簡易檢索 / 詳目顯示

研究生: 賴長志
Chang-chih Lai
論文名稱: 染料敏化太陽能電池之主路徑分析
Main Path Analysis of Dye-Sensitized Solar Cells
指導教授: 劉顯仲
John S. Liu
口試委員: 何秀青
none
盧煜煬
none
陳宥杉
none
學位類別: 碩士
Master
系所名稱: 管理學院 - 科技管理研究所
Graduate Institute of Technology Management
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 66
中文關鍵詞: 關鍵字:染料敏化太陽能主路徑分析回顧文獻引文分析
外文關鍵詞: Key word::dye-sensitized solar, main path analysis, review paper, citation analysis
相關次數: 點閱:279下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究欲了解染料敏化太陽能電池的學術文獻發展的過程以及有哪些文獻是有
    顯著貢獻的。因為這門學問的文章數量十分龐大,想要透過人工的方式了解整個學
    問的發展結構以及那些文獻是對此科技有重要貢獻十分不容易。剛進此領域的研究
    學者,不容易掌握整個研究的概觀發展也不容易找到重要的文獻,大多要透過他人
    的推薦。
    本研究透過主路徑分析套用在引文網路的關係,嘗試驗證此方法是否能夠從染
    料敏化太陽能電池的文獻集合中篩選出重要的文獻,並提供宏觀的發展結構。由於
    既往的主路徑分析的分析對象大多只有一千多筆的資料,本實驗首次嘗試數千筆資
    料,能提供後人分析時的參考經驗。另外,針對過去既有的主路徑分析方法,本實
    驗嘗試去除回顧文獻,評估這樣的做法是否可以讓結果更精確更接近事實。
    實驗結果告訴我們染料敏化太陽能電池的發展歷程,在不同的年代區間有不同
    的研究重點,也會伴隨不同程度的創新發展數量,每條的路徑都可能是一條不同的
    發展重點。為了使大量資料的收集更為精準,本研究改良關鍵字的搜尋邏輯,欲使
    資料集合中的垃圾文獻降到最低,避免影響結果的準確性。在分析軟體方面也將出
    現迴圈的現象改良,大幅度減省分析的時間。
    在排除回顧文獻方面,排除之前的複雜度很高,很難看出端倪,在排除之後發
    現可以明顯改善這樣的現象;同時也發現,重要的學術文獻在新的分析結果中還是
    不會改變。
    實驗的結果可以提供剛開始研究染料敏化太陽能電池的學者一個參考的依據之
    外,更重要的是本實驗在研究大筆資料的經驗可以提供未來學者在面對此類研究對
    象時有效的建議。


    We tried to know what is about the progress of the DSSC (dye-senstied solar cell) papers and which are the more imprtant among them. Due to the huge size of the data, it would be a complex issue to find out the comparely more important paper or the whole progress for the beginer in this field.
    We focus on analysising DSSC by mainpath analysis ,tried to fix the problem with the big data and see if we can figure out the whole picture and most importat papers of DSSC. In the past, we only analyse under 2,000 nodes with main path analysis. This very first time, we try to analyse with over 6,000 papers and had some experiece to share. Also, we compare the main path with and without the reivew papers catagolry and evaluate if it’s valueable.
    The result tell us the progress of DSSC with different time range, also we prove that excluding the review paper may improve the result and provide a clearer main path. For collacting more presice data, we also improve the logic of key-words and prevent from any junk date coming.
    We also found that take out the review paper helps the main path picture less complex and easier to understand the progress of the developement.We believe this reserch could not only help beginer understand more about DSSC, but provide the experience of analysing big data.

    第壹章緒論1 第一節研究背景與動機1 第二節研究目的3 第貳章文獻探討4 第一節引文分析4 第二節主路徑分析6 第三節科技創新發展的分與合13 第參章染料敏化太陽能電池15 第一節染料敏化太陽能電池的歷史背景15 第二節染料敏化太陽能電池的電流產生原理16 第三節染料敏化太陽能電池的研究重點17 (1)奈米半導體18 (2)染料19 (3)電解液20 第肆章研究方法22 第一節研究架構22 (1)資料來源24 (2)資料蒐集與關鍵字檢索24 (3)文獻資料之時間設定28 (4)主路徑分析與Pajek28 第二節篩選正確之文獻資料29 (1)完全無關的內容29 (2)部分相關的內容30 第三節如何判斷資料精準度31 (1)隔篇抽選驗證法31 (2)統計資料驗證法32 第伍章研究結果34 第一節關鍵延伸主路徑分析34 第二節排除回顧文獻之關鍵延伸主路徑比較49 第陸章研究結論與建議58 第一節染料敏化太陽能電池的主路徑分析結果58 第二節染料敏化太陽能電池的創新分合現象探討58 第三節主路徑分析之操作技術59 第四節研究建議60 第五節產業建議61 參考文獻62

    [1] Bach, U., D. Lupo, et al. (1998). "Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies." Nature 395(6702): 583-585.
    [2] Bailes, M., P. J. Cameron, et al. (2005). "Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells." Journal of Physical Chemistry B 109(32): 15429-15435.
    [3] Bisquert, J., D. Cahen, et al. (2004). "Physical chemical principles of photovoltaic conversion with nanoparticulate, mesoporous dye-sensitized solar cells." Journal of Physical Chemistry B 108(24): 8106-8118.
    [4] Bisquert, J. and V. S. Vikhrenko (2004). "Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells." Journal of Physical Chemistry B 108(7): 2313-2322.
    [5] Bisquert, J., A. Zaban, et al. (2004). "Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method." Journal of the American Chemical Society 126(41): 13550-13559.
    [6] Brooks, T. A. (1986). "Evidence of complex citer motivations." Journal of the American Society for Information Science 37(1): 34-36.
    [7] Burrett, R., C. Clini, et al. (2009). "Renewable Energy Policy Network for the 21st Century."
    [8] Cameron, P. J. and L. M. Peter (2005). "How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?" Journal of Physical Chemistry B 109(15): 7392-7398.
    [9] Dloczik, L., O. Ileperuma, et al. (1997). "Dynamic response of dye-sensitized nanocrystalline solar cells: Characterization by intensity-modulated photocurrent spectroscopy." Journal of Physical Chemistry B 101(49): 10281-10289.
    [10] Dosi, G. (1982). "Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change." Research Policy 11(3): 147-162.
    [11] Duffy, N. W., L. M. Peter, et al. (2000). "A novel charge extraction method for the study of electron transport and interfacial transfer in dye sensitised nanocrystalline solar cells." Electrochemistry Communications 2(9): 658-662.
    [12] Duffy, N. W., L. M. Peter, et al. (2000). "Characterisation of electron transport and back reaction in dye-sensitised nanocrystalline solar cells by small amplitude laser pulse excitation." Electrochemistry Communications 2(4): 262-266.
    [13] Fisher, A. C., L. M. Peter, et al. (2000). "Intensity dependence of the back reaction and transport of electrons in dye-sensitized nanacrystalline TiO2 solar cells." Journal of Physical Chemistry B 104(5): 949-958.
    [14] Gao, F., Y. Wang, et al. (2008). "Enhance the optical absorptivity of nanocrystalline TiO(2) film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells." Journal of the American Chemical Society 130(32): 10720-10728.
    [15] Garfield, E. S., Irving H. ; Torpie, Richard J. (1964). "THE USE OF CITATION DATA IN WRITING THE HISTORY OF SCIENCE."
    [16] Gratzel, M. (2003). "Dye-sensitized solar cells." Journal of Photochemistry and Photobiology C-Photochemistry Reviews 4(2): 145-153.
    [17] Gratzel, M. (2005). "Solar energy conversion by dye-sensitized photovoltaic cells." Inorganic Chemistry 44(20): 6841-6851.
    [18] Hagfeldt, A., G. Boschloo, et al. (2010). "Dye-Sensitized Solar Cells." Chemical Reviews 110(11): 6595-6663.
    [19] Hagfeldt, A., B. Didriksson, et al. (1994). "VERIFICATION OF HIGH EFFICIENCIES FOR THE GRATZEL-CELL - A 7-PERCENT EFFICIENT SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS." Solar Energy Materials and Solar Cells 31(4): 481-488.
    [20] Hagfeldt, A. and M. Gratzel (2000). "Molecular photovoltaics." Accounts of Chemical Research 33(5): 269-277.
    [21] Huang, S. Y., G. Schlichthorl, et al. (1997). "Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells." Journal of Physical Chemistry B 101(14): 2576-2582.
    [22] Hummon, N. P. and P. Doreian (1989). "Connectivity in a citation network: The development of DNA theory." Social Networks 11(1): 39-63.
    [23] Ito, S., H. Miura, et al. (2008). "High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye." Chemical Communications(41): 5194-5196.
    [24] Kopidakis, N., N. R. Neale, et al. (2006). "Effect of an adsorbent on recombination and band-edge movement in dye-sensitized TiO2 solar cells: Evidence for surface passivation." Journal of Physical Chemistry B 110(25): 12485-12489.
    [25] Kuang, D., P. Walter, et al. (2007). "Co-sensitization of organic dyes for efficient ionic liquid electrolyte-based dye-sensitized solar cells." Langmuir 23(22): 10906-10909.
    [26] Kuang, D. B., C. Klein, et al. (2007). "High-efficiency and stable mesoscopic dye-sensitized solar cells based on a high molar extinction coefficient ruthenium sensitizer and nonvolatile electrolyte." Advanced Materials 19(8): 1133-1137.
    [27] Kuang, D. B., C. Klein, et al. (2006). "Ion coordinating sensitizer for high efficiency mesoscopic dye-sensitized solar cells: Influence of lithium ions on the photovoltaic performance of liquid and solid-state cells." Nano Letters 6(4): 769-773.
    [28] Kuang, D. B., P. Wang, et al. (2006). "Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte." Journal of the American Chemical Society 128(24): 7732-7733.
    [29] Levinthal, D. A. (1998). "The Slow Pace of Rapid Technological Change: Gradualism and Punctuation in Technological Change." Industrial and Corporate Change 7(2): 217-247.
    [30] Li-Chun, Y., H. Kretschmer, et al. (2006). The evolution of a citation network topology: The development of the journal Scientometrics.
    [31] Liu, J. S., L. Y. Y. Lu, et al. (2013). "Data envelopment analysis 1978–2010: A citation-based literature survey." Omega 41(1): 3-15.
    [32] Mane, R. S., W. J. Lee, et al. (2005). "Nanocrystalline TiO2/ZnO Thin Films:  Fabrication and Application to Dye-Sensitized Solar Cells." The Journal of Physical Chemistry B 109(51): 24254-24259.
    [33] Marinado, T., K. Nonomura, et al. (2010). "How the Nature of Triphenylamine-Polyene Dyes in Dye-Sensitized Solar Cells Affects the Open-Circuit Voltage and Electron Lifetimes." Langmuir 26(4): 2592-2598.
    [34] Nakade, S., Y. Saito, et al. (2003). "Influence of TiO2 nanoparticle size on electron diffusion and recombination in dye-sensitized TiO2 solar cells." Journal of Physical Chemistry B 107(33): 8607-8611.
    [35] Neale, N. R., N. Kopidakis, et al. (2005). "Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: Shielding versus band-edge movement." Journal of Physical Chemistry B 109(49): 23183-23189.
    [36] Nelson, J. (1999). "Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes." Physical Review B 59(23): 15374-15380.
    [37] Ning, Z. J. and H. Tian (2009). "Triarylamine: a promising core unit for efficient photovoltaic materials." Chemical Communications(37): 5483-5495.
    [38] Nogueira, A. F., J. R. Durrant, et al. (2001). "Dye-sensitized nanocrystalline solar cells employing a polymer electrolyte." Advanced Materials 13(11): 826-+.
    [39] O'Regan, B. C., J. R. Durrant, et al. (2007). "Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit." Journal of Physical Chemistry C 111(37): 14001-14010.
    [40] Oregan, B. and M. Gratzel (1991). "A LOW-COST, HIGH-EFFICIENCY SOLAR-CELL BASED ON DYE-SENSITIZED COLLOIDAL TIO2 FILMS." Nature 353(6346): 737-740.
    [41] Peter, L. M., N. W. Duffy, et al. (2002). "Transport and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells." Journal of Electroanalytical Chemistry 524: 127-136.
    [42] Richard, R. N. and G. W. Sidney (2006). An evolutionary theory of economic change, Harvard University Press.
    [43] Roberto, F., N. Alessandro, et al. (2009). Mapping technological trajectories as patent citation networks. An application to data communication standards.
    [44] Shi, D., N. Pootrakulchote, et al. (2008). "New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes." Journal of Physical Chemistry C 112(44): 17046-17050.
    [45] Smestad, G., C. Bignozzi, et al. (1994). "TESTING OF DYE-SENSITIZED TIO2 SOLAR-CELLS .1. EXPERIMENTAL PHOTOCURRENT OUTPUT AND CONVERSION EFFICIENCIES." Solar Energy Materials and Solar Cells 32(3): 259-272.
    [46] Snaith, H. J., A. J. Moule, et al. (2007). "Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture." Nano Letters 7(11): 3372-3376.
    [47] Utterback, J. M. and W. J. Abernathy (1975). "A dynamic model of process and product innovation." Omega 3(6): 639-656.
    [48] Verspagen, B. (2007). "MAPPING TECHNOLOGICAL TRAJECTORIES AS PATENT CITATION NETWORKS: A STUDY ON THE HISTORY OF FUEL CELL RESEARCH." Advances in Complex Systems 10(01): 93-115.
    [49] Wang, M. K., M. F. Xu, et al. (2008). "High-Performance Liquid and Solid Dye-Sensitized Solar Cells Based on a Novel Metal-Free Organic Sensitizer." Advanced Materials 20(23): 4460-4463.
    [50] Wang, P., C. Klein, et al. (2005). "Stable >= 8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility." Applied Physics Letters 86(12).
    [51] Wang, P., S. M. Zakeeruddin, et al. (2003). "A new ionic liquid electrolyte enhances the conversion efficiency of dye-sensitized solar cells." Journal of Physical Chemistry B 107(48): 13280-13285.
    [52] Wang, Q., J. E. Moser, et al. (2005). "Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells." Journal of Physical Chemistry B 109(31): 14945-14953.
    [53] Wu, W. J., J. B. Yang, et al. (2010). "Efficient and stable dye-sensitized solar cells based on phenothiazine sensitizers with thiophene units." Journal of Materials Chemistry 20(9): 1772-1779.
    [54] Zhang, G. L., Y. Bai, et al. (2009). "Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells." Energy & Environmental Science 2(1): 92-95.
    [55] Zhang, Z. P., N. Evans, et al. (2007). "Effects of omega-guanidinoalkyl acids as coadsorbents in dye-sensitized solar cells." Journal of Physical Chemistry C 111(1): 398-403.
    [56] Zhang, Z. P., S. M. Zakeeruddin, et al. (2005). "Influence of 4-guanidinobutyric acid as coadsorbent in reducing recombination in dye-sensitized solar cells." Journal of Physical Chemistry B 109(46): 21818-21824.
    [57] Zhuge, H. (2002). "A knowledge flow model for peer-to-peer team knowledge sharing and management." Expert Systems with Applications 23(1): 23-30.
    [58] 曾佑強 (2011). "磷酸鋰鐵電池發展趨勢-學術論文主路徑分析."

    QR CODE