簡易檢索 / 詳目顯示

研究生: 鍾佳峻
Chia-Chun Chung
論文名稱: 電化學刷磨複合加工於304不鏽鋼之動力學分析與表面改質
Analysis of Chattering Dynamics and Surface Modifications in Hybrid Electrochemical Brushing of 304 Stainless Steel
指導教授: 郭俊良
Chun-Liang Kuo
口試委員: 鄭逸琳
Yih-Lin Cheng
何羽健
Yu-Chien Ho
劉孟昆
Meng-Kun Liu
郭俊良
Chun-Liang Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 112
中文關鍵詞: 電化學刷磨複合加工陽極溶解加工陶瓷纖維刷磨加工有限元素分析模態分析穩態顫振圖表面形貌參數殘留應力奈米壓硬度
外文關鍵詞: Hybrid electrochemical brushing, Anodic dissolution machining, Ceramic fiber brushing, Finite element analysis, Modal analysis, Stability lobe diagram, Surface topography, Residual stress, Nano-indented hardness
相關次數: 點閱:311下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電化學加工使用電能與化學能,對加工表面不產生熱與接觸應力,因而廣泛應用於難切削材料與高表面精度之實務。雖然如此,電化學加工之陽極溶解常因低效率,使得加工表面產生氧化及鈍化反應,而生成陶瓷結構薄膜之不良導體,進而阻礙汲取電流,造成陽極溶解加工中斷。因此,本研究設計一新型複合式電化學刷磨電極機構,透過有限元素之模態分析方法,從複合式陶瓷刷電極之振動頻率響應結果而計算模態參數,並推導理論之穩態顫振圖做為比較之基礎。實驗工作則以理論材料移除率與穩態顫振區間,來設計參數區間,使用極間電壓15‒25 V耦合研磨轉速800‒1600 rpm與進給率0.014‒0.35 mm/rev進行實驗。複合式電化學刷磨之目標工作物為304不鏽鋼,觀測指標為材料移除率、汲取電流、統計計量之表面粗糙度(Sa, Rku, Rsk),加工表面形貌、殘留應力、奈米等級壓硬度,與參數間之物理效應。最後,透過統計檢定方法分析刷磨加工與複合加工之參數效應、交互作用、統計顯著性與參數影響力。研究結果顯示,刷磨加工之下壓深度與下壓力為線性區間,穩態顫振圖建議降低顫振之參數組合為,高研磨1600 rpm轉速搭配低進給率0.014 mm/rev,可產生最小粗糙度131.4 nm。統計檢定顯示,複合加工可提高電化學加工表面峰度值最高36.1%,同時降低偏度值73.9%,有助於高負載與滑動之場合。殘留應力分析顯示,複合加工可去除電化學加工形成之鈍化膜,提升表面之壓應力,抑制表面缺陷成長增加疲勞壽命。


    Electrochemical machining utilizing electrical and chemical energy to process surfaces without generating heat or contact stress has been widely used in practical applications involving difficult-to-cut materials and high surface precision. However, the anodic dissolution in electrochemical machining is often problematic due to its low current efficiency, leading to the formation of oxidation and passivation reactions on the processed surface. Moreover, the produced oxide and passive film deteriorate the electrical conductivity and hinder the current drawn and hence interrupt the anodic dissolution process. In this work, a novel hybrid electrochemical brushing process was designed and presented for sustaining the anodic solution process in a steady way. Through finite element methods, the modal analysis has been carried out as well as the modal parameters were calculated based on the vibration frequency and response results of the hybrid electro-chemical brushing process. In the design of experiments, the theoretically derived stability lobe diagram provided a basis for determinations of preferable parametric intervals on the material removal rate and the confirmation of the steady state from chattering. In the validation experiment, the hybrid electrochemical brushing was carried out with the open voltage of 15‒25 V, coupling with spindle speeds of 800‒1600 rpm and feed rates of 0.014‒0.35 mm/rev, on the target workpiece of 304 stainless steel. The objectives were the material removal rate, drawn current, statistical surface roughness (Sa, Rku, Rsk), brushed surface topography, residual stress, nano-indentation of surface hardness, and physical effects associated with the parameters. Lastly, statistical analysis methods were employed to analyze the parameter effects, interactions, statistical significance, and parametric contributions in the hybrid process. Analysis of residual stress, surface roughness and alternation of nano-hardness on the machined surface in electrochemical brushing process, were reported and discussed in detail.

    摘要 I Abstract II 致謝 IV 符號定義 V 目錄 VII 圖目錄 X 表目錄 XIV 第一章 研究介紹 1 第二章 文獻回顧 3 2.1 電化學加工與複合加工製程 3 2.1.1 電化學加工之陽極反應與反應產物之當量 4 2.1.2 極化曲線之電位與腐蝕、鈍化和拋光之關聯 5 2.1.3 法拉第電解定律與理論材料移除量 6 2.2 切削加工之顫振 7 2.3 有限元素分析於切削顫振 9 2.4 加工表面之參數: 表面粗糙度、峰度及偏度 9 2.5 加工表面殘留應力 11 第三章 複合製程之理論模型與驗證方法 12 3.1 電化學刷磨加工之模型驗證程序 12 3.2 修正法拉第電解定律之移除率模型 14 3.3 陶瓷刷纖維之力學與顫振控制模型 18 3.4 複合加工之穩態顫振分析 24 3.4.1 有限元素之模態分析 24 3.4.2 頻率響應之解析 27 3.4.3 穩態顫振圖分析 28 第四章 實驗工作 30 4.1 實驗材料 30 4.2 加工電解液 31 4.3 複合式加工之電極設計 32 4.4 實驗設置 33 4.5 量測分析儀器與方法 34 4.5.1 電極之阻抗量測 34 4.5.2 極化曲線量測 34 4.5.3 加工放電波形量測 35 4.5.6 表面粗糙度、峰度、偏度與三維形貌量測 36 4.5.7 電子顯微鏡觀測 37 4.5.8 表面殘留應力量測分析 38 4.5.9 微觀表面硬度量測 38 4.6 實驗設計 39 第五章 實驗結果 43 5.1 基礎測試於參數邊界條件之評估 43 5.1.1 極化曲線之分析結果 43 5.1.2 陶瓷刷纖維之研磨穩定性 45 5.2 刷磨加工對加工表面之參數效應 50 5.2.1 研磨轉速與進給率對加工表面之粗糙度、峰度與偏度之效應 50 5.2.2 刷磨加工表面之三維形貌 53 5.2.3 刷磨加工之研磨力頻譜分析 54 5.3 複合式電化學刷磨之參數效應 56 5.3.1 電壓、研磨轉速與進給率對材料移除率之效應 56 5.3.2 電壓、研磨轉速與進給率對平均汲取電流之效應 58 5.3.3 複合加工之表面粗糙度、峰度、偏度 60 5.3.4 複合加工表面之三維形貌 66 5.3.5 複合加工之研磨力頻譜分析 67 5.4 材料移除率之模型校驗 69 5.5 加工表面之顯微組織分析 70 5.6 加工表面之微觀硬度與殘留應力分析 74 第六章 結論與未來展望 79 6.1 文獻回顧總結 79 6.2 研究結果總結 79 6.2.1 基礎測試於參數邊界條件 80 6.2.2 刷磨加工之表面參數效應 80 6.2.3 複合式電化學刷磨加工表面之參數效應 81 6.2.4 加工表面之顯微組織 82 6.2.5 加工表面之微觀硬度與殘留應力 83 6.3 未來展望 84 參考文獻 85 附錄一 學術榮譽與研究著作 92 附錄二 電化學加工機CNC程式碼 94

    [1] T. Singh, A. Dvivedi, Developments in electrochemical discharge machining: A review on electrochemical discharge machining, process variants and their hybrid methods, International Journal of Machine Tools and Manufacture, 105 (2016) 1-13.
    [2] J. Lu, J. Guan, B. Dong, Y. Zhao, Control principle of anodic discharge for enhanced performance in jet-electrochemical discharge machining of semiconductor 4H-SiC, Journal of Manufacturing Processes, 92 (2023) 435-452.
    [3] A. Speidel, I. Bisterov, K.K. Saxena, M. Zubayr, D. Reynaerts, W. Natsu, A.T. Clare, Electrochemical jet manufacturing technology: From fundamentals to application, International Journal of Machine Tools and Manufacture, 180 (2022).
    [4] J. Xue, B. Dong, Y. Zhao, Significance of waveform design to achieve bipolar electrochemical jet machining of passivating material via regulation of electrode reaction kinetics, International Journal of Machine Tools and Manufacture, 177 (2022).
    [5] K.K. Saxena, M. Bellotti, D. Van Camp, J. Qian, D. Reynaerts, Electrochemical Based Hybrid Machining, Hybrid Machining, 2018, pp. 111-129.
    [6] J. Tao, J. Xu, W. Ren, H. Deng, Y. Hou, H. Sun, H. Yu, Electrochemical machining of blades by using tapered cathode sheet with micro-grooves structure, Journal of Manufacturing Processes, 99 (2023) 416-433.
    [7] H. Deng, J. Tao, W. Ren, H. Sun, Z. Zou, J. Xu, Experimental study on electrochemical machining of TC11 titanium alloy blades based on cylindrical array microstructure cathodes, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 670 (2023).
    [8] Z. Lian, Y. Cheng, Z. Liu, Q. Cai, J. Tao, J. Xu, Y. Tian, H. Yu, Scalable fabrication of superhydrophobic armor microstructure arrays with enhanced tribocorrosion performance via maskless electrochemical machining, SuCT, 461 (2023).
    [9] Y. Ge, Z. Zhu, D. Wang, Z. Ma, D. Zhu, Study on material removal mechanism of electrochemical deep grinding, Journal of Materials Processing Technology, 271 (2019) 510-519.
    [10] B. Gao, T. Jin, M. Qu, Z. Shang, L. Tang, Electrochemical cleaning grinding (ECCG) of aluminum alloy 6061 with electroconductive resin-bonded diamond wheels, Journal of Manufacturing Processes, 57 (2020) 806-816.
    [11] D. Zhu, Y.B. Zeng, Z.Y. Xu, X.Y. Zhang, Precision machining of small holes by the hybrid process of electrochemical removal and grinding, CIRP Annals, 60 (2011) 247-250.
    [12] T. Singh, A. Dvivedi, Fabrication of micro holes in Yttria-stabilized zirconia (Y-SZ) by hybrid process of electrochemical discharge machining (ECDM), Ceramics International, 47 (2021) 23677-23681.
    [13] S. Grover, S. Singh, S.K. Mangal, Hybridization of μ-electrochemical discharge machining (μ-ECDM) process: A review, Mater. Today: Proc., 80 (2023) 499-508.
    [14] X. Jiang, Y. Li, D. Li, Z. Xu, Influence of machining gap on both sides of blade in vibration-assisted pulsed electrochemical machining, International Journal of Electrochemical Science, 18 (2023).
    [15] Z. Feng, E. Granda, W. Hung, Experimental Investigation of Vibration-assisted Pulsed Electrochemical Machining, Procedia Manufacturing, 5 (2016) 798-814.
    [16] K. Xu, Y. Zeng, P. Li, D. Zhu, Vibration assisted wire electrochemical micro machining of array micro tools, Precision Engineering, 47 (2017) 487-497.
    [17] G.M. Lin, H.Z. Cai, Electrochemical Machining Technology and its Latest Applications, Advanced Materials Research, 472-475 (2012) 875-878.
    [18] F. Pineda, M. Walczak, F. Vilchez, C. Guerra, R. Escobar, M. Sancy, Evolution of corrosion products on ASTM A36 and AISI 304L steels formed in exposure to molten NaNO3–KNO3 eutectic salt: Electrochemical study, Corrosion Science, 196 (2022).
    [19] J.L. Wendt, D.T. Chin, The a.c. corrosion of stainless steel—II. The polarization of ss304 and ss316 in acid sulfate solutions, Corrosion Science, 25 (1985) 901-915.
    [20] J. Wang, Z. Xu, J. Wang, D. Zhu, Anodic dissolution characteristics of Inconel 718 in C6H5K3O7 and NaNO3 solutions by pulse electrochemical machining, Corrosion Science, 183 (2021).
    [21] M. Schneider, S. Schroth, S. Richter, S. Höhn, N. Schubert, A. Michaelis, In-situ investigation of the interplay between microstructure and anodic copper dissolution under near-ECM conditions – Part 1: The active state, Electrochimica Acta, 56 (2011) 7628-7636.
    [22] S. Zhan, Y. Zhao, Intentionally-induced dynamic gas film enhances the precision of electrochemical micromachining, Journal of Materials Processing Technology, 291 (2021).
    [23] J.A. McGeough, Electrochemical Machining, Kirk-Othmer Encyclopedia of Chemical Technology, pp. 1-16.
    [24] M. Datta, Anodic dissolution of metals at high rates, IBM J. Res. Dev., 37 (1993) 207-226.
    [25] Y. Gui, Z.J. Zheng, Y. Gao, The bi-layer structure and the higher compactness of a passive film on nanocrystalline 304 stainless steel, Thin Solid Films, 599 (2016) 64-71.
    [26] M. Ayaz, M. Khandaei, Y. Vahidshad, Investigating the effect of electromagnetic impact welding parameters on the microstructure evolution and mechanical properties of SS-Cu joint, Materials Today Communications, 35 (2023).
    [27] A. Yazdanpanah, L. Pezzato, M. Dabalà, Stress corrosion cracking of AISI 304 under chromium variation within the standard limits: Failure analysis implementing microcapillary method, Engineering Failure Analysis, 142 (2022).
    [28] R.K. Mittal, S.S. Kulkarni, R.K. Singh, Effect of lubrication on machining response and dynamic instability in high-speed micromilling of Ti-6Al-4V, Journal of Manufacturing Processes, 28 (2017) 413-421.
    [29] Q. Chen, W. Li, Y. Ren, Z. Zhou, 3D chatter stability of high-speed micromilling by considering nonlinear cutting coefficients, and process damping, Journal of Manufacturing Processes, 57 (2020) 552-565.
    [30] Y. Mohammadi, K. Ahmadi, Finite-amplitude stability in regenerative chatter: The effect of process damping nonlinearity and intermittent cutting in turning, Journal of Sound and Vibration, 537 (2022).
    [31] G.N. Sahu, S. Vashisht, P. Wahi, M. Law, Validation of a hardware-in-the-loop simulator for investigating and actively damping regenerative chatter in orthogonal cutting, CIRP Journal of Manufacturing Science and Technology, 29 (2020) 115-129.
    [32] M. Emami, A. Karimipour, Theoretical and experimental study of the chatter vibration in wet and MQL machining conditions in turning process, Precision Engineering, 72 (2021) 41-58.
    [33] Y. Altintas, M. Weck, Chatter Stability of Metal Cutting and Grinding, CIRP Annals, 53 (2004) 619-642.
    [34] A. Tripathi, P. Das, T. Aggarwal, Sahil, Diminution of chatter vibration in single point cutting tool holder using finite element analysis (FEA), Mater. Today: Proc., 62 (2022) 3665-3669.
    [35] R.H. Nityananda, S.R. Srivatsa, S. Somaskanda, A. Pasha Taj, Finite element model updating of boring bar and determination of chatter stability, Mater. Today: Proc., 45 (2021) 165-171.
    [36] E. Jafarzadeh, M.R. Movahhedy, Numerical simulation of interaction of mode-coupling and regenerative chatter in machining, Journal of Manufacturing Processes, 27 (2017) 252-260.
    [37] E.C.T. Ba, M.R. Dumont, P.S. Martins, R.M. Drumond, M.P. Martins da Cruz, V.F. Vieira, Investigation of the effects of skewness Rsk and kurtosis Rku on tribological behavior in a pin-on-disc test of surfaces machined by conventional milling and turning processes, Materials Research, 24 (2021).
    [38] F. Coelho, P. Koshy, Vibration damping capability of electrical discharge machined surfaces: Characteristics, mechanism and application, International Journal of Machine Tools and Manufacture, 177 (2022).
    [39] G.T. Smith, Surface texture: two-dimensional, in: G.T. Smith (Ed.) Industrial Metrology: Surfaces and Roundness, Springer London, London, 2002, pp. 1-67.
    [40] Q. Zeng, Y. Qin, W. Chang, X. Luo, Correlating and evaluating the functionality-related properties with surface texture parameters and specific characteristics of machined components, IJMS, 149 (2018) 62-72.
    [41] C. Guangjun, H. Shuai, H. Songxi, W. Chuanliang, Optimization of Machining Parameters and Electrochemical Corrosion Behavior of hardened Cr12MoV Mold Steel, International Journal of Electrochemical Science, 15 (2020) 3646-3659.
    [42] M. Sedlaček, B. Podgornik, J. Vižintin, Correlation between standard roughness parameters skewness and kurtosis and tribological behaviour of contact surfaces, Tribol. Int., 48 (2012) 102-112.
    [43] H. Gu, L. Jiao, P. Yan, J. Liang, T. Qiu, Z. Liu, X. Wang, Effect of machined surface texture on fretting crack nucleation under radial loading in conformal contact, Tribol. Int., 153 (2021).
    [44] S. Bruschi, L. Pezzato, A. Ghiotti, M. Dabalà, R. Bertolini, Effectiveness of using low-temperature coolants in machining to enhance durability of AISI 316L stainless steel for reusable biomedical devices, Journal of Manufacturing Processes, 39 (2019) 295-304.
    [45] W. Zhang, X. Wang, Y. Hu, S. Wang, Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel, International Journal of Machine Tools and Manufacture, 130-131 (2018) 36-48.
    [46] C.M. Smudde, C.R. D'Elia, C.W. San Marchi, M.R. Hill, J.C. Gibeling, The influence of residual stress on fatigue crack growth rates of additively manufactured Type 304L stainless steel, IJFa, 162 (2022).
    [47] C. Piconi, 1.105 - Alumina, in: P. Ducheyne (Ed.) Comprehensive Biomaterials, Elsevier, Oxford, 2011, pp. 73-94.
    [48] P. Palanikumar, N. Gnanasekaran, K. Subrahmanya, V. Kaliveeran, Effect of sliding speed and rise in temperature at the contact interface on coefficient of friction during full sliding of SS304, Mater. Today: Proc., 27 (2020) 1996-1999.
    [49] B.M.A. Abdo, S. Anwar, A.M. El-Tamimi, E.A. Nasr, Experimental Analysis on the Influence and Optimization of μ-RUM Parameters in Machining Alumina Bioceramic, Materials (Basel), 12 (2019).
    [50] Y.-Y. Woo, S.-W. Han, I.-Y. Oh, Y.-H. Moon, W. Ha, Control of Directed Energy Deposition Process to Obtain Equal-Height Rectangular Corner, International Journal of Precision Engineering and Manufacturing, 20 (2019) 2129-2139.
    [51] S. Yin, X.-f. Wang, W.-y. Li, B.-p. Xu, Numerical Investigation on Effects of Interactions Between Particles on Coating Formation in Cold Spraying, JTST, 18 (2009) 686-693.
    [52] S. Athul, G. Premnath, S. Bhaskar, D.R. Vamadevan, Elevated Temperature Wear Behavior of Aluminium Alloy (Al 6061), 2018.
    [53] A. Amininejad, R. Jamaati, S.J. Hosseinipour, Achieving superior strength and high ductility in AISI 304 austenitic stainless steel via asymmetric cold rolling, Materials Science and Engineering: A, 767 (2019).
    [54] L. Zhang, J.Z. Lu, K.Y. Luo, A.X. Feng, F.Z. Dai, J.S. Zhong, M. Luo, Y.K. Zhang, Residual stress, micro-hardness and tensile properties of ANSI 304 stainless steel thick sheet by fiber laser welding, Materials Science and Engineering: A, 561 (2013) 136-144.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 2025/08/18 (校外網路)
    全文公開日期 2025/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE