簡易檢索 / 詳目顯示

研究生: 張晉誠
Ching-Cheng Chang
論文名稱: 設計快速響應三氧化鎢/石墨烯量子點複合電極應用於光驅動電致色變元件實現近紅外光溫度可調節智慧窗
Designing Rapid Response GQD/WO3 Composite Electrode-based Near-infrared Photoelectrochromic Device for Solar-driven Thermal Management Smart Window
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 葉旻鑫
Min-Hsin Yeh
何國川
Kuo-Chuan Ho
林正嵐
Cheng-Lan Lin
張家耀
Jia-Yaw Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 126
中文關鍵詞: 染料敏化太陽能電池電致色變元件石墨烯量子點光驅動電致色變元件自供電系統智慧窗三氧化鎢
外文關鍵詞: dye-sensitized solar cell, electrochromic device, graphene quantum dots, photoelectrochromic device, self-powered system, smart window, tungsten trioxide
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著時代的發展,石化能源的持續消耗以及環境汙染問題日益嚴重,導致能源危機的問題長期以來一直受到重視;因此,如何有效率地利用再生能源變成全世界討論的重要議題。在眾多再生能源中,穩定且龐大的太陽能是最受到矚目的永續替代能源,具備高轉換效率、低成本且無排放等優點的光伏電池成為所有的再生能源技術中最有潛力的一項技術。而根據統計,建築物調節室內溫度以及照明的功能的能源消耗佔據了全世界能源消耗總量的百分之四十。為了實現節能減碳與永續發展,電致色變的智慧窗可以通過改變其光學特性來控制室內溫度及明亮度,從而獲得顯著的節能效果。為了更進一步減少能量消耗,結合了染料敏化太陽能電池和電致色變元件概念所開發出了光驅動電致色變元件可實現無需額外電源即可直接從太陽能量從而產生光學對比度。在應用方面,光驅動電致色變元件可以被用作環保綠色建築的自供電智能窗戶,其元件在可見光範圍有著出色的光學性能,能夠靠電致色變特性來調節室內明亮度。除了室內明亮度之外,光驅動電致色變元件也可近一步藉由調整紅外光通過量來控制室內溫度來實現主動式溫度調節功能。為了驗證這個概念的可行性,本研究第四章提出以三氧化鎢為電致色變材料,針對近紅外光範圍的穿透度進行調節的近紅外光驅動電致色變元件 (NIR-PECD),實現了無需外部電源的室內溫度控制。在最適化三氧化鎢膜厚在不同施加電位下對於近紅外光穿透度的影響後,使用三氧化鎢的NIR-PECD在入射光波長1000 nm下表現出40.2 %的光學穿透度變化以及55.85 cm2 min-1 W-1的光著色效率。此外,NIR-PECD在照光著色及遮光去色的操作狀態下有著攝氏5.6度的溫差,表示此元件可在無需外加電源下即可透過太陽光照來驅動著色狀態來實現阻擋來自室外的紅外光,進而保持室內涼爽。
    為了更近一步延伸本研究所提出的NIR-PECD可行性應用,本研究提出將此元件應用在農業光伏系統;此系統是利用土地透過安裝太陽能電池板進行光伏能源生產並同時進行農作物種植的複合系統,本研究第五章提出了將NIR-PECD引入農業光伏系統以實現自供電熱控制的概念,提供了無需外部供電的溫室溫度控制,以提高農作物的產量,同時降低照顧植物生長的能源消耗。為了提高三氧化鎢於NIR-PECD在著色/去色的電致色變響應,在本研究提出將具有sp2結構和特定的官能團的石墨烯量子點導入到三氧化鎢薄膜中來有效降低其電荷傳遞阻力以提高電致色變性能。由於石墨烯量子點上的官能基可與三氧化鎢形成氫鍵,進而增加了其薄膜穩定性,在連續1000次著色/去色循環後,石墨烯量子點修飾三氧化鎢薄膜依然保持了90%的原始穿透度變化。在最適化石墨烯量子點修飾三氧化鎢薄膜對於近紅外光穿透度的影響後,利用此複合薄膜所製備而成的NIR-PECD可在不犧牲光學穿透度變化的前提下,大幅地降低了去色時間,與未加入石墨烯量子點的三氧化鎢NIR-PECD相比,去色時間可從原本的271.3秒縮短至93.3秒,其元件的光著色效率也從原本的55.85 cm2 min-1 W-1提高到96.46 cm2 min-1 W-1。為了使NIR-PECD應用於農業光伏系統有更多的發展性,本研究導入普魯士藍電致色變層來取代原先使用的Pt對電極來進一步實現光學互補式PECD。此種互補式元件能夠透過不同的操作條件來達到不同波長下的穿透度,進而影響室內的溫度及明亮度。透過導入光學互補式PECD於光伏農業系統中,可在無需外加電能的情況下,配合作物的特性,提供最適合作物的溫度及明亮度以提高作物生長的表現及生產。綜上所述,本研究開發了以三氧化鎢為電致色變材料的NIR-PECD並加入石墨烯量子點以改善其薄膜的光學響應時間及穩定性。在應用方面,NIR-PECD可以作為建築物的智慧窗,以降低建築物在進行室內溫度或明亮度調節時的能源消耗。透過結合普魯士藍電致色變層所實現的光學互補式PECD,則可以透過不同的操作模式來因應光伏農業系統的應用。


    With the development of technology, the continuous consumption of fossil fuel, and the increasingly serious environmental pollution, the problem of the energy crisis has been paid attention to for a long time; therefore, how to efficiently use renewable energy has become an important issue discussed all over the world. Among the many renewable energy sources, stable and huge solar energy is the most attractive sustainable alternative energy source. Photovoltaic cells with the advantages of high conversion efficiency, low cost, and no emission have become the most promising technology among all renewable energy technologies. According to statistics, the energy consumption of buildings to adjust indoor temperature and lighting functions accounts for 40% of the total energy consumption in the world. In order to achieve energy saving, carbon reduction, and sustainable development, the electrochromic smart window can control the indoor temperature and brightness by changing its optical characteristics, so as to obtain a significant energy-saving performance.
    A photoelectrochromic device (PECD) is a combination of a dye-sensitized solar cell (DSSC) and an electrochromic device (ECD) that directly generate transmittance contrast from solar radiation without an additional power source. As for the application, PECD has lately been utilized as a self-powered smart window for eco-friendly green buildings. The majority of PECDs have exceptional optical performance in the visible light region, with their electrochromic property regulating indoor luminance. Nonetheless, indoor temperature regulation is also a potential opportunity that might be examined further by PECD. As the temperature is highly correlated with the incident flux of infrared light, chapter 4 in this study presented a NIR-PECD based on WO3 as the electrochromic material for blocking infrared radiation, realizing indoor thermal management without external power. The NIR-PECD exhibited an ability of thermal modulation, lowering the indoor temperature with a transmittance contrast in the NIR region, which demonstrated a transmittance contrast (ΔT) of 40.2 % and an outstanding photocoloration efficiency (PhCE) of 55.85 cm2 min-1 W-1 at the wavelength at 1000 nm. In addition, NIR-PECD also displayed a 5.6 °C temperature difference between the colored and bleached states, indicating the thermal management capabilities of keeping the interior cool in the colored state by blocking the NIR. As further applications, NIR-PECD can be used as self-powered smart windows in green buildings to achieve internal temperature control without external power.
    Nowadays, WO3 has been reported as a significant and effective material in numerous electrochromic materials. However, the WO3 suffered from a long response time. To solve the issue, the graphene quantum dots (GQD) was added into WO3 to promote the performance in Chapter 5. The graphitic sp2 structure and specific functional groups improved the WO3 thin film's electrochemical and electrochromic results by enhancing the response time and transmittance contrast. Furthermore, the GQD/WO3 thin film maintained approximately 90 % of the original transmittance contrast after 1000 cycles of coloring and bleaching due to the hydrogen bonds formed between functional groups on GQD and WO3. The GQD/WO3-PECD also showed a significant improvement in response time. The bleaching time was shortened from 271.3 s to 93.3 s, owing to the presence of GQD in the WO3. On the other hand, the photocoloration efficiency was improved from 55.85 to 96.46 cm2 min-1 W-1. Despite the optical properties, the GQD/WO3-PECD also possessed outstanding thermal management. Under 1 sun illumination, the colored state and bleached state showed a temperature difference of 8.7 °C. For further applications, the Pt counter electrode was placed by Prussian blue, with different operations and various transmittance, the GQD/WO3/PB-PECD can achieve self-powered indoor thermal management as an agrivoltaic system.

    中文摘要 I Abstract III Table of Contents V List of Tables VIII List of Figures IX Nomenclature XIII Chapter 1 Introduction 1 1.1 preface 1 1.2 Introduction of electrochromism 1 1.2.1 Development and application of electrochromic technology 2 1.2.2 Materials for electrochromic device 4 1.2.3 Different types of electrochromic device 5 1.3 Introduction of dye-sensitized solar cell 8 1.3.1 The background of dye-sensitized solar cell 9 1.3.2 Working mechanism of dye-sensitized solar cell 10 1.3.3 Different types of electrochromic device 13 1.4 Introduction of self-powered system 16 1.5 Introduction of photoelectrochromic device 17 1.5.1 Types of photoelectrochromic device 19 1.5.2 The background and development of photoelectrochromic device 20 1.6 Introduction of near-infrared 22 Chapter 2 Literature Review and Research Scope 24 2.1 Overview of NIR electrochromic device 24 2.2 Overview of WO3 26 2.2.1 Electrochromic device based on WO3 27 2.3 Overview of carbon materials 30 2.3.1 Graphene quantum dots 31 2.4 Motivation of research 32 Chapter 3 Experimental Procedure 37 3.1 Experimental Chemicals and Instruments 37 3.1.1 Experimental and analytical instruments 37 3.1.2 Electrochemical Analysis 38 3.1.3 X-ray Diffractometer (XRD) 42 3.1.4 Field Emission-Scanning Electron Microscopy (FE-SEM) 43 3.1.5 Transmission Electron Microscope (TEM) 44 3.1.6 X-ray Photoelectron Spectroscopy (XPS) 46 3.2 Experimental Materials 47 3.3 Experimental Procedure 48 3.3.1 Fabrication of Photoelectrode 48 3.3.2 WO3 and GQD/WO3 thin films preparation on the photoelectrode and counter electrode preparation 49 3.3.3 Assembly of PECD 50 3.4 Measurement Setup 50 3.4.1 Vis-NIR spectroscopy analysis of electrochromic film in three-electrode system 50 3.4.2 Vis-NIR spectroscopy analysis of photoelectrochromic device 51 3.4.3 Measurement of photovoltaic efficiency 52 Chapter 4 NIR Photoelectrochromic Device with Indoor Thermal Management for Self-powered Smart Windows 54 4.1 Motivation and Concept Design 54 4.2 Result and Discussion 57 4.2.1 Electrochemical and optical properties of WO3 film 57 4.2.2 Optimize the film thickness of WO3 film for PECD 59 4.2.3 Electrochemical properties of different layered WO3 film 60 4.2.4 Photoelechromic performance of NIR-PECD with WO3 electrochromic layer 64 4.2.5 Thermal Management of NIR-PECD 68 4.3 Summary 70 Chapter 5 Near-infrared Photoelectrochromic Device with Graphene Quantum Dot modified WO3 Thin Film toward Fast-response Thermal Management for Self-powered Agrivoltaics 71 5.1 Motivation and Conceptual Design 71 5.2 Result and Discussion 75 5.2.1 Characterization of graphene quantum dot (GQD) and GQD/WO3 thin film 75 5.2.2 Electrochemical properties of GQD/WO3 thin films 77 5.2.3 Electrochromic performance of GQD/WO3 thin films 79 5.2.4 The improvement of stability on GQD/WO3 thin films 81 5.2.5 The performance of GQD/WO3-PECD 83 5.2.6 The application of GQD/WO3-PECD 86 5.3 Summary 89 Chapter 6 Conclusion and Suggestion 91 6.1 Conclusion 91 6.2 Suggestion and Prospects 92 Chapter 7 Reference 94

    [1] A. Cannavale, P. Cossari, G.E. Eperon, S. Colella, F. Fiorito, G. Gigli, H.J. Snaith, A. Listorti, Forthcoming perspectives of photoelectrochromic devices: a critical review, Energy & Environmental Science 9(9) (2016) 2682-2719.
    [2] Z. Tong, Y. Tian, H. Zhang, X. Li, J. Ji, H. Qu, N. Li, J. Zhao, Y. Li, Recent advances in multifunctional electrochromic energy storage devices and photoelectrochromic devices, Science China Chemistry 60 (2017) 13-37.
    [3] K. Wang, H. Wu, Y. Meng, Y. Zhang, Z. Wei, Integrated energy storage and electrochromic function in one flexible device: an energy storage smart window, Energy & Environmental Science 5(8) (2012) 8384-8389.
    [4] D. Ge, E. Lee, L. Yang, Y. Cho, M. Li, D.S. Gianola, S. Yang, A robust smart window: reversibly switching from high transparency to angle‐independent structural color display, Advanced Materials 27(15) (2015) 2489-2495.
    [5] M.-H. Yeh, L. Lin, P.-K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system, ACS nano 9(5) (2015) 4757-4765.
    [6] F. Bella, G. Leftheriotis, G. Griffini, G. Syrrokostas, S. Turri, M. Grätzel, C. Gerbaldi, A new design paradigm for smart windows: photocurable polymers for quasi‐solid photoelectrochromic devices with excellent long‐term stability under real outdoor operating conditions, Advanced Functional Materials 26(7) (2016) 1127-1137.
    [7] R. Araujo, Photochromism in glasses containing silver halides, Contemporary Physics 21(1) (1980) 77-84.
    [8] R.J. Araujo, Opthalmic glass particularly photochromic glass, Journal of Non-Crystalline Solids 47(1) (1982) 69-86.
    [9] E. Hadjoudis, M. Vittorakis, I. Moustakali-Mavridis, Photochromism and thermochromism of schiff bases in the solid state and in rigid glasses, Tetrahedron 43(7) (1987) 1345-1360.
    [10] S. Babulanam, T. Eriksson, G. Niklasson, C. Granqvist, Thermochromic VO2 films for energy-efficient windows, Solar energy materials 16(5) (1987) 347-363.
    [11] C.M. Lampert, Electrochromic materials and devices for energy efficient windows, Solar Energy Materials 11(1-2) (1984) 1-27.
    [12] J. Svensson, C. Granqvist, Electrochromic coatings for “smart windows”, Solar energy materials 12(6) (1985) 391-402.
    [13] C. Granqvist, Chromogenic materials for transmittance control of large-area windows, Critical Reviews in Solid State and Material Sciences 16(5) (1990) 291-308.
    [14] S. Araki, K. Nakamura, K. Kobayashi, A. Tsuboi, N. Kobayashi, Electrochemical optical‐modulation device with reversible transformation between transparent, mirror, and black, Advanced Materials 24(23) (2012) OP122-OP126.
    [15] A. Tsuboi, K. Nakamura, N. Kobayashi, A localized surface plasmon resonance‐based multicolor electrochromic device with electrochemically size‐controlled silver nanoparticles, Advanced materials 25(23) (2013) 3197-3201.
    [16] H.-J. Yen, K.-Y. Lin, G.-S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units, Journal of Materials Chemistry 21(17) (2011) 6230-6237.
    [17] F. Chen, X. Fu, J. Zhang, X. Wan, Near-infrared and multicolored electrochromism of solution processable triphenylamine-anthraquinone imide hybrid systems, Electrochimica Acta 99 (2013) 211-218.
    [18] A. Llordés, G. Garcia, J. Gazquez, D.J. Milliron, Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites, Nature 500(7462) (2013) 323-326.
    [19] E.L. Runnerstrom, A. Llordés, S.D. Lounis, D.J. Milliron, Nanostructured electrochromic smart windows: traditional materials and NIR-selective plasmonic nanocrystals, Chemical communications 50(73) (2014) 10555-10572.
    [20] E. Brimm, J. Brantley, J. Lorenz, M. Jellinek, Sodium and Potassium Tungsten Bronzes1, 1a, Journal of the American Chemical Society 73(11) (1951) 5427-5432.
    [21] S. Deb, A novel electrophotographic system, Applied Optics 8(101) (1969) 192-195.
    [22] Sage Glass. https://www.sageglass.com/.
    [23] Gentex Corporation. https://www.gentex.com/.
    [24] L. Meunier, F.M. Kelly, C. Cochrane, V. Koncar, Flexible displays for smart clothing: Part II—Electrochromic displays, (2011).
    [25] P.J. Wojcik, Printable organic and inorganic materials for flexible electrochemical devices, Universidade NOVA de Lisboa (Portugal), 2013.
    [26] K. Madasamy, D. Velayutham, V. Suryanarayanan, M. Kathiresan, K.-C. Ho, Viologen-based electrochromic materials and devices, Journal of Materials Chemistry C 7(16) (2019) 4622-4637.
    [27] S.-y. Li, Y. Wang, J.-G. Wu, L.-f. Guo, M. Ye, Y.-H. Shao, R. Wang, C.-e. Zhao, A. Wei, Methyl-viologen modified ZnO nanotubes for use in electrochromic devices, RSC advances 6(76) (2016) 72037-72043.
    [28] T.-H. Lin, K.-C. Ho, A complementary electrochromic device based on polyaniline and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells 90(4) (2006) 506-520.
    [29] S.-W. Huang, K.-C. Ho, An all-thiophene electrochromic device fabricated with poly (3-methylthiophene) and poly (3, 4-ethylenedioxythiophene), Solar Energy Materials and Solar Cells 90(4) (2006) 491-505.
    [30] B.W. Faughnan, R.S. Crandall, P.M. Heyman, Electrochromism in WO3 amorphous films, Rca Rev 36(1) (1975) 177-197.
    [31] C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, W.-C. Hsu, Electrochromic properties of nanocrystalline MoO3 thin films, Thin Solid Films 516(15) (2008) 4839-4844.
    [32] L. Assis, R. Leones, J. Kanicki, A. Pawlicka, M.M. Silva, Prussian blue for electrochromic devices, Journal of Electroanalytical Chemistry 777 (2016) 33-39.
    [33] R.J. Mortimer, Switching colors with electricity: Electrochromic materials can be used in glare reduction, energy conservation and chameleonic fabrics, American Scientist 101(1) (2013) 38-46.
    [34] M. Layani, A. Kamyshny, S. Magdassi, Transparent conductors composed of nanomaterials, Nanoscale 6(11) (2014) 5581-5591.
    [35] G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen, S. Magdassi, P.S. Lee, Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors, Advanced Energy Materials 6(4) (2016) 1501882.
    [36] R.D. Rauh, Electrochromic windows: an overview, Electrochimica Acta 44(18) (1999) 3165-3176.
    [37] D.R. Rosseinsky, R.J. Mortimer, Electrochromic systems and the prospects for devices, Advanced Materials 13(11) (2001) 783-793.
    [38] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R.C. Advincula, D. Johannsmann, W. Knoll, Electropolymerization and doping/dedoping properties of polyaniline thin films as studied by electrochemical-surface plasmon spectroscopy and by the quartz crystal microbalance, Journal of Electroanalytical Chemistry 562(1) (2004) 95-103.
    [39] S. Green, J. Backholm, P. Georén, C.-G. Granqvist, G. Niklasson, Electrochromism in nickel oxide and tungsten oxide thin films: Ion intercalation from different electrolytes, Solar Energy Materials and Solar Cells 93(12) (2009) 2050-2055.
    [40] C.-W. Hu, K.-M. Lee, J.-H. Huang, C.-Y. Hsu, T.-H. Kuo, D.-J. Yang, K.-C. Ho, Incorporation of a stable radical 2, 2, 6, 6-tetramethyl-1-piperidinyloxy (TEMPO) in an electrochromic device, Solar energy materials and solar cells 93(12) (2009) 2102-2107.
    [41] N.R. Lynam, Automotive applications of chromogenic materials, Large-area chromogenics: materials and devices for transmittance control, SPIE, 1990, pp. 53-91.
    [42] H.J. Byker, Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein, and uses thereof, Google Patents, 1990.
    [43] C.-F. Lin, C.-Y. Hsu, H.-C. Lo, C.-L. Lin, L.-C. Chen, K.-C. Ho, A complementary electrochromic system based on a Prussian blue thin film and a heptyl viologen solution, Solar energy materials and solar cells 95(11) (2011) 3074-3080.
    [44] Y. Watanabe, K. Imaizumi, K. Nakamura, N. Kobayashi, Effect of counter electrode reaction on coloration properties of phthalate-based electrochromic cell, Solar energy materials and solar cells 99 (2012) 88-94.
    [45] M.S. Ahmad, A.K. Pandey, N. Abd Rahim, Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review, Renewable and Sustainable Energy Reviews 77 (2017) 89-108.
    [46] S. So, I. Hwang, P. Schmuki, Hierarchical DSSC structures based on “single walled” TiO 2 nanotube arrays reach a back-side illumination solar light conversion efficiency of 8%, Energy & Environmental Science 8(3) (2015) 849-854.
    [47] K.A. John, J. Naduvath, S.K. Remillard, S. Shaji, P.A. DeYoung, Z.T. Kellner, S. Mallick, M. Thankamoniamma, G.S. Okram, R.R. Philip, A simple method to fabricate metal doped TiO2 nanotubes, Chemical Physics 523 (2019) 198-204.
    [48] J. Halme, P. Vahermaa, K. Miettunen, P. Lund, Device physics of dye solar cells, Advanced materials 22(35) (2010) E210-E234.
    [49] N. Tsvetkov, L. Larina, J. Ku Kang, O. Shevaleevskiy, Sol-gel processed TiO2 nanotube photoelectrodes for dye-sensitized solar cells with enhanced photovoltaic performance, Nanomaterials 10(2) (2020) 296.
    [50] X. Hou, K. Aitola, P.D. Lund, TiO2 nanotubes for dye‐sensitized solar cells—A review, Energy Science & Engineering 9(7) (2021) 921-937.
    [51] V. Dusastre, Materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, World Scientific2010.
    [52] M.A. Green, Photovoltaic principles, Physica E: Low-dimensional Systems and Nanostructures 14(1-2) (2002) 11-17.
    [53] D.M. Chapin, C.S. Fuller, G.L. Pearson, A new silicon p‐n junction photocell for converting solar radiation into electrical power, Journal of applied physics 25(5) (1954) 676-677.
    [54] K. Kalyanasundaram, M. Grätzel, Applications of functionalized transition metal complexes in photonic and optoelectronic devices, Coordination chemistry reviews 177(1) (1998) 347-414.
    [55] B. O'regan, M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, nature 353(6346) (1991) 737-740.
    [56] B.E. Hardin, H.J. Snaith, M.D. McGehee, The renaissance of dye-sensitized solar cells, Nature photonics 6(3) (2012) 162-169.
    [57] K. Xie, M. Guo, X. Liu, H. Huang, Enhanced efficiencies in thin and semi-transparent dye-sensitized solar cells under low photon flux conditions using TiO2 nanotube photonic crystal, Journal of Power Sources 293 (2015) 170-177.
    [58] K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.-i. Fujisawa, M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chemical communications 51(88) (2015) 15894-15897.
    [59] NREL Photovoltaic Research
    https://www.nrel.gov/pv/cell-efficiency.html.
    [60] M. Grätzel, Solar energy conversion by dye-sensitized photovoltaic cells, Inorganic chemistry 44(20) (2005) 6841-6851.
    [61] A.S. Shikoh, Z. Ahmad, F. Touati, R. Shakoor, S.A. Al-Muhtaseb, Optimization of ITO glass/TiO2 based DSSC photo-anodes through electrophoretic deposition and sintering techniques, Ceramics International 43(13) (2017) 10540-10545.
    [62] J. Gong, J. Liang, K. Sumathy, Review on dye-sensitized solar cells (DSSCs): Fundamental concepts and novel materials, Renewable and Sustainable Energy Reviews 16(8) (2012) 5848-5860.
    [63] L. Kavan, J.-H. Yum, M. Graetzel, Graphene-based cathodes for liquid-junction dye sensitized solar cells: Electrocatalytic and mass transport effects, Electrochimica Acta 128 (2014) 349-359.
    [64] G.P. Smestad, M. Gratzel, Demonstrating electron transfer and nanotechnology: a natural dye-sensitized nanocrystalline energy converter, Journal of chemical education 75(6) (1998) 752.
    [65] M.L. Parisi, S. Maranghi, R. Basosi, The evolution of the dye sensitized solar cells from Grätzel prototype to up-scaled solar applications: A life cycle assessment approach, Renewable and Sustainable Energy Reviews 39 (2014) 124-138.
    [66] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, Flexible metallic substrates for TiO2 film of dye-sensitized solar cells, Chemistry Letters 34(6) (2005) 804-805.
    [67] H.-G. Yun, Y. Jun, J. Kim, B.-S. Bae, M.G. Kang, Effect of increased surface area of stainless steel substrates on the efficiency of dye-sensitized solar cells, Applied physics letters 93(13) (2008) 365.
    [68] M. Toivola, F. Ahlskog, P. Lund, Industrial sheet metals for nanocrystalline dye-sensitized solar cell structures, Solar energy materials and solar cells 90(17) (2006) 2881-2893.
    [69] T.Y. Tsai, C.M. Chen, S.J. Cherng, S.Y. Suen, An efficient titanium‐based photoanode for dye‐sensitized solar cell under back‐side illumination, Progress in Photovoltaics: Research and Applications 21(2) (2013) 226-231.
    [70] S. Ito, G. Rothenberger, P. Liska, P. Comte, S.M. Zakeeruddin, P. Péchy, M.K. Nazeeruddin, M. Grätzel, High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO 2 photoanode, Chemical communications (38) (2006) 4004-4006.
    [71] Y. Jun, J. Kim, M.G. Kang, A study of stainless steel-based dye-sensitized solar cells and modules, Solar energy materials and solar cells 91(9) (2007) 779-784.
    [72] M.G. Kang, N.-G. Park, K.S. Ryu, S.H. Chang, K.-J. Kim, A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate, Solar Energy Materials and Solar Cells 90(5) (2006) 574-581.
    [73] Y.-T. Huang, S.-P. Feng, C.-M. Chen, Nickel substrate covered with a Sn-based protection bi-layer as a photoanode substrate for dye-sensitized solar cells, Electrochimica Acta 99 (2013) 230-237.
    [74] K. Fan, T. Peng, B. Chai, J. Chen, K. Dai, Fabrication and photoelectrochemical properties of TiO2 films on Ti substrate for flexible dye-sensitized solar cells, Electrochimica Acta 55(18) (2010) 5239-5244.
    [75] W. Tan, X. Yin, X. Zhou, J. Zhang, X. Xiao, Y. Lin, Electrophoretic deposition of nanocrystalline TiO2 films on Ti substrates for use in flexible dye-sensitized solar cells, Electrochimica Acta 54(19) (2009) 4467-4472.
    [76] D. Kim, P. Roy, K. Lee, P. Schmuki, Dye-sensitized solar cells using anodic TiO2 mesosponge: improved efficiency by TiCl4 treatment, Electrochemistry communications 12(4) (2010) 574-578.
    [77] C.-H. Huang, Y.-W. Chen, C.-M. Chen, Chromatic titanium photoanode for dye-sensitized solar cells under rear illumination, ACS applied materials & interfaces 10(3) (2018) 2658-2666.
    [78] S. Ito, S.M. Zakeeruddin, P. Comte, P. Liska, D. Kuang, M. Grätzel, Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte, Nature Photonics 2(11) (2008) 693-698.
    [79] J. Bisquert, The two sides of solar energy, Nature Photonics 2(11) (2008) 648-649.
    [80] R. Hezel, Novel applications of bifacial solar cells, Progress in Photovoltaics: Research and Applications 11(8) (2003) 549-556.
    [81] J. Wu, Y. Li, Q. Tang, G. Yue, J. Lin, M. Huang, L. Meng, Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode, Scientific reports 4(1) (2014) 4028.
    [82] Q. Tai, X.-Z. Zhao, Pt-free transparent counter electrodes for cost-effective bifacial dye-sensitized solar cells, Journal of Materials Chemistry A 2(33) (2014) 13207-13218.
    [83] L. Zhao, J. Duan, L. Liu, J. Wang, Y. Duan, L. Vaillant-Roca, X. Yang, Q. Tang, Boosting power conversion efficiency by hybrid triboelectric nanogenerator/silicon tandem solar cell toward rain energy harvesting, Nano Energy 82 (2021) 105773.
    [84] D. Yang, Y. Ni, H. Su, Y. Shi, Q. Liu, X. Chen, D. He, Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator, Nano Energy 79 (2021) 105394.
    [85] D.-L. Wen, P. Huang, H.-Y. Qian, Y.-Y. Ba, Z.-Y. Ren, C. Tu, T.-X. Gong, W. Huang, X.-S. Zhang, Hybrid nanogenerator-based self-powered double-authentication microsystem for smart identification, Nano Energy 86 (2021) 106100.
    [86] T. Ozturk, E. Akman, A.E. Shalan, S. Akin, Composition engineering of operationally stable CsPbI2Br perovskite solar cells with a record efficiency over 17%, Nano Energy 87 (2021) 106157.
    [87] Z.L. Wang, Self‐powered nanosensors and nanosystems, Wiley Online Library, 2012.
    [88] S.A. Hashemi, S. Ramakrishna, A.G. Aberle, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy & Environmental Science 13(3) (2020) 685-743.
    [89] H. Guo, X. Pu, J. Chen, Y. Meng, M.-H. Yeh, G. Liu, Q. Tang, B. Chen, D. Liu, S. Qi, A highly sensitive, self-powered triboelectric auditory sensor for social robotics and hearing aids, Science robotics 3(20) (2018) eaat2516.
    [90] D.R. Needell, M.E. Phelan, J.T. Hartlove, H.A. Atwater, Solar power windows: Connecting scientific advances to market signals, Energy 219 (2021) 119567.
    [91] F. Yi, X. Wang, S. Niu, S. Li, Y. Yin, K. Dai, G. Zhang, L. Lin, Z. Wen, H. Guo, A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring, Science advances 2(6) (2016) e1501624.
    [92] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Triboelectrification‐enabled self‐powered detection and removal of heavy metal ions in wastewater, Advanced Materials 28(15) (2016) 2983-2991.
    [93] T. Inoue, A. Fujishima, K. Honda, Photoelectrochromic characteristics of photoelectrochemical imaging system with a semiconductor/solution (metallic ion) junction, Journal of The Electrochemical Society 127(7) (1980) 1582.
    [94] D.W. DeBerry, A. Viehbeck, Photoelectrochromic Behavior of Prussian Blue‐Modified TiO2 Electrodes, Journal of The Electrochemical Society 130(1) (1983) 249.
    [95] O. Inganaes, I. Lundström, A photoelectrochromic memory and display device based on conducting polymers, Journal of the Electrochemical Society 131(5) (1984) 1129.
    [96] I. Bedja, S. Hotchandani, P.V. Kamat, Photoelectrochemistry of quantized WO3 colloids: electron storage, electrochromic, and photoelectrochromic effects, The Journal of Physical Chemistry 97(42) (2002) 11064-11070.
    [97] P. Monk, J. Duffy, M. Ingram, Electrochromic display devices of tungstic oxide containing vanadium oxide or cadmium sulphide as a light-sensitive layer, Electrochimica acta 38(18) (1993) 2759-2764.
    [98] I. Bedja, S. Hotchandani, R. Carpentier, K. Vinodgopal, P.V. Kamat, Electrochromic and photoelectrochemical behavior of thin WO3 films prepared from quantized colloidal particles, Thin Solid Films 247(2) (1994) 195-200.
    [99] F. Pichot, S. Ferrere, R.J. Pitts, B.A. Gregg, Flexible solid‐state photoelectrochromic windows, Journal of the Electrochemical Society 146(11) (1999) 4324.
    [100] S. Kuwabata, K. Mitsui, H. Yoneyama, Photoelectrochromic properties of methylene blue in conducting polyaniline matrixes, Journal of the Electrochemical Society 139(7) (1992) 1824.
    [101] S. Yanagida, Y. Yu, K. Manseki, Iodine/iodide-free dye-sensitized solar cells, Accounts of chemical research 42(11) (2009) 1827-1838.
    [102] X. Yu, Y. Li, N. Zhu, Q. Yang, K. Kalantar-zadeh, A polyaniline nanofibre electrode and its application in a self-powered photoelectrochromic cell, Nanotechnology 18(1) (2006) 015201.
    [103] N.R. de Tacconi, J. Carmona, K. Rajeshwar, Reversibility of photoelectrochromism at the TiO2/methylene blue interface, Journal of the Electrochemical Society 144(7) (1997) 2486.
    [104] A. Hauch, A. Georg, U.O. Krašovec, B. Orel, Comparison of photoelectrochromic devices with different layer configurations, Journal of the Electrochemical Society 149(9) (2002) H159.
    [105] A. Georg, U.O. Krašovec, Photoelectrochromic window with Pt catalyst, Thin Solid Films 502(1-2) (2006) 246-251.
    [106] J. Liao, K. Ho, A photoelectrochromic device using a PEDOT thin film, Journal of New Materials for Electrochemical Systems 8(1) (2005) 37-47.
    [107] A. Cannavale, F. Martellotta, F. Fiorito, U. Ayr, The challenge for building integration of highly transparent photovoltaics and photoelectrochromic devices, Energies 13(8) (2020) 1929.
    [108] F. Carlucci, A review of smart and responsive building technologies and their classifications, Future Cities and Environment 7(1) (2021).
    [109] C. Bechinger, S. Ferrere, A. Zaban, J. Sprague, B.A. Gregg, Photoelectrochromic windows and displays, Nature 383(6601) (1996) 608-610.
    [110] A. Hauch, A. Georg, S. Baumgärtner, U.O. Krašovec, B. Orel, New photoelectrochromic device, Electrochimica Acta 46(13-14) (2001) 2131-2136.
    [111] J.-J. Wu, M.-D. Hsieh, W.-P. Liao, W.-T. Wu, J.-S. Chen, Fast-switching photovoltachromic cells with tunable transmittance, ACS nano 3(8) (2009) 2297-2303.
    [112] A. Dokouzis, K. Theodosiou, G. Leftheriotis, Assessment of the long-term performance of partly covered photoelectrochromic devices under insolation and in storage, Solar Energy Materials and Solar Cells 182 (2018) 281-293.
    [113] D. Stuart-Fox, E. Newton, S. Clusella-Trullas, Thermal consequences of colour and near-infrared reflectance, Philosophical Transactions of the Royal Society B: Biological Sciences 372(1724) (2017) 20160345.
    [114] C. Pasquini, Near infrared spectroscopy: fundamentals, practical aspects and analytical applications, Journal of the Brazilian chemical society 14 (2003) 198-219.
    [115] S. Bagavathiappan, B.B. Lahiri, T. Saravanan, J. Philip, T. Jayakumar, Infrared thermography for condition monitoring–A review, Infrared Physics & Technology 60 (2013) 35-55.
    [116] M. Casini, Active dynamic windows for buildings: A review, Renewable Energy 119 (2018) 923-934.
    [117] C.G. Granqvist, M.A. Arvizu, İ.B. Pehlivan, H.-Y. Qu, R.-T. Wen, G.A. Niklasson, Electrochromic materials and devices for energy efficiency and human comfort in buildings: A critical review, Electrochimica Acta 259 (2018) 1170-1182.
    [118] J.-Y. Shao, C.-J. Yao, B.-B. Cui, Z.-L. Gong, Y.-W. Zhong, Electropolymerized films of redox-active ruthenium complexes for multistate near-infrared electrochromism, ion sensing, and information storage, Chinese Chemical Letters 27(8) (2016) 1105-1114.
    [119] J. Niu, Y. Wang, X. Zou, Y. Tan, C. Jia, X. Weng, L. Deng, Infrared electrochromic materials, devices and applications, Applied Materials Today 24 (2021) 101073.
    [120] N. DeForest, A. Shehabi, J. O'Donnell, G. Garcia, J. Greenblatt, E.S. Lee, S. Selkowitz, D.J. Milliron, United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings, Building and Environment 89 (2015) 107-117.
    [121] N. DeForest, A. Shehabi, S. Selkowitz, D.J. Milliron, A comparative energy analysis of three electrochromic glazing technologies in commercial and residential buildings, Applied energy 192 (2017) 95-109.
    [122] N. DeForest, A. Shehabi, G. Garcia, J. Greenblatt, E. Masanet, E.S. Lee, S. Selkowitz, D.J. Milliron, Regional performance targets for transparent near-infrared switching electrochromic window glazings, Building and Environment 61 (2013) 160-168.
    [123] H. Demiryont, D. Moorehead, Electrochromic emissivity modulator for spacecraft thermal management, Solar Energy Materials and Solar Cells 93(12) (2009) 2075-2078.
    [124] S.K. Deb, Opportunities and challenges in science and technology of WO3 for electrochromic and related applications, Solar Energy Materials and Solar Cells 92(2) (2008) 245-258.
    [125] S. Deb, L. Forrestal, Inorganic photochromism, Photochromism, Wiley New York1971.
    [126] A.R. Lusis, Solid state ionics and optical materials technology for energy efficiency, solar energy conversion, and environment control, Optical Materials Technology for Energy Efficiency and Solar Energy Conversion X, SPIE, 1991, pp. 116-124.
    [127] C. Hu, L. Li, J. Zhou, B. Li, S. Zhao, C. Zou, Enhanced Contrast of WO3-Based Smart Windows by Continuous Li-Ion Insertion and Metal Electroplating, ACS Applied Materials & Interfaces 14(28) (2022) 32253-32260.
    [128] J. Xu, Y. Zhang, T.-T. Zhai, Z. Kuang, J. Li, Y. Wang, Z. Gao, Y.-Y. Song, X.-H. Xia, Electrochromic-tuned plasmonics for photothermal sterile window, ACS nano 12(7) (2018) 6895-6903.
    [129] R. Deshpande, S.-H. Lee, A. Mahan, P. Parilla, K. Jones, A. Norman, B. To, J. Blackburn, S. Mitra, A. Dillon, Optimization of crystalline tungsten oxide nanoparticles for improved electrochromic applications, Solid State Ionics 178(13-14) (2007) 895-900.
    [130] X. Huo, H. Zhang, W. Shen, X. Miao, M. Zhang, M. Guo, Bifunctional aligned hexagonal/amorphous tungsten oxide core/shell nanorod arrays with enhanced electrochromic and pseudocapacitive performance, Journal of Materials Chemistry A 7(28) (2019) 16867-16875.
    [131] M. Deepa, A. Srivastava, K. Sood, S. Agnihotry, Nanostructured mesoporous tungsten oxide films with fast kinetics for electrochromic smart windows, Nanotechnology 17(10) (2006) 2625.
    [132] W. Wei, Z. Li, Z. Guo, Y. Li, F. Hou, W. Guo, A. Wei, An electrochromic window based on hierarchical amorphous WO3/SnO2 nanoflake arrays with boosted NIR modulation, Applied Surface Science 571 (2022) 151277.
    [133] H. Qu, X. Zhang, H. Zhang, Y. Tian, N. Li, H. Lv, S. Hou, X. Li, J. Zhao, Y. Li, Highly robust and flexible WO3· 2H2O/PEDOT films for improved electrochromic performance in near-infrared region, Solar Energy Materials and Solar Cells 163 (2017) 23-30.
    [134] N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. García-Martínez, Mesoporous materials for clean energy technologies, Chemical Society Reviews 43(22) (2014) 7681-7717.
    [135] M. Jiang, X. Wang, W. Xi, H. Zhou, P. Yang, J. Yao, X. Jiang, D. Wu, Upcycling plastic waste to carbon materials for electrochemical energy storage and conversion, Chemical Engineering Journal 461 (2023) 141962.
    [136] M.-M. Titirici, R.J. White, N. Brun, V.L. Budarin, D.S. Su, F. Del Monte, J.H. Clark, M.J. MacLachlan, Sustainable carbon materials, Chemical Society Reviews 44(1) (2015) 250-290.
    [137] M.C. Biswas, M.T. Islam, P.K. Nandy, M.M. Hossain, Graphene quantum dots (GQD) for bioimaging and drug delivery applications: a review, ACS Materials Letters 3(6) (2021) 889-911.
    [138] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano 6(6) (2012) 5102-5110.
    [139] S. Kadian, S.K. Sethi, G. Manik, Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications, Materials Chemistry Frontiers 5(2) (2021) 627-658.
    [140] Y. Li, Y. Hu, Y. Zhao, G. Shi, L. Deng, Y. Hou, L. Qu, An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics, Advanced materials 23(6) (2011) 776-780.
    [141] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue‐luminescent graphene quantum dots, Advanced materials 22(6) (2010) 734-738.
    [142] F. Li, L. Lin, X. Chen, Fluorescent Graphene Quantum Dots for the Determination of Metal Ions, Novel Nanomaterials for Biomedical, Environmental and Energy Applications, Elsevier2019, pp. 215-239.
    [143] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons2022.
    [144] M. Yu, E. Budiyanto, H. Tüysüz, Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction, Angewandte Chemie International Edition 61(1) (2022) e202103824.
    [145] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education 95(2) (2018) 197-206.
    [146] X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials 9(25) (2019) 1900747.
    [147] D.J. Chesney, Laboratory Techniques in Electroanalytical Chemistry, Edited by Peter T. Kissinger (Purdue University) and William R. Heineman (University of Cincinnati). Dekker: Monticello, NY. 1996. xxii+ 986 pp. $79. ISBN 0-8247-9445-1, ACS Publications, 1996.
    [148] L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi, A. Ter Heijne, Combination of bioelectrochemical systems and electrochemical capacitors: principles, analysis and opportunities, Biotechnology advances 39 (2020) 107456.
    [149] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry 45(4) (2015) 289-299.
    [150] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal 2014 (2014).
    [151] 林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, 化學工程學研究所, 國立臺灣大學, 台北市, 2002, p. 125.
    [152] K. Ahmad, M.A. Shinde, H. Kim, Molybdenum disulfide/reduced graphene oxide: Progress in synthesis and electro-catalytic properties for electrochemical sensing and dye sensitized solar cells, Microchemical Journal 169 (2021) 106583.
    [153] J. Wang, L. Zhang, L. Yu, Z. Jiao, H. Xie, X.W. Lou, X. Wei Sun, A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications, Nature communications 5(1) (2014) 4921.
    [154] K. Ahmad, M.A. Shinde, G. Song, H. Kim, Design and fabrication of MoSe2/WO3 thin films for the construction of electrochromic devices on indium tin oxide based glass and flexible substrates, Ceramics International 47(24) (2021) 34297-34306.
    [155] K. Ahmad, G. Song, H. Kim, Fabrication of Tungsten Oxide/Graphene Quantum Dot (WO3@ GQD) Thin Films on Indium Tin Oxide-Based Glass and Flexible Substrates for the Construction of Electrochromic Devices for Smart Window Applications, ACS Sustainable Chemistry & Engineering 10(36) (2022) 11948-11957.
    [156] A. Cannavale, U. Ayr, F. Fiorito, F. Martellotta, Smart electrochromic windows to enhance building energy efficiency and visual comfort, Energies 13(6) (2020) 1449.
    [157] G. Cai, A.L.S. Eh, L. Ji, P.S. Lee, Recent advances in electrochromic smart fenestration, Advanced Sustainable Systems 1(12) (2017) 1700074.
    [158] P. Yang, P. Sun, W. Mai, Electrochromic energy storage devices, Materials today 19(7) (2016) 394-402.
    [159] S. Cao, S. Zhang, T. Zhang, Q. Yao, J.Y. Lee, A visible light-near-infrared dual-band smart window with internal energy storage, Joule 3(4) (2019) 1152-1162.
    [160] H. Ling, J. Wu, F. Su, Y. Tian, Y.J. Liu, Automatic light-adjusting electrochromic device powered by perovskite solar cell, Nature communications 12(1) (2021) 1010.
    [161] S.-M. Wang, J. Hwang, E. Kim, Polyoxometalates as promising materials for electrochromic devices, Journal of Materials Chemistry C 7(26) (2019) 7828-7850.
    [162] N. Elool Dov, S. Shankar, D. Cohen, T. Bendikov, K. Rechav, L.J. Shimon, M. Lahav, M.E. van der Boom, Electrochromic metallo-organic nanoscale films: Fabrication, color range, and devices, Journal of the American Chemical Society 139(33) (2017) 11471-11481.
    [163] J. Kim, M. Rémond, D. Kim, H. Jang, E. Kim, Electrochromic conjugated polymers for multifunctional smart windows with integrative functionalities, Advanced Materials Technologies 5(6) (2020) 1900890.
    [164] V. Rai, R.S. Singh, D.J. Blackwood, D. Zhili, A review on recent advances in electrochromic devices: a material approach, Advanced Engineering Materials 22(8) (2020) 2000082.
    [165] E. Eren, C. Alver, G.Y. Karaca, E. Uygun, A.U. Oksuz, Enhanced electrochromic performance of WO3 hybrids using polymer plasma hybridization process, Synthetic Metals 235 (2018) 115-124.
    [166] G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A.L.-S. Eh, K. Qian, P.S. Lee, Ultra-large optical modulation of electrochromic porous WO 3 film and the local monitoring of redox activity, Chemical science 7(2) (2016) 1373-1382.
    [167] L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan, Y. Xie, High-performance flexible electrochromic device based on facile semiconductor-to-metal transition realized by WO3· 2H2O ultrathin nanosheets, Scientific reports 3(1) (2013) 1-8.
    [168] C.G. Granqvist, Electrochromic tungsten oxide films: review of progress 1993–1998, Solar Energy Materials and Solar Cells 60(3) (2000) 201-262.
    [169] J. Guo, M. Wang, X. Diao, Z. Zhang, G. Dong, H. Yu, F. Liu, H. Wang, J. Liu, Prominent electrochromism achieved using aluminum ion insertion/extraction in amorphous WO3 films, The Journal of Physical Chemistry C 122(33) (2018) 19037-19043.
    [170] Y. Zhao, X. Zhang, X. Chen, W. Li, L. Wang, F. Ren, J. Zhao, F. Endres, Y. Li, Preparation of WO3 films with controllable crystallinity for improved near-infrared electrochromic performances, ACS Sustainable Chemistry & Engineering 8(31) (2020) 11658-11666.
    [171] B.W.-C. Au, K.-Y. Chan, D. Knipp, Effect of film thickness on electrochromic performance of sol-gel deposited tungsten oxide (WO3), Optical Materials 94 (2019) 387-392.
    [172] M. Arslan, Y. Firat, S.R. Tokgöz, A. Peksoz, Fast electrochromic response and high coloration efficiency of Al-doped WO3 thin films for smart window applications, Ceramics International 47(23) (2021) 32570-32578.
    [173] M. Li, Z. Wu, Y. Tian, F. Pan, T. Gould, S. Zhang, Nanoarchitectonics of Two‐Dimensional Electrochromic Materials: Achievements and Future Challenges, Advanced Materials Technologies (2022) 2200917.
    [174] R. Li, S. Li, Q. Zhang, Y. Li, H. Wang, Layer-by-layer assembled triphenylene-based MOFs films for electrochromic electrode, Inorganic Chemistry Communications 123 (2021) 108354.
    [175] Y. Su, Y. Wang, Z. Lu, M. Tian, F. Wang, M. Wang, X. Diao, X. Zhong, A dual-function device with high coloring efficiency based on a highly stable electrochromic nanocomposite material, Chemical Engineering Journal 456 (2023) 141075.
    [176] Y.-J. Chiang, L.-Y. Chang, C.-Y. Cheng, C.-C. Chang, C.-L. Yeh, C.-J. Huang, S.-K. Jiang, K.-C. Ho, B.-J. Hwang, M.-H. Yeh, Designing highly transparent electropolymerized PANI/rGO nanocomposite as a Pt-free electrocatalytic layer in photoelectrochromic device for self-powered green building, Renewable Energy 199 (2022) 103-111.
    [177] G. Leftheriotis, G. Syrrokostas, P. Yianoulis, Photocoloration efficiency and stability of photoelectrochromic devices, Solid State Ionics 231 (2013) 30-36.
    [178] I. Obotowo, I. Obot, U. Ekpe, Organic sensitizers for dye-sensitized solar cell (DSSC): Properties from computation, progress and future perspectives, Journal of Molecular Structure 1122 (2016) 80-87.
    [179] O.I. Francis, A. Ikenna, Review of dye-sensitized solar cell (DSSCs) development, Natural Science 13(12) (2021) 496-509.
    [180] S. Zhang, S. Cao, T. Zhang, J.Y. Lee, Plasmonic Oxygen‐Deficient TiO2‐x Nanocrystals for Dual‐Band Electrochromic Smart Windows with Efficient Energy Recycling, Advanced Materials 32(43) (2020) 2004686.
    [181] H. Alam, M.A. Alam, N.Z. Butt, Techno Economic Modeling for Agrivoltaics: Can Agrivoltaics Be More Profitable Than Ground Mounted PV?, IEEE Journal of Photovoltaics (2022).
    [182] L. La Notte, L. Giordano, E. Calabrò, R. Bedini, G. Colla, G. Puglisi, A. Reale, Hybrid and organic photovoltaics for greenhouse applications, Applied Energy 278 (2020) 115582.
    [183] H.J. Williams, K. Hashad, H. Wang, K.M. Zhang, The potential for agrivoltaics to enhance solar farm cooling, Applied Energy 332 (2023) 120478.
    [184] M. Wagner, J. Lask, A. Kiesel, I. Lewandowski, A. Weselek, P. Högy, M. Trommsdorff, M.-A. Schnaiker, A. Bauerle, Agrivoltaics: The Environmental Impacts of Combining Food Crop Cultivation and Solar Energy Generation, Agronomy 13(2) (2023) 299.
    [185] M. Kumpanalaisatit, W. Setthapun, H. Sintuya, S.N. Jansri, Efficiency improvement of ground-mounted solar power generation in agrivoltaic system by cultivation of bok choy (Brassica rapa subsp. chinensis L.) under the panels, International Journal of Renewable Energy Development 11(1) (2022) 103.
    [186] P. Yilmaz, M. Magni, S. Martinez, R.M. Gonzalez Gil, M. Della Pirriera, M. Manca, Spectrally selective PANI/ITO nanocomposite electrodes for energy-efficient dual band electrochromic windows, ACS Applied Energy Materials 3(4) (2020) 3779-3788.
    [187] M.-H. Jo, K.-H. Kim, H.-J. Ahn, P-doped carbon quantum dot graft-functionalized amorphous WO3 for stable and flexible electrochromic energy-storage devices, Chemical Engineering Journal 445 (2022) 136826.
    [188] R.J. Mortimer, Electrochromic materials, Chemical Society Reviews 26(3) (1997) 147-156.
    [189] M. Wang, Y. Chen, B. Gao, H. Lei, Electrochromic properties of nanostructured WO3 thin films deposited by glancing‐angle magnetron sputtering, Advanced Electronic Materials 5(5) (2019) 1800713.
    [190] K. Dave, V.G. Gomes, Carbon quantum dot-based composites for energy storage and electrocatalysis: mechanism, applications and future prospects, Nano Energy 66 (2019) 104093.
    [191] Y. Qi, G. Wang, S. Li, T. Liu, J. Qiu, H. Li, Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries, Chemical Engineering Journal 397 (2020) 125380.
    [192] M. Bacon, S.J. Bradley, T. Nann, Graphene quantum dots, Particle & Particle Systems Characterization 31(4) (2014) 415-428.
    [193] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications, Advanced materials 31(21) (2019) 1808283.
    [194] P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications, Materials today chemistry 10 (2018) 221-258.
    [195] O. Sangabathula, C.S. Sharma, One-pot hydrothermal synthesis of molybdenum nickel sulfide with graphene quantum dots as a novel conductive additive for enhanced supercapacitive performance, Materials Advances 1(8) (2020) 2763-2772.
    [196] S. Monika, M. Mahalakshmi, N. Subha, M.S. Pandian, P. Ramasamy, Graphene quantum dots and CuS microflowers anchored rGO composite counter electrode for the enhanced performance of quantum dot sensitized solar cells, Diamond and Related Materials 125 (2022) 109033.
    [197] B. Li, X. Xiao, M. Hu, Y. Wang, Y. Wang, X. Yan, Z. Huang, P. Servati, L. Huang, J. Tang, Mn, B, N co-doped graphene quantum dots for fluorescence sensing and biological imaging, Arabian Journal of Chemistry 15(7) (2022) 103856.
    [198] T.J. Deerinck, The application of fluorescent quantum dots to confocal, multiphoton, and electron microscopic imaging, Toxicologic pathology 36(1) (2008) 112-116.
    [199] G.-L. Hong, H.-L. Zhao, H.-H. Deng, H.-J. Yang, H.-P. Peng, Y.-H. Liu, W. Chen, Fabrication of ultra-small monolayer graphene quantum dots by pyrolysis of trisodium citrate for fluorescent cell imaging, International journal of nanomedicine 13 (2018) 4807.
    [200] H. Zheng, J.Z. Ou, M.S. Strano, R.B. Kaner, A. Mitchell, K. Kalantar‐zadeh, Nanostructured tungsten oxide–properties, synthesis, and applications, Advanced Functional Materials 21(12) (2011) 2175-2196.
    [201] H. Yu, J. Guo, C. Wang, J. Zhang, J. Liu, G. Dong, X. Zhong, X. Diao, Essential role of oxygen vacancy in electrochromic performance and stability for WO3-y films induced by atmosphere annealing, Electrochimica Acta 332 (2020) 135504.
    [202] W. Fu, R. Xu, X. Zhang, Z. Tian, H. Huang, J. Xie, C. Lei, Enhanced wettability and electrochemical performance of separators for lithium-ion batteries by coating core-shell structured silica-poly (cyclotriphosphazene-co-4, 4′-sulfonyldiphenol) particles, Journal of Power Sources 436 (2019) 226839.
    [203] J.Y. Cho, J.H. Kim, H.J. Yang, J.H. Park, S.Y. Jeong, H.J. Jeong, G.-W. Lee, J.T. Han, Tailored and highly efficient oxidation of various-sized graphite by kneading for high-quality graphene nanosheets, Carbon 157 (2020) 663-669.
    [204] X. Liu, H. Jiang, J. Ye, C. Zhao, S. Gao, C. Wu, C. Li, J. Li, X. Wang, Nitrogen‐doped carbon quantum dot stabilized magnetic iron oxide nanoprobe for fluorescence, magnetic resonance, and computed tomography triple‐modal in vivo bioimaging, Advanced functional materials 26(47) (2016) 8694-8706.
    [205] A. Mane, S. Navale, R. Pawar, C. Lee, V. Patil, Microstructural, optical and electrical transport properties of WO3 nanoparticles coated polypyrrole hybrid nanocomposites, Synthetic Metals 199 (2015) 187-195.
    [206] E.P. Thompson, E.L. Bombelli, S. Shubham, H. Watson, A. Everard, V. D’Ardes, A. Schievano, S. Bocchi, N. Zand, C.J. Howe, Tinted semi‐transparent solar panels allow concurrent production of crops and electricity on the same cropland, Advanced Energy Materials 10(35) (2020) 2001189.
    [207] J.L. Hatfield, J.H. Prueger, Temperature extremes: Effect on plant growth and development, Weather and Climate Extremes 10 (2015) 4-10. https://doi.org/10.1016/j.wace.2015.08.001.
    [208] Ratikainen, II, H. Kokko, The coevolution of lifespan and reversible plasticity, Nat Commun 10(1) (2019) 538. https://doi.org/10.1038/s41467-019-08502-9.
    [209] X. Song, L. Yan, C. Dai, C. Hao, H. Guo, M. Xie, Y. Zhang, Preparation of complementary electrochromic devices with WO3/PANI and NiO/PB double-hybrid electrodes, Journal of Materials Science: Materials in Electronics 33(10) (2022) 8292-8304. https://doi.org/10.1007/s10854-022-07986-4.
    [210] J. Qian, D. Ma, Z. Xu, D. Li, J. Wang, Electrochromic properties of hydrothermally grown Prussian blue film and device, Solar Energy Materials and Solar Cells 177 (2018) 9-14. https://doi.org/10.1016/j.solmat.2017.08.016.
    [211] A. Gupta, K. Sahu, M. Dhonde, V.V.S. Murty, Novel synergistic combination of Cu/S co-doped TiO2 nanoparticles incorporated as photoanode in dye sensitized solar cell, Solar Energy 203 (2020) 296-303. https://doi.org/https://doi.org/10.1016/j.solener.2020.04.043.
    [212] X. Xia, Z. Ku, D. Zhou, Y. Zhong, Y. Zhang, Y. Wang, M.J. Huang, J. Tu, H.J. Fan, Perovskite solar cell powered electrochromic batteries for smart windows, Materials Horizons 3(6) (2016) 588-595.
    [213] G. Cai, P. Darmawan, X. Cheng, P.S. Lee, Inkjet printed large area multifunctional smart windows, Advanced Energy Materials 7(14) (2017) 1602598.
    [214] N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells, Green chemistry 22(21) (2020) 7168-7218.
    [215] L. Lavagna, G. Syrrokostas, L. Fagiolari, J. Amici, C. Francia, S. Bodoardo, G. Leftheriotis, F. Bella, Platinum-free photoelectrochromic devices working with copper-based electrolytes for ultrastable smart windows, Journal of Materials Chemistry A 9(35) (2021) 19687-19691.

    無法下載圖示 全文公開日期 2028/08/22 (校內網路)
    全文公開日期 2028/08/22 (校外網路)
    全文公開日期 2028/08/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE