model of material removal and post process surface topography for copper CMP", Procedia Engineering, vol. 19, pp. 73-80, 2011.
    [7] W.-E. Fu, C.-C. A. Chen, Y.-D. Lin, Y.-Q. Chang, and Y.-H. Huang, "Passivation layer effect on surface integrity induced by Cu-CMP", Thin Solid Films, vol. 519, pp. 4874-4879, 2011.
    [8] 方政煜、蔡明蒔、戴寶通、馮明憲,“無磨粒銅製程化學機械拋光平坦化技術”,毫微米通訊第九卷第一期,2002。
    [9] 林永成,“晶圓銅膜無磨粒化學機械拋光機制研究”,國立中興大學,機械工程系所碩士論文,2005。
    [10] S. Ramakrishnan, S. V. S. B. Janjam, U. B. Patri, D. Roy, and S. V. Babu, "Comparison of dicarboxylic acids as complexing agents for abrasive-free chemical mechanical planarization of copper", Microelectronic Engineering, vol. 84, pp. 80-86, 2007.
    [11] 枋明輝,“無磨料電化學機械加工在銅薄膜平坦化製程之研究”,國立台灣科技大學,機械工程系所碩士論文,2009。
    [12] O. Kirino and T. Enomoto, "Ultra-flat and ultra-smooth Cu surfaces produced by abrasive-free chemical–mechanical planarization/polishing using vacuum ultraviolet light", vol. 35, pp. 669-676, 2011.
    [13] H. Tanada, T. Miyoshi, Y. Takaya, T. Hayashi, and K. Suzuki, "Novel CMP Technique for Copper Surface Finishing with Fullerene Nano-Particle", American Society for Precision Engineering (ASPE), 2006.
    [14] I.-K. Kim, Y.-J. Kang, T.-G. Kim, and J.-G. Park, "Effect of Corrosion Inhibitor, Benzotriazole, in Cu Slurry on Cu Polishing", Japanese Journal of Applied Physics, vol. 47, pp. 108-112, 2008.
    [15] C.-C. A. Chen and C.-H. Hsieh, "Effect of Inhibiter Concentration on Cu CMP Slurry Analyzed by a Cu-ECMP System", Electrochemical Society, Las Vegas, USA, 2010.
    [16] L. Jiang, Y. Lan, Y. He, Y. Li, Y. Li, and J. Luo, "1,2,4-Triazole as a corrosion inhibitor in copper chemical mechanical polishing", Thin Solid Films, vol. 556, pp. 395-404, 2014.
    [17] D. Ng, M. Kulkarni, and H. Liang, "Role of Surfactant Molecules in Post-CMP Cleaning", Journal of The Electrochemical Society, vol. 155, pp. 64-68, 2008.
    [18] A. Otake, A. Kuroda, T. Matsumoto, J. Daviot, and C. Shang, "BTA removal and Prevention of Surface Oxidation for Copper Post CMP Cleaning", International Conference on Planarizaiton/CMP Technology, Fukuoka, Japan, 2009.
    [19] P. Karimi, T. Kim, J. Aceros, J. Park, and A. A.Busnaina, "The removal of nanoparticles from sub-micron trenches using megasonics", Microelectronic Engineering, vol. 87, pp. 1655-1808, 2010.
    [20] B.-J. Cho, J.-G. Park, S. Shima, and S. Hamada, "Investigation of Cu-BTA Complex Formation and Removal on Various Cu Surface Conditions", International Conference on Planarization/CMP Technology, Kobe, 2014.
    [21] S. Mingbin, G. Baohong, W. Chenwei, M. Yingxin, D. Bo, and T. Baimei, "Non-ionic surfactant on particles removal in post-CMP cleaning", Semiconductors, vol. 36, pp. 1-5, 2015.
    [22] A. Klipp, T.-H. Hung, K.-c. Su, and s.-H. Tu, "Composition for Post Chemical-Mechanical Polishing Cleaning", US 2012/0021961 Patent, 2012.
    [23] C. Dnyaiiesh, B. Madhllka, B. Gautam, and R. Keith, "Formulations and Method for Post-CMP Cleaning", US 8,765,653 B2, US8765653B2 Patent, 2010.
    [24] N. K. Allam, A. A. Nazeer, and E. A. Ashour, "A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments", J Appl Electrochem, vol. 39, pp. 961-969, 2009.
    [25] M. Finšgar and I. Milošev," Corrosion Science", vol. 52, 2010.
    [26] K. L. Stewart, J. J. Keleher, and A. A. Gewirth, "Relationship Between Molecular Structure and Removal Rates during Chemical Mechanical Planarization: Comparison of Benzotriazole and 1,2,4-Triazole", Electrochemical Society, vol. 10, pp. 625-631, 2008.
    [27] J. A. F. Pierna, O. Abbas, P. Dardenne, and V. Baeten, "Discrimination of Corsican honey by FT-Raman spectroscopy and chemometrics", Biotechnol. Agron. Soc. Environ., vol. 15, pp. 75-84, 2011.
    [28] 廖文淵,“化學機械研磨後清洗過程微粒附著及移除機制之探討”,國立中興大學, 機械工程系所碩士論文,2004。
    [29] 郭冠麟、王榮英、林振隆、陳寶祺,“物理化學”,學富文化事業有限公司,2003。
    [30] 洪庭旭,“界面活性劑溶液濕潤疏水表面之行為”,國立中央大學,化學與材料工程系所碩士論文,2007。
    [31] 洪佳惠,“膽固醇與膽鹽對微脂粒穩定度的影響”,國立中央大學,化學與材料工程系所碩士論文,2003。
    [32] S. V. Babu, M. Hariharaputhiran, J. Zhang, S. Ramarajan, J. J. Keleher, and Y. Li, "Hydroxyl Radical Formation in H2O2-Amino Acid Mixtures and Chemical Mechanical Polishing of Copper", The Electrochemical Society, vol. 147, pp. 3820-3826, 2000.


    QR CODE