簡易檢索 / 詳目顯示

研究生: 朱桂瑩
Keui-Ying Chu
論文名稱: 薄膜殘留應力量測與數值模擬
Measurement and Simulation of Residual Stresses of Thin Films
指導教授: 趙振綱
Ching-Kong Chao
口試委員: 曾垂拱
Chwei Goong Tseng
張瑞慶
Rwei-Ching Chang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 104
中文關鍵詞: 薄膜殘留應力表面粗糙度奈米壓痕儀XRD繞射儀
外文關鍵詞: Residual stresses, Roughness, Nanoindentation, X-ray diffraction
相關次數: 點閱:357下載:24
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討電子束蒸鍍薄膜之殘留應力,以表面輪廓儀量測薄膜蒸鍍前後的曲率變化,再反算其殘留應力,並以有限元素進行數值模擬。首先以電子束蒸鍍機沉積鈦(Ti)薄膜在矽晶圓表面,鈦(Ti)薄膜於不相同沉積速率分別:0.1、0.3、0.5 (/s);並將鈦(Ti)薄膜設定其不同的取出溫度:25、50、75 (℃),進而比較其殘留應力的行為。其次使用奈米壓痕儀來計算鈦(Ti)薄膜微、奈米機械性質;再進一步利用X-ray繞射儀、能量分散式光譜儀(EDS)來檢測薄膜成分及晶格結晶方向。最後配合有限元素法(Finite Element Method)來模擬分析鈦(Ti)薄膜和矽晶圓間界面薄膜熱應力。在實驗檢測部份,鈦(Ti)薄膜沉積在矽晶圓表面,皆為壓縮應力,其薄膜殘留應力隨著沉積速率增加而增加;就機械性質而言,楊氏係數隨著殘留應力增加而增加、硬度則因殘留應力增加隨之減少。此外,蒸鍍後將溫度降到25 ℃把試片取出時,其薄膜殘留應力為最大,其次為75 ℃,待溫度50 ℃時取出試片其薄膜殘留應力為最小。在數值模擬部份,則是模擬溫度對鈦(Ti)薄膜的影響,便觀察其熱應力的變化,模擬結果顯示皆為拉伸應力,綜合實驗和模擬結果,我們可以得知,薄膜的製作過程中產生的本質應力皆遠大於溫度對試片所造成的熱應力。總而言之,薄膜殘留應力與沉積過程、沉積參數有相當大的關係,然而楊氏係數和硬度的機械性質將是取決於薄膜殘留應力。


    A study of residual stresses of thin films evaporated by an electronic-beam is presented in this work. A surface profiler is utilized to measure the substrate curvature before and after evaporation. Then the residual stresses are calculated from the curvature change. In addition, a numerical simulation to predict the thermal mismatch between the thin film and substrate is also discussed. First, titanium thin films are deposited on silicon wafer substrate by evaporation deposition with 0.1, 0.3, 0.5 /s deposition rates. The specimens are cooled to 25, 50, 75 °C in the evaporator, and proceed the curvature measurement. Second, use nanoindenter, X-ray diffraction, and energy dispersive spectrometer to test the mechanical properties and microscopic structures of the thin films. Finally, the thermal stresses induced by the thermal mismatch between the titanium thin films and silicon substrates are simulated by finite element method. In experimental results, all the residual stresses are compressive and increase with deposition rate. The Young’s modulus increases but the hardness decreases as the deposition rate increases. For different cooled temperature, the specimen at 25 °C has the maximum residual stress, 75 °C is the second, and 50 °C has the minimum. In numerical simulation, the results show that all the thermal stresses between titanium thin film and silicone substrate are tensile. It concludes that the internal stresses induced by the deposition process are larger than the thermal stresses induced by the thermal mismatch. The residual stresses strongly depend on the parameters of deposition processes and have significant effect on the mechanical properties measured by nanoindentation.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1. 1 前言 1 1. 2 文獻回顧 2 1. 3 研究動機與目的 5 1. 4 本文作法 6 第二章 基礎理論 8 2.1 量測薄膜殘留應力性質 8 2.1.1 殘留應力 8 2.1.2 Stoney方程式 10 2.1.3 熱應力 12 2.2 量測薄膜機械性質 14 2.2.1 奈米壓痕儀系統 14 2.2.2 奈米壓痕理論 15 第三章 薄膜製程 18 3. 1 儀器介紹與實驗方法 18 3.1. 1 試片製作與鍍膜原理 18 3.1. 2 電子束蒸鍍機 21 第四章 薄膜殘留應力量測 25 4.1 薄膜殘留應力檢測 25 4.1. 1 表面輪廓儀 25 4.1. 2 探針特性 26 4.1. 3 實驗步驟 27 ( 1 ) 薄膜殘留應力 28 ( 2 ) 表面粗糙度 29 第五章 薄膜機械性質量測 30 5.1 奈米壓痕儀 30 5.1.1奈米壓痕儀介紹 30 5.1.2實驗儀器與架構 30 5.1.3探針特性 32 5.1.4實驗步驟 33 5.2 X-ray繞射儀 34 5.2.1 X光繞射基本原理 35 5.2.2 X-ray繞射儀介紹 37 5.2.3實驗步驟 38 5.3 能量分散式光譜儀 39 5.3.1能量分散式光譜儀原理 40 5.3.2能量分散式光譜儀介紹 41 5.3.3實驗步驟 42 第六章 實驗結果與討論 43 6. 1 薄膜殘留應力分析 43 6.1. 1 不同蒸鍍速率對薄膜殘留應力分析 46 6.1. 2 不同溫度對薄膜殘留應力分析 46 6. 2 薄膜機械性質分析 49 6.2. 1 楊氏係數分析 49 6.2. 2 硬度分析 55 6.2. 3 表面粗糙度分析 57 6.2. 4 XRD分析 63 6.2. 5 能量分散式光譜儀分析 67 第七章 數值模擬 72 7. 1 ANSYS 簡介 72 7. 2 ANSYS 的基本操作步驟 75 7. 3 材料選取、參數設定、模型建立 76 7. 4 模擬分析結果 78 7.4. 1 熱應力對薄膜殘留應力分析 79 第八章 結論 82 參考文獻 84 作者簡介 92

    [1] G. Guisbiers, S. Strehle and M. Wautelet, (2005), “Modeling of residual stresses in thin films deposited by electron beam evaporation.”, Microelectron Engineering 82, PP.665~669.
    [2] Y.H. Wang, M.R. Moitreyee, R. Kumar, S.Y. Wu, J.L. Xie, P. Yew, B. Subramanian, L. Shen and K.Y. Zeng, (2004), “The mechanical properties of ultra-law-dielectric-constant films.”, Thin Solid Films 462, PP.227~230.
    [3] T. Pienkos, A. Proszynski, D. Chocyk, L. Gladyszewski and G. Gladyszewski, (2003), “Stress development during evaporation of Cu and Ag on silicon.”, Microelectron Engineering 70, PP.442~446.
    [4] R.L. Engelstad, Z. Feng, E.G. Lovell, A.R. Mikkelson and J. Sohn, (2005), “Evaluation of intrinsic film stress distributions from induced substrate deformation.”, Microelectron Engineering 78-79, PP.404~409.
    [5] Y. Pauleau, (2001), “Generation and evoluation of residual stresses in physical vapour-deposited thin films.”, Vacuum 61, PP.175~181.
    [6] Alan Lee, B.M. Clemens and W.D. Nix, (2004), “Stress induced delamination methods for the study of adhesion of Pt thin films to Si.”, Acta Materialia 52, PP.2081~2093.
    [7] W. Fang, H.C. Tasi and C.Y. Lo, (1999), “Determining thermal expansion coefficients of thin films using micromachined cantilevers.”, Sensors and Actuators 77, PP.21~27.
    [8] P.J. Withers and H.D.H. Bhadeshia, (2001), “Residual stress Part1 measurement techniques.”, Materials Science and Technology 17, PP.355~365.
    [9] 儀科中心簡訊77期,國家實驗研究院儀器科技研究中心.
    [10] S.G. Malhotra, Z.U. Rek, S.M. Yalisove, J.C. Bilello, (1997), “Analysis of thin film stress measurement techniques.”, Thin Solid Film 301, PP.45~54.
    [11] I.C. Noyan and J.B. Cohen, (1987), “Residual stress measurement by X-ray diffraction and interpretation.”, New York, USA:Springer-verlag, PP.117~163.
    [12] S.G. Malhotra, Z.U. Rek, S.M. Yalisove, J.C. Bilello, (1909), Journal of Applied physics 79, PP.68~69.
    [13] C. Friesen, S.C. Seel and C.V. Thompson, (2004), “Reversible stress changes at all stages of Volmer-Weber film growth.”, Journal of Applied physics 95, PP.1011~1020.
    [14] F. Weileum and C.Y. Lo, (2000), “On the thermal expansion coefficients of thin films.”, Sensors and Actuators 84, PP.310~314.
    [15] T.Y. Tsui, W.C. Oliver and G.M. Pharr, (1996), “Influence of stress on the measurement of mechanical properties using:Part I. Experimental studies in an aluminum alloy.”, Journal of Materials Research 11, PP.752~759.
    [16] P.V. Mieghem, S.C. Jain, J. Nijs and R.V. Overstraeten, (1994), “Stress relaxation in laterally small strained semiconductor epilayers.”, Journal of Applied Physics 75, PP.666~668.
    [17] S. Chrisiansen, M. Albrecht, H.P. Strunk and H.J. Maier, (1994), “Strained state of Ge(Si) islands on Si finite element calculations and comparison to convergent beam electron-diffraction measurements.”, Applied Physics Letters 64, PP.3617~3619.
    [18] Z. Hutchinson and W. Sou, (1992), “Mixed mode cracking in layered
    materials.”, Advances in applied mechanics 29, PP.63~191.
    [19] J.H. Jou and L. Hsu, (1991), “Stress analysis of elastically anisotropic bilayer structures.”, Journal of Applied physics 69, PP.1384~1388.
    [20] D.O. Smith, M.S. Cohen and G.P. Wiess, (1960), “Oblique-Incidence
    anisotropy in evaporated permalloy films.”, Journal of Applied physics
    31, PP.1755~1762.
    [21] D.O. Smith, (1961), “Anisotropy in Nickel-Iron films.”, Journal of Applied physics 32, PP.S70~S80.
    [22] C.W. Mays, J.S. Vermask and D. Kuhlman-Wilsdorf, (1968), “On surface stress and surface tension. PT. 1 theoretical considerations.”, Surface 12, PP.128~133.
    [23] R. Abermann, R. Kramer and J. Maser, (1978), “Structure and internal stress in ultra-thin silver films deposited on MgF sub 2 and SiO substrates.”, Thin Solid Films 52, PP.215~219.
    [24] W. Andra and H. Danan, (1977), “Magnetic interface anisotropy and magnetization of plated Ni and Co films”, Physica Status Solidi A42, PP.227~233.
    [25] P. Chaudhari, (1972), “Grain Growth and Stress Relief in Thin Films.”, Journal of vacuum Science Technology 9, PP.520~522.
    [26] F.C. Frank and J.H. vanderMerwe, (1949), “One-Dimensional dislocations. I. static theory.”, Proceedings the Royal of Society London A198, PP.205~216.
    [27] J.H. vanderMerwe, (1963), “Crystal interfaces. part II. finite overgrowths.”, Journal of Applied physics 34, PP.123~127.
    [28] J.W. Matthews, (1975), “Defects associated with the accommodation of misfit between crystals.”, Journal of vacuum Science Technology 12, PP.126~133.
    [29] R. People and J.C. Bean, (1985), “Calculation of critical layer thickness versus lattice mismatch for GexSi1–x/Si strained-layer heterostructures.”, Applied Physics Letters 47, PP.322~324.
    [30] J.A. Thornton, J. Taback and D.W. Hoffman, (1979), “Internal stresses in metallic films deposited by cylindrical magnetron sputtering.”, Thin Solid Films 64, PP.111~119.
    [31] A. Bensaoula, J.C. Wolef, A. Ignatiev, F.O. Fong and T.S. Leung, (1984), “Direct-current-magnetron deposition of molybdenum and tungsten with Rf-substrate bias.”, Journal of vacuum Science Technology A2, PP.389~392.
    [32] E.C. Crittender, Jr. and R.W. Hoffman, (1953), “Thin films of ferromagnetic materials.”, Reviews of Modern Physics 25, PP.310~315.
    [33] A. Segmuller, (1961), “Annealing behavior and temperature dependence of the magnetic properties of thin permalloy films.”, Journal of Applied physics 32, PP.S89~S90.
    [34] J.D. Finegan and R.W. Hoffman, (1959), “Stress anisotropy in evaporated Iron films.”, Journal of Applied physics 30, PP.597~598.
    [35] F.A. Doljck and R.W. Hoffman, (1972), Thin Solid Films 12, PP.71.
    [36] R. Raj and M.F. Ashby, (1975), “Intergranular fracture at elevated temperature.”, Acta Metallurgica 23, PP.653~666.
    [37] F.M. D’Heurle, Metall, (1970), Transactions 1, PP.725.
    [38] D.W. Hoffman and J.A. Thornton, (1989), “Stress-related effects in thin films.”, Thin Solid Films 171, PP.5~18.
    [39] V. Orlinov and G. Sarov, (1982), Thin Solid Films 89, P.133.
    [40] M. Laugier, (1981), “Adhesion and internal stress in thin films of aluminium.”, Thin Solid Films 79, PP.15~19.
    [41] P. Paduscheck, C. Hopfl and H. Mitleher, (1983), Thin Solid Films 110, PP.291~293.
    [42] H. Windischmann, (1991), “Intrinsic stress and mechanical properties of hydrogenated silicon carbide produced by plasma-enhanced chemical vapor deposition.”, Journal of vacuum Science technology A9, PP.2459~2463.
    [43] H. Winters and E. Kay, (1967), “Gas incorporation into sputtered films.”, Journal of Applied physics 38, PP.3928~3934.
    [44] G.G. Stoney, (1909), “The tension of metallic films deposited by electrolysis.”, Proceedings The Royal of Society London A82, PP.172~175.
    [45] P.A. Flinn, D.S. Gardner and W.D. Nix, (1987), IEEE Transactions ED-34, PP.689.
    [46] M. Langier, (1981), Thin Solid Films 75, PP.17.
    [47] T.F. Retajczyk, Jr. and A.K. Sinha, (1980), “Elastic stiffness and thermal expansion coefficient of BN films.”, Applied Physics Letters 36, PP.161~163.
    [48] T.F. Retajczyk, Jr. and A.K. Sinha, (1980), “Elastic stiffness and thermal expansion coefficients of various refractory silicides and silicon nitride films.”, Thin Solid Films 70, PP.241~247.
    [49] J.T. Pan and I.T. Blech, (1984), “In situ stress measurement of refractory metal silicides during sintering.”, Journal of Applied physics 55, PP.2874~2880.
    [50] A. Lahav, K.A. Grim and I.A. Blech, (1990), “Measurement of thermal expansion coefficients of W, WSi, WN, and WSiN thin film metallizations.”, Journal of Applied physics 67, PP.734~738.
    [51] J.H. Jou and L.J. Chen, (1991), “Relaxation modulus and thermal expansion coefficient of polyimide films coated on substrates.”, Applied Physics Letters 59, PP.46~47.
    [52] J.H. Jou and L.J. Chen, (1992), “Simultaneous determination of the biaxial relaxation modulus and thermal expansion coefficient of Rigid-Rod polyimide films using a bending-beam technique.”, Macromolecules 25, PP.179~184.
    [53] M. Janda, (1984), “Elasticity Modulus E sub f and temperature expansion coefficient alpha sub f of aluminium thin films measured by a new method.”, Thin Solid Films 112, PP.219~225.
    [54] 白木靖寬/吉田,(2004),薄膜工程學,全華圖書PP.4-27~4-30
    [55] D. Tabor, (1951), “The hardness of metals.”, Oxford: Oxford University Press.
    [56] I.N. Sneddon, (1965), “The relaxation between load and penetration in the axisymmetric bussinesq problem for a punch of arbitrary profile.” , International Journal of Engineering Science 3, PP. 47.
    [57] M. Doerner and W.D. Nix, (1986), “A method for interpreting the data from depth-sensing indentation instruments.”, Journal of Materials Research 1, PP.601~609.
    [58] W.C. Oliver and G.M. Pharr, (1992), “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments.”, Journal of Materials Research 7, PP.1564~1583.
    [59] G. Ziegler, (1963), Solid-State Electron 6, PP.680.
    [60] J.E. Greene and C.E. Wickersham, (1976), Journal of Applied physics 47, PP.3930.
    [61] T. Sudersena Rao, J.B. Webb, D.C. Houghton, J.M. Baribean, T. Moore and J.P. Noad, (1988), “Heteroepitaxy of InSb on silicon by metalorganic magnetron sputtering.”, Applied Physics Letters 53, PP.51~53.
    [62] H.H. Wieder, (Pergamon, Oxford, 1970), “Intermetallic Semiconducting Film.”, Chap.3
    [63] K.G. Guenther and H. Freller, Z. Naturforsch, (1967), Teil A16, 279.
    [64] M. Ohshita, (1971), “High electron mobility InSb films prepared by Source-Temperature-Programed evaporation method.”, Japanese Journal of Applied physics 10, PP.1365~1371.
    [65] A.R. Clawaon and H.H. Wieder, (1965), Solid-State Electron 8, PP.467.
    [66] A.R. Clawson and H.H. Wieder, (1967), Solid-State Electron 10, PP.57.
    [67] N.F. Teed, (1967), “Single Crystal InSb Thin Films by Electron Beam Recrystallization.”, Solid-State Electron 10, PP.1069~1070.
    [68] H.H. Wieder, (1966), “Galvanomagnetic properties of recrystallized dendritic Insb films.”, Solid-State Electron 9, PP.373~382.
    [69] S. Baba, H. Horita and A. Kinbara, (1978), “Synthesis of stoichiometric InSb thin films by a simple molecular-beam technique.”, Journal of Applied physics 49, PP.3633~6332.
    [70] A.J. Noreika, J. Greggi, Jr., W.J. Takei and M.H. Fracombe, (1983), “Properties of MBE grown InSb and InSb(1–x)Bi(x).”, HThe Journal of Vacuum Science and Technology AH1, PP.558~561.
    [71] G.M. Williams, C.R. Whitehous, C.F. MoConville, A.G. Cullis, T. Ashley, S.G. Courtney and C.T. Elliott, (1988), “Heteroepitaxial growth of InSb on (100)GaAs using molecular beam epitaxy.”, Applied Physics Letters 53, PP.1189~1191.
    [72] J.I. Chyi, S. Kalon, N.S. Kumar, C.W. Litton and H. Morkoc, (1988), “Growth of InSb and InAs(1–x)Sb(x) on GaAs by molecular beam epitaxy.”, Applied Physics Letters 53, PP.1092~1094.
    [73] P.K. Chiang and S.M. Bedair, (1984), “Growth of InSb and InAs sub(1-x)Sb sub(x) by OM-CVD.”, HJournal of The Electrochemical SocietyH 131, PP.2422~2426.
    [74] J.C. Chen, P. Bush, W.K. Chen and P.L. Lin, (1988), “Low-temperature heteroepitaxial growth of InSb on CdTe by metalorganic chemical vapor deposition.”, Applied Physics Letters 53, PP.773~775.
    [75] L. Bergman and R.J. Nemanich, (1995), “Raman and Photoluminescence analysis of stress state and impurity distribution in diamond thin films.”, Journal of Applied physics 78, PP.6709~6719.
    [76] 賴耿陽編著,(1983),薄膜製作工藝學,復漢出版社,PP.1~40, PP.110~225.
    [77] 李正中編著,(1983),光學薄膜製鍍技術及應用,行政院國科會光電小組編印,PP.1-17, PP.28-29.
    [78] R.A. Cowley and T.W. Ryan, (1987), “X-ray scattering studies of thin films and surfaces: thermal oxides on silicon.”, HJournal of PhysicsH D 20, PP.61~68.
    [79] M. Stamm, G. Reiter and K. Kunz, (1991), “The use of X-ray and neutron
    reflectometry for the investigation of polymeric thin films.”, Physica B, Physics of Condensed Matter 173, PP.35~42.
    [80] M.G.LE. Boite, A. Traverse. L. Evot, B. Pardo and J. Corno, (1998), “Grazing x-ray reflectometry and Rutherford backscattering: two complementary techniques for the study of thin film mixing.”, Nuclear Instruments and Methods in Physics Research Section B29, PP.653~654.
    [81] I. Belaish, I. Entin, R. Goffer, D. Davidov and H. Selig, (1992), “ Spin cast thin films of fullerenes and fluorinated fullerenes: Preparation and characterization by x-ray reflectivity and surface diffuse x-ray scattering.”, HJournal of PhysicsH 71, PP.5248~5250.
    [82] Mc. Cauley, Jr., N. Coustel, J.E. Fischer and A.B. Smith III, (1992), “ Spin cast thin films of fullerenes and fluorinated fullerenes: Preparation and characterization by x-ray reflectivity and surface diffuse x-ray scattering.”, Journal of Applied Physics 71, PP.5248~5250.
    [83] X.L. Zhou and S.H. Chen, (1995), “Theoretical foundation of X-ray and neutron reflectometry.”, Physics Reports 257, PP.223~348.
    [84] O.J. Guentert, (1965), “Study of the anomalous surface reflection of X- rays.”, Journal of Applied physics 36, PP.1361~1366.
    [85] 許樹恩,吳泰伯,(1993),X光繞射原理與材料結構分析,中國材料科學學會。
    [86] 汪建民,(1998),材料分析,中國材料科學學會。
    [87] A. Rizzo, M. Sagace, U. Galietti and C. Papalettere, (2003), “Measurements of strain during vapour deposition of thin films and multilayers.”, Thin Solid Films 433, PP.144~148.
    [88] Mingwu Bai, Koji Kato, Noritsugu Umehara and Yoshihiko Miyake, (2000), “Nanoindentation and FEM study of the effect of internal stress on micro/nano mechanical property of thin CNx films.”, Thin Solid Films 377, PP.138~147.
    [89] S. Hussain, S. Ahmad, M. Sharif, M. Sadiq, A. Waheed and M. Zakaullah, (2006), “Comparative studies of X-ray emission from a plasma focus with different metal inserts at the anode tip.”, Physics Letters A349, PP.236~244.

    QR CODE