簡易檢索 / 詳目顯示

研究生: 許紋碩
Wun-Shuo Syu
論文名稱: 合成具有噻吩及呋喃基三苯胺骨架之染料敏化太陽能電池染料及其光物理性質研究
Synthesis and Photophysics of 4-thienyl/furyl-triphenylamine main structural DSSC dyes with rhodanine-3-acetic acid and cyanoacetic acid as anchoring group
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 張家耀
Jia-Yaw Chang
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 141
中文關鍵詞: 染料敏化太陽能電池錨固定基繞丹寧-3-乙酸
外文關鍵詞: DSSC dye, anchoring group, rhodanine-3-acetic acid
相關次數: 點閱:237下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成出一系列具有噻吩及呋喃基三苯胺骨架的有機敏化染料,在推電子基-π共軛橋基-拉電子基(Donor-π bridge-Acceptor)系統中,增加其推電子基強度及使用不同的拉電子基,目的是增加其分子內電子從推電子基到拉電子基上有更好的電荷轉移能力,使分子的吸收波長產生紅移現象,能包含到更多可見光波長範圍,以三苯胺骨架作為推電子基、噻吩及呋喃為共軛橋基與cyanoacrylic acid 和rhodanine-3-acetic acid為拉電子基,並以核磁共振光譜圖譜(NMR)以及質譜儀(MASS)鑑定結構。利用紫外/可見光光譜儀與循環電位儀去探討八種染料的光電性質。將橋基從噻吩換成呋喃和使用rhodanine-3-acetic acid為拉電子基還有在三苯胺加上甲氧基均可使最大吸收波長紅移,而使用rhodanine-3-acetic acid為拉電子基還有在三苯胺加上甲氧基也可以使染料的能階差降低。


    In this research, a series of organic sensitizers based on diphenyl (4-thiophen/furan-2-yl)aniline structure has been synthesized for dye-sensitized solar cells (DSSCs). We have prolonged the donor and used different anchoring groups as the acceptor in the Donor-π bridge-Acceptor system. This D-π-A system has the results in the increase of the maximum band to visible light region due to increasing intramolecular charge transfer from donor to acceptor and has better regulation of the electronic energy levels. Those eight organic dyes were synthesized by Suzuki coupling reaction and Knoevenagel condensation reaction. We used triphenylamine structure as donor, thiophene and furan as π bridge, cyanoacrylic acid and rhodanine-3-acetic acid as acceptors. Use nuclear magnetic resonance spectroscopy (NMR) and mass spectroscopy (MASS) to identify the structures and measure UV / Visible spectroscopy and Cyclic voltagram to discuss the photophyscial and electrochemical properties.

    第一章 緒論.........................................................1 1-1 前言.........................................................1 1-2 太陽能電池簡介...............................................1 1-3 染料敏化太陽能電池的進展.....................................3 1-4 染料敏化太陽能電池的構造及光電轉換機制.......................4 1-5 染料敏化太陽能電池效率的影響因素.............................5 1-6 染料光敏化劑.................................................6 1-6-1染料光敏化劑條件........................................6 1-6-2釕金屬錯合物染料........................................8 1-6-2非有機金屬染料.........................................10 1-7 鈴木偶聯反應................................................13 1-8 文獻回顧....................................................14 1-9 研究動機及目的..............................................15 第二章 結果與討論..................................................18 2-1 化合物之合成與探討.........................................18 2-2 各化合物於不同溶劑中之光物理研究...........................23 2-2-1 同溶劑下各化合物之光物理研究..........................39 2-3 各化合物之消光係數.........................................42 2-4 各化合物之電化學性質討論...................................47 2-5 各化合物的理論計算結果與實驗結果討論.......................54 2-6 各化合物的Stokes shift.......................................58 2-7 結論.......................................................59 2-8 未來展望...................................................60 第三章 實驗部分....................................................61 3-1 實驗儀器...................................................61 3-2 實驗藥品與溶劑.............................................63 3-3 光物理定性的量測方法.......................................65 3-4 莫耳吸收係數量測方法.......................................66 3-5 氧化還原電位的測量及計算方法...............................67 3-6 各化合物結構分子式與分子量.................................68 3-7 實驗步驟...................................................71 第四章 參考文獻....................................................84 附錄 光譜資料..................................................89

    1. world-reserves-of-fossil-fuels, http://cn.knoema.com/smsfgud/world-reserves-of-fossil-fuels
    2. Natural Forcing of the Climate System. Intergovernmental Panel on Climate Change. 2007.
    3. M. Grätzel, Photoelectrochemical cells. Nature, 2001, 414 (6861), 338-344.
    4. 張正華, 李陵嵐, 葉楚平, 楊平華, 馬振基, 有機與塑膠太陽能電池,五南, 2007, 1.
    5. M.A. Green, K. emery, Y, Hishikawa, W. Warta, E. D. Dunlop, Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. App. 2015, 23 (1), 1-9.
    6. M.A. Green, S.R. Wenham, R. Corkish, M. E. Watt, 應用太陽電池, 五南2009, 1.
    7. 沈揮, 曾祖勤, 馬振基, 太陽能光電技術, 五南, 2010, 3
    8. W. E. Spear, P. G. Le Comber, Substitutional doping of amorphous silicon. Solid State Commun., 1975, 17 (9), 1193-1196.
    9. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131 (17), 6050-6051.
    10. (a) M. liu, M. B. Johnston, H. J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature, 2013, 501 (6196), 395–398. (b) J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499 (7458), 316-319.
    11. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. ACS Nano. 2014, 8 (2), 1674–1680.
    12. F. Hurd, R. Livingston, The quantum yields of some dye-sensitized photooxidations. J. Phys. Chem., 1940, 44 (7), 865-873.
    13. A. P. Marchetti, D. R. Kearns, Investigation of singlet-triplet transitions by the phosphorescence excitation method. IV. The singlet-triplet absorption spectra of aromatic hydrocarbons. J. Am. Chem. Soc., 1967, 89 (4), 768–777.
    14. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 1976, 261(5599), 402-403.
    15. M. Matsumura, S. Matsudaira, H. Tsubomura, M. Takata, H. Yanagida, Dye sensitization and surface structures of semiconductor electrodes. Industrial engineering chemistry product research and development. 1980, 19 (3), 415-421.
    16. B. O’Regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353 (6346), 737-740
    17. M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. Grätzel, Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. J. Am. Chem. Soc. 2005, 127 (48), 16835-47.
    18. Jörg Ferber, Rolf Stangl, Joachim Luther, An electrical model of the dye-sensitized solar cell. Sol. Eneng. Mat. Sol. C. 1998, 53 (1), 29-54.
    19. 童永樑, 釕金屬染料在染料敏化太陽能電池的演進. 工業材料雜誌, 2008, 255, 109-123.
    20. A. Hagfeldt, G. Boschloo, L. Sun, L. Kloo, H. Pettersson, Dye-sensitized solar cells. Chem. Rev. 2010, 110 (11), 6595-6630.
    21. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Miiller, P. Liska, N. Vlachopoulos, M. Grätzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. J. Am. Chem. Soc. 1993, 115 (14), 6382-6390.
    22. M. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. H.Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G.B. Deacon, C. A. Bignozzi, M. Grätzel, Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123 (8), 1613-1624.
    23. M. Ryan, PGM Highlights: ruthenium complexes for dye sensitised solar cells. Platin. Met. Rev. 2009, 53 (4), 216-218.
    24. P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser, M. Grätzel, Molecular-scale interface engineering of TiO2 nanocrystals: Improve the efficiency and stability of dye-sensitized solar cells. Adv. Mater., 2003, 15 (24), 2101-2104.
    25. P. Wang, S. M. Zakeeruddin, R. H. Baker, J. E. Moser, P Comte, V Aranyos, A Hagfeldt, M. K. Nazeeruddin, M. Grätzel, Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye‐Sensitized Solar Cells. Adv. Mater. 2004, 16 (20), 1806-1811.
    26. (a) K. Hara, K. Sayama, H Arakawa, Y. Ohga, A. Shinpo, S Suga, A coumarin-derivatuve dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chem. Commun. 2001, (6), 569-570. (b) K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S Suga, K. Sayama, H. Arakawa, Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J. Chem. 2003, 27 (5), 783-785.
    27. (a) T. Horiuchi, H. Miura, S. Uchida, Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chem. Commun. 2003, (24), 3036-3037. (b) T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J. Am. Chem. Soc. 2004, 126 (39), 12218-12219. (c) S. Ito, H. Miura, S Uchida, M. Takata, K. Sumioka, P. Liska, P. comte, P. Pechy, M. Grätzel, High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chem. Commun. 2008, (41), 5194-5196.
    28. Ferrere, Suzanne, B. A. Gregg, New perylenes for dye sensitization of TiO2. New J. Chem. 2002, 26 (9), 1155-1160.
    29. L. W. Jin, A. Suzuki, K. Imaeda, H. Okada, A. Wakahara, A. Yoshida, Fabrication and characterization of Eosin-Y-sensitized ZnO solar cell. Jpn. J. Appl. Phys. 2004, 43 (1R), 152.
    30. T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson, X. Ai, T. Lian, S. Yanagida, Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chem. Mater. 2004, 16(9), 1806-1812.
    31. D. P. Hagberg, T. Marinado, K. M. Karlsson, K. Nonomura, P. Qin, G. Boschloo, T. Brinck, A. Hagfeldt, L. Sun, Tuning the HOMO and LUMO Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. J. Org. Chem. 2007, 72 (25), 9550–9556.
    32. J. T. Lin, P. C. Chen, Y. S. Yen, Y. C. Hsu, H. H. Chou, M. C. Yeh, Organic Dyes Containing Furan Moiety for High-Performance Dye-Sensitized Solar Cells. Org. lett. 2008, 11 (1), 97-100.
    33. D. P. Hagberg, J. H. Yum, H. Lee, F. D. Angelis, T. Marinado, K. M. Karlsson, R. H. Baker, L. Sun, A. Hagfeldt, M. Grätzel, M. K. Nazeeruddin, Molecular engineering of organic sensitizers for dye-sensitized solar cell applications, J. Am. Chem. Soc. 2008, 130 (19), 6259-6266.
    34. M. Pastore and F. D. Angelis, Computational modelling of TiO2 surfaces sensitized by organic dyes with different anchoring groups: adsorption modes, electronic structure and implication for electron injection/recombination. Phys. Chem. Chem. Phys. 2012, 14 (2), 920-928.
    35. N. Miyaura, K. Yamada, A. Suzuki, A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides, Tetrahedron Lett. 1979, 20 (36), 3437-3440.
    36. A. Mishra, M. K. R. Fischer, P. Bäuerle, Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules, Angew. Chem. Int. Edit. 2009, 48 (14), 2474-2499.
    37. W. H. Liu, I. C. Wu, C. H. Lai, C. H. Lai, P. T. Chou, Y. T. Li, C. L. Chen, Y. Y. Hsu, Y. Chi, Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chem. Commun, 2008 (41), 5152-5154.
    38. S. Y. Cai, X. H. Hu, J. L. Han, Z. Y. Zhang, X. Li, C. Y. Wang, J. H. Su, Efficient organic dyes containing dibenzo heterocycles as conjugated linker part for dye-sensitized solar cells, Tetrahedron, 2013, 69 (8), 1970-1977.
    39. GW Wheland, Resonance in organic chemistry, John Wiley & Sons, 1955. 106.

    QR CODE