簡易檢索 / 詳目顯示

研究生: Bryan Hubert
Bryan Hubert
論文名稱: 鍍銀3D凹槽:作為鋰金屬電池電解質評價研究平台的製備及應用
Ag Coated 3D Groove: Fabrication and Application as a Study Platform in Evaluating Electrolytes for Li Metal Batteries
指導教授: 朱 瑾
Jinn P. Chu
黃炳照
Bing-Joe Hwang
口試委員: 潘俊仁
Chun-Jern Pan
吳溪煌
She-Huang Wu
王迪彥
Di-Yan Wang
黃炳照
Bing-Joe Hwang
朱 瑾
Jinn P. Chu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 英文
論文頁數: 88
中文關鍵詞: 三維結構陣列圖案均鍍能力電解質評價界面電阻表面粗糙度鋰銀合金
外文關鍵詞: 3D structure array pattern, throwing power, electrolytes evaluation, interface resistance, surface roughness, Li-Ag alloy
相關次數: 點閱:67下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電解質通過促進離子來回移動在鋰金屬電池系統中發揮重要作用。因此,在組裝電池時選擇
    合適的電解液是提高循環性能的重要步驟之一。然而,目前對平面二維銅的研究中,對鍍層剝離
    的鋰厚度的重點研究並沒有很好地關注定量證明形成的 SEI 的均勻性,而這是獲得良好性能的
    重要因素。在這項工作中,厚度為 130 nm 的 Ag 塗層凹槽通過磁控濺射沉積在商業銅箔上的
    3D 結構陣列圖案上,作為評估 Li//Cu 半電池配置中液體電解質的新平台。該設計提供了兩個
    關鍵點,即所謂的 (1) Hill 和 (2) Valley 區域,以表示不同電解質的均鍍能力 (TP) 的均
    勻性,這與電化學性能相關。在電鍍過程中,通過橫截面圖像可以清楚地捕捉到薄而緻密的 Li
    和 SEI 層,並且在剝離後幾乎沒有發現 Li 以及在應用 FEC ( 3 59 %) 和 TMSP ( 49 60 %) 後
    TP 值增加的跡象作為添加劑,這與單獨使用 LiPF 6 的 TP 值 6 6 84 %) 形成對比。
    該結果顯示了丘陵和山谷如何很好地證明添加劑如何對實現均勻層產生顯著影響,這成為
    與單獨使用 LiPF 6 (91.89%) 相比實現更高平均庫侖效率( FEC 為 95.39% TMSP 為 94.87%
    的根本原因。此外,使用含 FEC 的電解質分別獲得了山丘和山谷的最低電阻值( 18.76 Ω 和
    10.92 Ω)和平均表面粗糙度 Ra 24.8 和 22.4 nm ),表明由於沒有光刻膠,山谷區域具有更
    好的性能,因此光滑的 SEI 可以在鍍銀的凹槽表面形成。通過應用包含山丘和山谷區域的 Ag 塗
    層凹槽的設計,深入了解如何構建平台以符合在鋰金屬電池應用中篩選液體電解質的良好選擇
    的努力。


    Electrolytes provide an important role in Li metal battery system by promoting the movement of ion back and forth. Therefore, selecting a prompt electrolyte in assembling a cell is one of important step to enhance the cycling performance. However, the focus study on Li thickness on plating-stripping in current research on planar 2D Cu have not well concern on quantitatively demonstrating the uniformity of formed SEI, which is an important factor to achieve good performance. In this work, Ag coated groove of thickness 130 nm was deposited by magnetron sputtering on a 3D structure array pattern laying on a commercial Cu foil to act as a new platform to evaluate liquid electrolytes in Li//Cu half-cell configuration. This design provides two key points, so called (1) Hill and (2) Valley area in order to express the uniformity in term of throwing power (TP) with various electrolytes, which correlated with the electrochemical performance. During plating, a thin and dense Li and SEI layer are obviously captured through cross sectional image and almost no Li left found after stripping along with the indication of increasing on TP value after applying FEC (-3.59%) and TMSP (-49.60%) as an additive, which in contrast to TP value of LiPF6 alone (-66.84%).
    This result shows how hill and valley demonstrated well how additives can give significant effect on achieving a uniform layer which become underlying reason of higher average coulombic efficiency achieved (95.39% for FEC and 94.87% for TMSP) compared to LiPF6 alone (91.89%). Moreover, lowest value of resistance (18.76 Ω and 10.92 Ω) and average surface roughness Ra (24.8 and 22.4 nm) on hill and valley respectively are obtained with FEC-contained electrolyte indicating the valley area has better properties due to photoresist absence, thus a smooth SEI can be formed on Ag coated groove surface. By applying the design of Ag coated groove containing hill and valley area, gives significant insight how a platform can be built to comply the effort in screening the good options for liquid electrolytes in Li-metal battery application.

    摘要 iv Abstract v Acknowledgements vi Chapter 1 Introduction 1 1.1 Objectives of study 3 Chapter 2 Literature Review 4 2.1 Li metal battery 4 2.1.1 Working mechanism of Li metal battery 4 2.1.2 Problems related to Li metal Battery 4 2.1.2.1 Lithium dendrite 4 2.1.2.2 Dead lithium 6 2.1.2.3 Corrosion of lithium anode 7 2.1.2.4 The expansion of the anodic volume 8 2.2 Modification of Cu current collector and modification based on 3D structure 9 2.2.1 Structural modification of Cu current collector 12 2.2.1.1 Template methods 13 2.2.1.1.1 Organic template 13 2.2.1.1.2 Inorganic template 13 2.2.1.2 Dealloying method 14 2.2.1.3 Reduction method 14 2.2.1.4 Additional methods 15 2.2.2 Chemical modification of Cu current collector 15 2.2.2.1 Alloying modification 15 2.2.2.2 Oxidation modification 16 2.2.2.3 Functional spot modification 16 2.2.2.4 Protective layer modification 17 2.2.2.4.1 Inorganic-organic protective layers 17 2.2.2.4.2 Organic protective layers 18 2.2.2.4.3 Inorganic protective layers 18 2.2.2.4.3.1 Metal based inorganic protective layers 19 2.2.2.4.3.2 Non-metal based inorganic protective layers 20 2.2.3 Modification of metallic glass nanotube array (MeNTA) 21 2.3 Liquid electrolyte and additive 23 2.3.1 Liquid electrolyte and its component 23 2.3.2 Categories of electrolyte additives 24 2.3.2.1 Stabilization additives for lithium metal anode 25 2.3.2.2 Stabilization additives for cathode 26 2.3.2.3 Additives for other purpose 28 2.3.3 The effects of additive 29 2.3.3.1 Lithium plating regulation 30 2.3.3.2 SEI layer optimization 31 2.3.3.3 Solvation lithium ion modification 31 2.4 Hull cell and throwing power (TP) 32 2.5 Methods on evaluating electrolyte in battery application 37 Chapter 3 Experimental Procedure 40 3.1 Fabrication of Ag coated 3D groove as an evaluating electrolyte platform 41 3.1.1 Substrate preparation, hole array pattern formation, and Ag thin film deposition 41 3.2 Characterization of Ag coated 3D groove as an evaluating electrolyte platform 42 3.2.1 Scanning electron microscope with energy-dispersive x-ray spectroscopy (SEM with EDS and FIB) 42 3.2.2 Electrochemical Impedance Spectroscopy (EIS) 43 3.2.3 Atomic Force Microscopy (AFM) 45 3.3 Electrochemical test of Ag coated 3D groove as an evaluating electrolyte platform 45 Chapter 4 Results and Discussion 47 4.1 Characterization of Ag coated 3D groove as an evaluating electrolyte platform 47 4.1.1 Surface morphology after plating-stripping and chemical composition analysis using Ag coated 3D groove 47 4.1.2 Lithium plating thickness and throwing power analysis using Ag coated 3D groove 49 4.1.3 Resistance properties analysis using Ag coated 3D groove 59 4.1.4 Surface roughness analysis using Ag coated 3D groove 64 4.2 Electrochemical test of Ag coated 3D groove as an evaluating electrolyte platform 69 4.2.1 Comparison of coated material on 3D groove and Ag thickness optimization in Ag coated 3D groove through cycling performance 69 4.2.2 Ag coated 3D groove performance with various electrolytes 72 Chapter 5 Conclusions and Future works 75 5.1 Conclusions 75 5.2 Future works 75

    1. Liu, S., et al., High interfacial-energy interphase promoting safe lithium metal batteries. Journal of the American Chemical Society, 2020. 142(5): p. 2438-2447.
    2. Garche, J., et al., Encyclopedia of electrochemical power sources. 2013: Newnes.
    3. Dollé, M., et al., Live scanning electron microscope observations of dendritic growth in lithium/polymer cells. Electrochemical and solid-state letters, 2002. 5(12): p. A286.
    4. Howlett, P.C., D.R. Macfarlane, and A.F. Hollenkamp, A sealed optical cell for the study of lithium-electrode| electrolyte interfaces. Journal of power sources, 2003. 114(2): p. 277-284.
    5. Wang, Q., et al., Confronting the challenges in lithium anodes for lithium metal batteries. Advanced Science, 2021. 8(17): p. 2101111.
    6. Aryanfar, A., et al., Quantifying the dependence of dead lithium losses on the cycling period in lithium metal batteries. Physical Chemistry Chemical Physics, 2014. 16(45): p. 24965-24970.
    7. Li, Z., et al., A review of lithium deposition in lithium-ion and lithium metal secondary batteries. Journal of power sources, 2014. 254: p. 168-182.
    8. Hong, S.-T., et al., Surface characterization of emulsified lithium powder electrode. Electrochimica acta, 2004. 50(2-3): p. 535-539.
    9. Chazalviel, J.-N., Electrochemical aspects of the generation of ramified metallic electrodeposits. Physical review A, 1990. 42(12): p. 7355.
    10. Khurana, R., et al., Suppression of lithium dendrite growth using cross-linked polyethylene/poly (ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. Journal of the American Chemical Society, 2014. 136(20): p. 7395-7402.
    11. Park, H.E., C.H. Hong, and W.Y. Yoon, The effect of internal resistance on dendritic growth on lithium metal electrodes in the lithium secondary batteries. Journal of Power Sources, 2008. 178(2): p. 765-768.
    12. Shen, X., et al., How does external pressure shape Li dendrites in Li metal batteries? Advanced Energy Materials, 2021. 11(10): p. 2003416.
    13. Arakawa, M., et al., Lithium electrode cycleability and morphology dependence on current density. Journal of power sources, 1993. 43(1-3): p. 27-35.
    14. Chen, L., et al., High-energy Li metal battery with lithiated host. Joule, 2019. 3(3): p. 732-744.
    15. Yasin, G., et al., Understanding and suppression strategies toward stable Li metal anode for safe lithium batteries. Energy Storage Materials, 2020. 25: p. 644-678.
    16. Barton, J. and J.O.M. Bockris, The electrolytic growth of dendrites from ionic solutions. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1962. 268(1335): p. 485-505.
    17. Yamaki, J.-i., et al., A consideration of the morphology of electrochemically deposited lithium in an organic electrolyte. Journal of Power Sources, 1998. 74(2): p. 219-227.
    18. Lee, H., et al., Electrode edge effects and the failure mechanism of lithium‐metal batteries. ChemSusChem, 2018. 11(21): p. 3821-3828.
    19. Qin, K., et al., Strategies in structure and electrolyte design for high‐performance lithium metal batteries. Advanced Functional Materials, 2021. 31(15): p. 2009694.
    20. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical reviews, 2004. 104(10): p. 4303-4418.
    21. Ye, H., et al., Guiding uniform Li plating/stripping through lithium–aluminum alloying medium for long‐life Li metal batteries. Angewandte Chemie International Edition, 2019. 58(4): p. 1094-1099.
    22. Li, X., et al., Dendrite‐free and performance‐enhanced lithium metal batteries through optimizing solvent compositions and adding combinational additives. Advanced Energy Materials, 2018. 8(15): p. 1703022.
    23. Jie, Y., et al., Advanced liquid electrolytes for rechargeable Li metal batteries. Advanced Functional Materials, 2020. 30(25): p. 1910777.
    24. Lu, D., et al., Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 2015. 5(3): p. 1400993.
    25. Ko, J. and Y.S. Yoon, Recent progress in LiF materials for safe lithium metal anode of rechargeable batteries: is LiF the key to commercializing Li metal batteries? Ceramics International, 2019. 45(1): p. 30-49.
    26. Wood, K.N., M. Noked, and N.P. Dasgupta, Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Letters, 2017. 2(3): p. 664-672.
    27. Jiao, S., et al., Stable cycling of high-voltage lithium metal batteries in ether electrolytes. Nature Energy, 2018. 3(9): p. 739-746.
    28. Xu, S., et al., Evolution of dead lithium growth in lithium metal batteries: experimentally validated model of the apparent capacity loss. Journal of The Electrochemical Society, 2019. 166(14): p. A3456.
    29. Xu, G., et al., The formation/decomposition equilibrium of LiH and its contribution on anode failure in practical lithium metal batteries. Angewandte Chemie, 2021. 133(14): p. 7849-7855.
    30. Aurbach, D., et al., A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid state ionics, 2002. 148(3-4): p. 405-416.
    31. Lin, D., Y. Liu, and Y. Cui, Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology, 2017. 12(3): p. 194-206.
    32. Zhou, B., et al., Modification of Cu current collectors for lithium metal batteries–A review. Progress in Materials Science, 2022: p. 100996.
    33. Tang, Y., et al., Three-dimensional ordered macroporous Cu current collector for lithium metal anode: Uniform nucleation by seed crystal. Journal of Power Sources, 2018. 403: p. 82-89.
    34. Liu, H., et al., Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Materials, 2019. 17: p. 253-259.
    35. Liu, S., et al., Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Materials, 2018. 14: p. 143-148.
    36. Zhang, Z., et al., Li2O-reinforced Cu nanoclusters as porous structure for dendrite-free and long-lifespan lithium metal anode. ACS applied materials & interfaces, 2016. 8(40): p. 26801-26808.
    37. Wang, G., et al., Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chemical Engineering Journal, 2019. 378: p. 122243.
    38. Fan, H., et al., Silver sites guide spatially homogeneous plating of lithium metal in 3D host. Journal of Electroanalytical Chemistry, 2018. 824: p. 175-180.
    39. Zhang, Z., et al., The long life-span of a Li-metal anode enabled by a protective layer based on the pyrolyzed N-doped binder network. Journal of Materials Chemistry A, 2017. 5(19): p. 9339-9349.
    40. Zhou, Y., et al., A nitrogen-doped-carbon/ZnO modified Cu foam current collector for high-performance Li metal batteries. Journal of Materials Chemistry A, 2019. 7(10): p. 5712-5718.
    41. Luo, J., C.C. Fang, and N.L. Wu, High polarity poly (vinylidene difluoride) thin coating for dendrite‐free and high‐performance lithium metal anodes. Advanced Energy Materials, 2018. 8(2): p. 1701482.
    42. Lu, S., et al., High rate and cycling stable Li metal anodes enabled with aluminum-zinc oxides modified copper foam. Journal of Energy Chemistry, 2020. 41: p. 87-92.
    43. Zhu, Y., et al., Suppressing sponge-like Li deposition via AlN-modified substrate for stable Li metal anode. ACS applied materials & interfaces, 2019. 11(45): p. 42261-42270.
    44. Yun, J., et al., Efficient and robust lithium metal electrodes enabled by synergistic surface activation–passivation of copper frameworks. Journal of Materials Chemistry A, 2019. 7(40): p. 23208-23215.
    45. Chen, Q., et al., Electrochemically induced highly ion conductive porous scaffolds to stabilize lithium deposition for lithium metal anodes. Journal of Materials Chemistry A, 2019. 7(19): p. 11683-11689.
    46. Ma, L., et al., Dendrite-free lithium metal and sodium metal batteries. Energy Storage Materials, 2020. 27: p. 522-554.
    47. Zhu, R., et al., Employing a T-shirt template and variant of Schweizer's reagent for constructing a low-weight, flexible, hierarchically porous and textile-structured copper current collector for dendrite-suppressed Li metal. Journal of Materials Chemistry A, 2019. 7(47): p. 27066-27073.
    48. Zhang, W., et al., Natural Template-Derived 3D Porous Current Collector for Dendrite-free Lithium Metal Battery. Nano, 2020. 15(03): p. 2050033.
    49. Choi, B.N., et al., Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application. Applied Surface Science, 2020. 506: p. 144884.
    50. Umh, H.N., et al., Lithium metal anode on a copper dendritic superstructure. Electrochemistry Communications, 2019. 99: p. 27-31.
    51. Ma, X., Z. Liu, and H. Chen, Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy, 2019. 59: p. 500-507.
    52. Zhao, H., et al., Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite‐free lithium metal anode current collector. Advanced Energy Materials, 2018. 8(19): p. 1800266.
    53. Yun, Q., et al., Chemical dealloying derived 3D porous current collector for Li metal anodes. Advanced Materials, 2016. 28(32): p. 6932-6939.
    54. An, Y., et al., Vacuum distillation derived 3D porous current collector for stable lithium–metal batteries. Nano Energy, 2018. 47: p. 503-511.
    55. Lin, K., et al., Restructured rimous copper foam as robust lithium host. Energy Storage Materials, 2020. 26: p. 250-259.
    56. Adair, K.R., et al., Towards high performance Li metal batteries: Nanoscale surface modification of 3D metal hosts for pre-stored Li metal anodes. Nano Energy, 2018. 54: p. 375-382.
    57. Wang, X., et al., Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates. Nature Energy, 2018. 3(3): p. 227-235.
    58. Wang, S.H., et al., Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Advanced Materials, 2017. 29(40): p. 1703729.
    59. Yan, K., et al., Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nature Energy, 2016. 1(3): p. 1-8.
    60. Fan, H., et al., Powder-sintering derived 3D porous current collector for stable lithium metal anode. Materials Letters, 2019. 234: p. 69-73.
    61. Luan, J., et al., Plasma‐strengthened lithiophilicity of copper oxide nanosheet–decorated Cu foil for stable lithium metal anode. Advanced Science, 2019. 6(20): p. 1901433.
    62. Wu, S., et al., Lithiophilicity conversion of the Cu surface through facile thermal oxidation: boosting a stable Li–Cu composite anode through melt infusion. Journal of Materials Chemistry A, 2019. 7(10): p. 5726-5732.
    63. Cheng, Y., et al., Lithiophobic-lithiophilic composite architecture through co-deposition technology toward high-performance lithium metal batteries. Nano Energy, 2019. 63: p. 103854.
    64. Cui, S., et al., Large‐scale modification of commercial copper foil with lithiophilic metal layer for Li metal battery. Small, 2020. 16(5): p. 1905620.
    65. Lu, L.-L., et al., Free-standing copper nanowire network current collector for improving lithium anode performance. Nano letters, 2016. 16(7): p. 4431-4437.
    66. Peled, E. and S. Menkin, SEI: past, present and future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703.
    67. Yun, J., et al., Bottom-up lithium growth triggered by interfacial activity gradient on porous framework for lithium-metal anode. ACS Energy Letters, 2020. 5(10): p. 3108-3114.
    68. Zheng, H., et al., 3D lithiophilic–lithiophobic–lithiophilic dual-gradient porous skeleton for highly stable lithium metal anode. Journal of Materials Chemistry A, 2020. 8(1): p. 313-322.
    69. Li, S., L. Fan, and Y. Lu, Rational design of robust-flexible protective layer for safe lithium metal battery. Energy Storage Materials, 2019. 18: p. 205-212.
    70. Liu, H., et al., A scalable 3D lithium metal anode. Energy Storage Materials, 2019. 16: p. 505-511.
    71. Xu, B., et al., Porous insulating matrix for lithium metal anode with long cycling stability and high power. Energy Storage Materials, 2019. 17: p. 31-37.
    72. Lang, J., et al., Uniform lithium deposition induced by polyacrylonitrile submicron fiber array for stable lithium metal anode. ACS Applied Materials & Interfaces, 2017. 9(12): p. 10360-10365.
    73. Shen, F., et al., PAN/PI functional double-layer coating for dendrite-free lithium metal anodes. Journal of Materials Chemistry A, 2020. 8(13): p. 6183-6189.
    74. Chen, K.H., et al., Synergistic effect of 3D current collectors and ALD surface modification for high coulombic efficiency lithium metal anodes. Advanced Energy Materials, 2019. 9(4): p. 1802534.
    75. Xu, Y., et al., Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Materials, 2018. 12: p. 69-78.
    76. Luan, J., et al., Sn layer decorated copper mesh with superior lithiophilicity for stable lithium metal anode. Chemical Engineering Journal, 2020. 395: p. 124922.
    77. Tan, L., et al., Atomic layer deposition-strengthened lithiophilicity of ultrathin TiO2 film decorated Cu foil for stable lithium metal anode. Journal of Power Sources, 2020. 463: p. 228157.
    78. Zhang, C., et al., A lightweight 3D Cu nanowire network with phosphidation gradient as current collector for high‐density nucleation and stable deposition of lithium. Advanced Materials, 2019. 31(48): p. 1904991.
    79. Zhai, P., et al., In situ generation of artificial solid‐electrolyte interphases on 3D conducting scaffolds for high‐performance lithium‐metal anodes. Advanced Energy Materials, 2020. 10(8): p. 1903339.
    80. Li, Q., et al., Homogeneous interface conductivity for lithium dendrite-free anode. ACS Energy Letters, 2018. 3(9): p. 2259-2266.
    81. Kim, S., et al., Promoting lithium electrodeposition towards the bottom of 3-D copper meshes in lithium-based batteries. Journal of Power Sources, 2020. 472: p. 228495.
    82. Hwang, S.W., et al., Electrochemical behavior of Li–Cu composite powder electrodes in lithium metal secondary batteries. ACS Applied Materials & Interfaces, 2017. 9(27): p. 22530-22538.
    83. Huang, Z., et al., Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019. 61: p. 47-53.
    84. Lu, L.-L., et al., Lithiophilic Cu–Ni core–shell nanowire network as a stable host for improving lithium anode performance. Energy storage materials, 2017. 9: p. 31-38.
    85. Zhang, N., S.-H. Yu, and H.D. Abruña, Regulating lithium nucleation and growth by zinc modified current collectors. Nano Research, 2020. 13: p. 45-51.
    86. Cheng, Y., X. Ke, and Z. Shi, Improving Li Plating Behaviors Through Cu–Sn Alloy-Coated Current Collector for Dendrite-Free Lithium Metal Anodes. Acta Metallurgica Sinica (English Letters), 2021. 34: p. 354-358.
    87. Wang, J.-r., et al., A lithiophilic 3D conductive skeleton for high performance Li metal battery. ACS Applied Energy Materials, 2020. 3(8): p. 7265-7271.
    88. Li, S.-C., D.-M. Peng, and J.-G. Yu, Morphologically controllable Li plating with stable electrochemistry realized in a newly developed DOL-DMM electrolyte system on Au-modified Cu current collector. Ionics, 2020. 26: p. 3979-3988.
    89. Song, R., et al., A new reflowing strategy based on lithiophilic substrates towards smooth and stable lithium metal anodes. Journal of Materials Chemistry A, 2019. 7(30): p. 18126-18134.
    90. Hou, Z., et al., Lithiophilic Ag nanoparticle layer on Cu current collector toward stable Li metal anode. ACS applied materials & interfaces, 2019. 11(8): p. 8148-8154.
    91. Yang, G., et al., Graphene anchored on Cu foam as a lithiophilic 3D current collector for a stable and dendrite-free lithium metal anode. Journal of Materials Chemistry A, 2018. 6(21): p. 9899-9905.
    92. Ren, F., et al., Over-potential induced Li/Na filtrated depositions using stacked graphene coating on copper scaffold. Energy Storage Materials, 2019. 16: p. 364-373.
    93. Nazarian-Samani, M., et al., Perforated two-dimensional nanoarchitectures for next-generation batteries: Recent advances and extensible perspectives. Progress in Materials Science, 2021. 116: p. 100716.
    94. Hu, Z., et al., PECVD-derived graphene nanowall/lithium composite anodes towards highly stable lithium metal batteries. Energy Storage Materials, 2019. 22: p. 29-39.
    95. Ma, R., et al., Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020. 113: p. 100665.
    96. Wondimkun, Z.T., et al., Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. Journal of Power Sources, 2020. 450: p. 227589.
    97. Shen, F., et al., Direct growth of 3D host on Cu foil for stable lithium metal anode. Energy Storage Materials, 2018. 13: p. 323-328.
    98. Chen, H., et al., Tortuosity effects in lithium-metal host anodes. Joule, 2020. 4(4): p. 938-952.
    99. Zhang, A., et al., A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Research, 2016. 9: p. 3428-3436.
    100. Huang, S., et al., A highly flexible semi-tubular carbon film for stable lithium metal anodes in high-performance batteries. Nano Energy, 2017. 38: p. 504-509.
    101. Hsiao, Y.-S., et al., Microfluidic device using metallic nanostructure arrays for the isolation, detection, and purification of exosomes. Journal of Alloys and Compounds, 2023. 947: p. 169658.
    102. Chu, J.P., et al., Core-shell metallic nanotube arrays for highly sensitive surface-enhanced Raman scattering (SERS) detection. Journal of Vacuum Science & Technology A, 2023. 41(6).
    103. Yang, Y.-X. and J.P. Chu, Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology, 2021. 32(47): p. 475504.
    104. Singh, P., et al., Fabrication and characterization of metallic glass nanotube array as in application of wound dressing. Journal of Alloys and Compounds, 2021. 886: p. 161275.
    105. Chu, J.P., K.-W. Tseng, and C.-Y. Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: fabrication and characterization. Materials & Design, 2021. 209: p. 109998.
    106. Ye, J.-S., B.-R. Huang, and J.P. Chu, ZnO-NWs/Cu-based metallic glass nanotube array (ZNWs/Cu-MeNTA) for field emission properties. Journal of Alloys and Compounds, 2022. 890: p. 161846.
    107. Yang, C., et al., Protected lithium‐metal anodes in batteries: from liquid to solid. Advanced materials, 2017. 29(36): p. 1701169.
    108. Wang, A., et al., Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials, 2018. 4(1): p. 15.
    109. Goodenough, J.B. and Y. Kim, Challenges for rechargeable Li batteries. Chemistry of materials, 2010. 22(3): p. 587-603.
    110. Meutzner, F. and M.U. de Vivanco. Electrolytes-Technology review. in AIP Conference Proceedings. 2014. American Institute of Physics.
    111. Xu, W., et al., Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
    112. Nanjundiah, C., et al., Electrochemical stability of LiMF6 (M= P, As, Sb) in tetrahydrofuran and sulfolane. Journal of the Electrochemical Society, 1988. 135(12): p. 2914.
    113. Liu, Q.C., et al., Artificial protection film on lithium metal anode toward long‐cycle‐life lithium–oxygen batteries. Advanced Materials, 2015. 27(35): p. 5241-5247.
    114. Lin, D., et al., Conformal lithium fluoride protection layer on three-dimensional lithium by nonhazardous gaseous reagent freon. Nano letters, 2017. 17(6): p. 3731-3737.
    115. Gao, J., et al., Effects of liquid electrolytes on the charge–discharge performance of rechargeable lithium/sulfur batteries: electrochemical and in-situ X-ray absorption spectroscopic studies. The Journal of Physical Chemistry C, 2011. 115(50): p. 25132-25137.
    116. Ghazi, Z.A., et al., MoS2/celgard separator as efficient polysulfide barrier for long‐life lithium–sulfur batteries. Advanced Materials, 2017. 29(21): p. 1606817.
    117. Zhang, H., et al., Electrolyte additives for lithium metal anodes and rechargeable lithium metal batteries: progress and perspectives. Angewandte Chemie International Edition, 2018. 57(46): p. 15002-15027.
    118. Egashira, M., et al., Measurement of the electrochemical oxidation of organic electrolytes used in lithium batteries by microelectrode. Journal of power sources, 2001. 92(1-2): p. 267-271.
    119. Zhang, X., et al., Electrochemical and infrared studies of the reduction of organic carbonates. Journal of The Electrochemical Society, 2001. 148(12): p. A1341.
    120. Zhang, S.S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    121. Aurbach, D., et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochimica acta, 2002. 47(9): p. 1423-1439.
    122. Xing, L., et al., Theoretical investigations on oxidative stability of solvents and oxidative decomposition mechanism of ethylene carbonate for lithium ion battery use. The Journal of Physical Chemistry B, 2009. 113(52): p. 16596-16602.
    123. Ren, X., et al., Guided lithium metal deposition and improved lithium coulombic efficiency through synergistic effects of LiAsF6 and cyclic carbonate additives. ACS Energy Letters, 2017. 3(1): p. 14-19.
    124. Zheng, J., et al., Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nature Energy, 2017. 2(3): p. 1-8.
    125. Choi, N.-S., et al., Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries. Rsc Advances, 2015. 5(4): p. 2732-2748.
    126. Zhang, X.Q., et al., Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Advanced Functional Materials, 2017. 27(10): p. 1605989.
    127. Heine, J., et al., Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. Journal of the Electrochemical Society, 2015. 162(6): p. A1094.
    128. Mogi, R., et al., Effects of some organic additives on lithium deposition in propylene carbonate. Journal of The Electrochemical Society, 2002. 149(12): p. A1578.
    129. Ota, H., et al., Effect of vinylene carbonate as additive to electrolyte for lithium metal anode. Electrochimica Acta, 2004. 49(4): p. 565-572.
    130. Han, J.-G., et al., Tunable and robust phosphite-derived surface film to protect lithium-rich cathodes in lithium-ion batteries. ACS Applied Materials & Interfaces, 2015. 7(15): p. 8319-8329.
    131. Qian, Y., et al., Influence of electrolyte additives on the cathode electrolyte interphase (CEI) formation on LiNi1/3Mn1/3Co1/3O2 in half cells with Li metal counter electrode. Journal of power sources, 2016. 329: p. 31-40.
    132. Yan, C., et al., Tris (trimethylsilyl) borate as an electrolyte additive for high-voltage lithium-ion batteries using LiNi1/3Mn1/3Co1/3O2 cathode. Journal of energy chemistry, 2016. 25(4): p. 659-666.
    133. Rong, H., et al., A novel imidazole-based electrolyte additive for improved electrochemical performance at elevated temperature of high-voltage LiNi0. 5Mn1. 5O4 cathodes. Journal of Power Sources, 2016. 329: p. 586-593.
    134. Tu, W., et al., Terthiophene as electrolyte additive for stabilizing lithium nickel manganese oxide cathode for high energy density lithium-ion batteries. Electrochimica Acta, 2016. 208: p. 251-259.
    135. Li, S., et al., Electrochemical effect and mechanism of adiponitrile additive for high-voltage electrolyte. Electrochimica Acta, 2016. 222: p. 668-677.
    136. Wang, Z., et al., Triethylborate as an electrolyte additive for high voltage layered lithium nickel cobalt manganese oxide cathode of lithium ion battery. Journal of Power Sources, 2016. 307: p. 587-592.
    137. Dong, P., et al., Stabilizing interface layer of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials under high voltage using p-toluenesulfonyl isocyanate as film forming additive. Journal of Power Sources, 2017. 344: p. 111-118.
    138. Song, Y.-M., et al., A multifunctional phosphite-containing electrolyte for 5 V-class LiNi 0.5 Mn 1.5 O 4 cathodes with superior electrochemical performance. Journal of Materials Chemistry A, 2014. 2(25): p. 9506-9513.
    139. Li, J., et al., Tris (trimethylsilyl) borate as an electrolyte additive for improving interfacial stability of high voltage layered lithium-rich oxide cathode/carbonate-based electrolyte. Journal of Power Sources, 2015. 285: p. 360-366.
    140. Birrozzi, A., et al., Beneficial effect of propane sultone and tris (trimethylsilyl) borate as electrolyte additives on the cycling stability of the lithium rich nickel manganese cobalt (NMC) oxide. Journal of Power Sources, 2016. 325: p. 525-533.
    141. Chen, R., et al., An investigation of functionalized electrolyte using succinonitrile additive for high voltage lithium-ion batteries. Journal of Power Sources, 2016. 306: p. 70-77.
    142. Wang, X., et al., Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive. Journal of Power Sources, 2017. 338: p. 108-116.
    143. Xu, Y., et al., γ-butyrolactone and glutaronitrile as 5 V electrolyte additive and its electrochemical performance for LiNi0. 5Mn1. 5O4. Journal of Alloys and Compounds, 2017. 698: p. 207-214.
    144. von Aspern, N., et al., Phosphorus additives for improving high voltage stability and safety of lithium ion batteries. Journal of fluorine chemistry, 2017. 198: p. 24-33.
    145. Liao, X., et al., Self-discharge suppression of 4.9 áV LiNi0. 5Mn1. 5O4 cathode by using tris (trimethylsilyl) borate as an electrolyte additive. Journal of power sources, 2014. 272: p. 501-507.
    146. Chen, S., et al., High‐voltage lithium‐metal batteries enabled by localized high‐concentration electrolytes. Advanced materials, 2018. 30(21): p. 1706102.
    147. Xiao, Y., et al., New lithium salt forms interphases suppressing both Li dendrite and polysulfide shuttling. Advanced Energy Materials, 2020. 10(14): p. 1903937.
    148. Yang, H., et al., Suppressing lithium dendrite formation by slowing its desolvation kinetics. Chemical Communications, 2019. 55(88): p. 13211-13214.
    149. Xu, K., A. von Cresce, and U. Lee, Differentiating contributions to “ion transfer” barrier from interphasial resistance and Li+ desolvation at electrolyte/graphite interface. Langmuir, 2010. 26(13): p. 11538-11543.
    150. Hou, T., et al., The influence of FEC on the solvation structure and reduction reaction of LiPF6/EC electrolytes and its implication for solid electrolyte interphase formation. Nano Energy, 2019. 64: p. 103881.
    151. Choudhury, S. and S. Choudhury, Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries, 2019: p. 81-94.
    152. Li, S., et al., Synergistic dual‐additive electrolyte enables practical lithium‐metal batteries. Angewandte Chemie International Edition, 2020. 59(35): p. 14935-14941.
    153. Ma, Y., et al., Enabling reliable lithium metal batteries by a bifunctional anionic electrolyte additive. Energy Storage Materials, 2018. 11: p. 197-204.
    154. Wan, G., et al., Suppression of dendritic lithium growth by in situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS applied materials & interfaces, 2018. 10(1): p. 593-601.
    155. Hong, D., et al., Homogeneous Li deposition through the control of carbon dot-assisted Li-dendrite morphology for high-performance Li-metal batteries. Journal of Materials Chemistry A, 2019. 7(35): p. 20325-20334.
    156. Xie, Z., et al., 2-Fluoropyridine: A novel electrolyte additive for lithium metal batteries with high areal capacity as well as high cycling stability. Chemical Engineering Journal, 2020. 393: p. 124789.
    157. Cheng, X.-B., et al., Nanodiamonds suppress the growth of lithium dendrites. Nature communications, 2017. 8(1): p. 336.
    158. Ouyang, Y., et al., Single additive with dual functional-ions for stabilizing lithium anodes. ACS applied materials & interfaces, 2019. 11(12): p. 11360-11368.
    159. Zhang, C., et al., Vertically aligned lithiophilic CuO nanosheets on a Cu collector to stabilize lithium deposition for lithium metal batteries. Advanced Energy Materials, 2018. 8(21): p. 1703404.
    160. Pei, A., et al., Nanoscale nucleation and growth of electrodeposited lithium metal. Nano letters, 2017. 17(2): p. 1132-1139.
    161. Cheng, X.B., et al., Dendrite‐free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Advanced materials, 2016. 28(15): p. 2888-2895.
    162. Hong, B., et al., Spatially uniform deposition of lithium metal in 3D Janus hosts. Energy Storage Materials, 2019. 16: p. 259-266.
    163. Zhang, R., et al., Lithiophilic sites in doped graphene guide uniform lithium nucleation for dendrite‐free lithium metal anodes. Angewandte Chemie, 2017. 129(27): p. 7872-7876.
    164. Zhang, Q., et al., Synergetic effects of inorganic components in solid electrolyte interphase on high cycle efficiency of lithium ion batteries. Nano letters, 2016. 16(3): p. 2011-2016.
    165. Zhang, X.Q., et al., A sustainable solid electrolyte interphase for high‐energy‐density lithium metal batteries under practical conditions. Angewandte Chemie International Edition, 2020. 59(8): p. 3252-3257.
    166. Li, T., et al., Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule, 2019. 3(11): p. 2647-2661.
    167. Yamada, Y., et al., Advances and issues in developing salt-concentrated battery electrolytes. Nature Energy, 2019. 4(4): p. 269-280.
    168. Marcus, Y. and G. Hefter, Ion pairing. Chemical reviews, 2006. 106(11): p. 4585-4621.
    169. Chen, X., et al., Cation− solvent, cation− anion, and solvent− solvent interactions with electrolyte solvation in lithium batteries. Batteries & Supercaps, 2019. 2(2): p. 128-131.
    170. Bogle, X., et al., Understanding Li+–solvent interaction in nonaqueous carbonate electrolytes with 17O NMR. The journal of physical chemistry letters, 2013. 4(10): p. 1664-1668.
    171. Wang, Z., et al., An anion‐tuned solid electrolyte interphase with fast ion transfer kinetics for stable lithium anodes. Advanced Energy Materials, 2020. 10(14): p. 1903843.
    172. Zhang, X.Q., et al., Highly stable lithium metal batteries enabled by regulating the solvation of lithium ions in nonaqueous electrolytes. Angewandte Chemie International Edition, 2018. 57(19): p. 5301-5305.
    173. Dettner, H.W., Lexikon für Metalloberflächenveredlung: nicht enthalten sind Lack-und Farbüberzüge, jedoch andere organische Beschichtungsverfahren und anorganische Metall-Färbeverfahren. 1989: Leuze.
    174. Kanani, N., Electroplating: basic principles, processes and practice. 2004: Elsevier.
    175. für Galvanotechnik, T., Band 1, Verfahrenstechnik, LPW-Chemie GMBH, 13. 1988, Ausgabe.
    176. Enke, C.G., Galvanotechnisches Fachwissen. Autorenkollektiv. 2. überarb. Aufl.(1987) 511 S. mit 96 Abb., 59 Tab. und 10 Übersichten (16, 5× 23, 0 cm) ISBN 3‐342‐00196‐8 (Bestell‐Nr. 5420105) VEB Deutscher Verlag für Grundstoffindustrie, Leipzig. Geb.: 36,–DM (ausschl. MWSt). 1988, Wiley Online Library.
    177. Todt, H., Technische Aspekte der cyanidischen und sauren Verkupferung. Sonderdruck aus Galvanotechnik, 1967: p. 45-46.
    178. Lausmann, G. and J. Unruh, Die galvanische Verchromung. Eugen G. 1998, Leuze Verlag, Saulgau/Württ.
    179. Sun, C., et al., Sol Electrolyte: Pathway to Long‐Term Stable Lithium Metal Anode. Advanced Functional Materials, 2021. 31(26): p. 2100594.
    180. Field, S., Some Aspects of Throwing Power. Its Quantitative Expression. Transactions of the IMF, 1932. 7(1): p. 83-90.
    181. Haring, H. and W. Blum, Current distribution and throwing power in electrodeposition. Am. Electrochem. Soc, 1923. 44: p. 313.
    182. Heatley, A.H., Multiple Electrode Systems, With and Application to The Study of Current Distribution in Electroplating Baths. Trans. Elec. Chem. Soc, 1923. 44: p. 283.
    183. Subramanian, R., THROWING POWER--A NEW FORMULA FOR THE PRACTICAL PLATER. PT. 1. ELECTROPLATING METAL FINISH, 1969. 22(10): p. 29-31.
    184. Luke, D., Notes on Throwing Power Measurement. Transactions of the IMF, 1983. 61(1): p. 64-66.
    185. Field, S., Quantitative Throwing Power: Proposed New Expression. Transactions of the IMF, 1934. 9(1): p. 144-152.
    186. Petibon, R., et al., Comparative study of electrolyte additives using electrochemical impedance spectroscopy on symmetric cells. Journal of Power Sources, 2014. 251: p. 187-194.
    187. Wang, K., et al., A comparative study of Si-containing electrolyte additives for lithium ion battery: Which one is better and why is it better. Journal of power sources, 2017. 342: p. 677-684.
    188. Tornheim, A., et al., Evaluating electrolyte additives for lithium-ion cells: A new Figure of Merit approach. Journal of Power Sources, 2017. 365: p. 201-209.
    189. Winter, E., T.J. Schmidt, and S. Trabesinger, Potentiostatic lithium plating as a fast method for electrolyte evaluation in lithium metal batteries. Electrochimica Acta, 2023. 439: p. 141547.
    190. Huang, W., et al., Resolving nanoscopic and mesoscopic heterogeneity of fluorinated species in battery solid-electrolyte interphases by cryogenic electron microscopy. ACS Energy Letters, 2020. 5(4): p. 1128-1135.
    191. Zhai, P., et al., Interface engineering for lithium metal anodes in liquid electrolyte. Advanced Energy Materials, 2020. 10(34): p. 2001257.
    192. Fan, M., et al., Robust silver nanowire membrane with high porosity to construct stable Li metal anodes. Materials Today Energy, 2021. 21: p. 100751.
    193. Li, Y., et al., Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science, 2017. 358(6362): p. 506-510.
    194. Yoon, I., et al., Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries. Energy Storage Materials, 2020. 25: p. 296-304.
    195. Han, Y.-K., J. Yoo, and T. Yim, Why is tris (trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? Journal of Materials Chemistry A, 2015. 3(20): p. 10900-10909.
    196. Kim, D.Y., et al., Ab initio study of the operating mechanisms of tris (trimethylsilyl) phosphite as a multifunctional additive for Li-ion batteries. Journal of Power Sources, 2017. 355: p. 154-163.
    197. Yim, T. and Y.-K. Han, Tris (trimethylsilyl) phosphite as an efficient electrolyte additive to improve the surface stability of graphite anodes. ACS applied materials & interfaces, 2017. 9(38): p. 32851-32858.
    198. Pieczonka, N.P., et al., Understanding transition-metal dissolution behavior in LiNi0. 5Mn1. 5O4 high-voltage spinel for lithium ion batteries. The Journal of Physical Chemistry C, 2013. 117(31): p. 15947-15957.
    199. Ryu, J., et al., A game changer: functional nano/micromaterials for smart rechargeable batteries. Advanced Functional Materials, 2020. 30(2): p. 1902499.
    200. Ishikawa, M., et al., In situ scanning vibrating electrode technique for the characterization of interface between lithium electrode and electrolytes containing additives. Journal of The Electrochemical Society, 1994. 141(12): p. L159.
    201. Kim, M., et al., Tuning Lithiophilic Sites of Ag-Embedded N-Doped Carbon Hollow Spheres via Intentional Blocking Strategy for Ultrastable Li Metal Anode in Rechargeable Batteries. ACS Sustainable Chemistry & Engineering, 2023.
    202. Yoon, S., et al., Enhanced cyclability and surface characteristics of lithium batteries by Li–Mg co-deposition and addition of HF acid in electrolyte. Electrochimica acta, 2008. 53(5): p. 2501-2506.
    203. Vega, J.A., J. Zhou, and P.A. Kohl, Electrochemical comparison and deposition of lithium and potassium from phosphonium-and ammonium-TFSI ionic liquids. Journal of The Electrochemical Society, 2009. 156(4): p. A253.
    204. Ishikawa, M., M. Morita, and Y. Matsuda, In situ scanning vibrating electrode technique for lithium metal anodes. Journal of power sources, 1997. 68(2): p. 501-505.
    205. Yang, C., et al., An electron/ion dual‐conductive alloy framework for high‐rate and high‐capacity solid‐state lithium‐metal batteries. Advanced Materials, 2019. 31(3): p. 1804815.
    206. Cresce, A.v., et al., In situ and quantitative characterization of solid electrolyte interphases. Nano letters, 2014. 14(3): p. 1405-1412.
    207. Li, Q., S. Zhu, and Y. Lu, 3D porous Cu current collector/Li‐metal composite anode for stable lithium‐metal batteries. Advanced Functional Materials, 2017. 27(18): p. 1606422.
    208. Yue, X.-Y., et al., CoO nanofiber decorated nickel foams as lithium dendrite suppressing host skeletons for high energy lithium metal batteries. Energy Storage Materials, 2018. 14: p. 335-344.
    209. Huang, C.-J., et al., Decoupling the origins of irreversible coulombic efficiency in anode-free lithium metal batteries. Nature Communications, 2021. 12(1): p. 1452.
    210. Li, N.W., et al., A flexible solid electrolyte interphase layer for long‐life lithium metal anodes. Angewandte Chemie, 2018. 130(6): p. 1521-1525.
    211. Wang, S., et al., Advances in understanding materials for rechargeable lithium batteries by atomic force microscopy. Energy & Environmental Materials, 2018. 1(1): p. 28-40.
    212. Gu, X., J. Dong, and C. Lai, Li‐containing alloys beneficial for stabilizing lithium anode: A review. Engineering Reports, 2021. 3(1): p. e12339.
    213. Jaumann, T., et al., Lifetime vs. rate capability: Understanding the role of FEC and VC in high-energy Li-ion batteries with nano-silicon anodes. Energy Storage Materials, 2017. 6: p. 26-35.
    214. Zhang, W., et al., All-fluorinated electrolyte directly tuned Li+ solvation sheath enabling high-quality passivated interfaces for robust Li metal battery under high voltage operation. Energy Storage Materials, 2023.
    215. Wu, Y., et al., Development of cathode-electrolyte-interphase for safer lithium batteries. Energy Storage Materials, 2021. 37: p. 77-86.
    216. Park, C.-M., et al., Li-alloy based anode materials for Li secondary batteries. Chemical Society Reviews, 2010. 39(8): p. 3115-3141.
    217. Wondimkun, Z.T., et al., Highly-lithiophilic Ag@ PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries. Energy Storage Materials, 2021. 35: p. 334-344.
    218. Temesgen, N.T., et al., Solvent-free design of argyrodite sulfide composite solid electrolyte with superb interface and moisture stability in anode-free lithium metal batteries. Journal of Power Sources, 2023. 556: p. 232462.

    QR CODE