簡易檢索 / 詳目顯示

研究生: 林昱圻
Yu-Chi Lin
論文名稱: 設計新型氮摻雜碳材修飾電極應用於可撓曲人體汗液監控元件與自主抗生物附著溶氧感測器
Designing Novel N-doped Carbon Modified Electrodes for Robust Wearable Glucose Monitoring Devices and Self-antibiofouling Dissolved Oxygen Sensors
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
陳秀美
Hsiu-Mei Chen
王孟菊
Meng-Jiy Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 148
中文關鍵詞: 自主抗生物附著電極溶氧量電催化觸媒酵素型電化學感測器可撓曲式裝置石墨烯量子點葡萄糖氮摻雜非侵入式氧氣還原反應聚苯胺還原氧化石墨烯汗液穿戴式裝置
外文關鍵詞: Anti-biofouling, Dissolved oxygen (DO), Electrocatalysts, enzymatic, Electrochemical biosensor, Flexible, Graphene quantum dots (GQDs), glucose, N-doped, Non-invasive, Oxygen reduction reaction (ORR), polyaniline (PANI), reduced Graphene Oxide (rGO), Sweat, Wearable
相關次數: 點閱:430下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 具連續監控與操作簡易優勢的穿戴型生醫感測器和遠距環境監測平台隨著智慧型裝置深入日常生活中逐漸受到重視。隨著物聯網技術飛速演進,將感測平台與無線遠距傳輸技術結合能實現同步收集多種生物資訊的人工智慧物聯網系統是未來備受矚目的科技技術。迄今為止,使用稀缺性高與製造成本昂貴的貴金屬觸媒做為電極材料仍為目前商業化電化學感測器所不可取代的一塊;因此發展兼具低成本與高穩定性優勢的非貴金屬電催化觸媒則為實現將電化學感測器整合於人工智慧物聯網系統的關鍵技術之一。
    近年來穿戴式生醫感測裝置從連續追蹤體能活動中的生理訊號逐漸擴展至疾病管理,透過非侵入式的方法分析人體生理狀況帶來極高的便利性。在眾多人體生理液體中,汗液不僅含有豐富的待測物能反應其生理狀態且具有在不同部位提供連續監測的獨特優勢。然而,不規則且劇烈的運動可能會導致穿戴式裝置內的感測電極因長時間外力所產生形變並影響其感測準確性與可靠度;有鑒於此,本論文的第四章著重於設計具機械耐久性的氮摻雜石墨烯量子點修飾聚苯胺導電高分子做為新型電催化電極來偵測汗液內葡萄糖濃度來實現具長期穩定性的穿戴型血糖監控平台。由於聚苯胺的電催化活性在中性電解質下會大幅降低,故本研究採用氮摻雜石墨烯量子點來提升其感測能力;透過合成時改變氨水添加量可有效調控氮摻雜石墨烯量子點之氮含量,也可進一步使其表面含氮官能基組成產生變化。將最適化之氮摻雜石墨烯量子點修飾於聚苯胺後證明其對雙氧水範圍0至1 mM之感測靈敏度(68.1 ± 1.11 uA mM-1 cm-2)高於未經修飾之聚苯胺(44.06±2.1 uA mM-1 cm-2),其原因在於石墨烯量子點上的吡啶氮能有效降低電荷轉移阻力,進而改善聚苯胺之電催化活性並提升感測靈敏度。在導入葡萄糖氧化酵素於電極表面可使其電極在人體汗液葡萄糖濃度範圍(50~500 uM)內的感測靈敏度達到28.2±0.62 uA mM-1 cm-2並同時兼具極佳的選擇率、連續操作穩定性與重複使用性。本研究更進一步將其導入軟性電極來偵測人工汗液中葡萄糖濃度變化,此電極在連續彎曲測試的靈敏度保留率可達93.2%,顯示本研究所提出的具機械耐久性的氮摻雜石墨烯量子點修飾聚苯胺導電高分子電極可以承受日常運動所造成的應力破壞進而達到長期可靠的穩定監控。

    在遠距環境監控平台方面,水中的溶氧量為水質監測之重要衡量指標,更在漁業養殖與環境廢水處理等產業扮演極具重要的監控參數。電化學溶氧感測器仰賴電極表面的氧氣還原反應推估水體中的溶氧度;然而,電極長時間浸於水體中會出現生物膜附著表面之問題,進而導致感測器之感測靈敏度降低而失去其監測功能與數據品質。基於第四章的結果,本論文的第五章設計出兼具溶氧感測能力與自清潔能力之雙功能電催化觸媒並首度提出一種具自主抗生物附著溶氧感測器的概念。從研究結果證實氮摻雜還原氧化石墨烯在中性電解質能成功催化兩個電子轉移之氧氣還原反應來產生雙氧水,透過改變燒結溫度可調控氮摻雜還原氧化石墨烯中的氮含量變化也同時影響氮官能基組成。從X光吸收光譜觀察到其中的石墨氮光子能階偏移,進一步證實石墨烯量子點上的π電子會由碳轉移至石墨氮上並進而提升其催化以兩個電子轉移為反應路徑之氧氣還原能力。為了驗證雙氧水用於自主抗生物附著於電極表面之效果,於真實水體中連續操作48小時測試結果中可觀察到相比於商用白金電極(留存率= 24.01%),氮摻雜還原氧化石墨烯表現良好的抗生物膜附著之性能(留存率= 73.29%)。為了進一步驗證氮摻雜還原氧化石墨烯被應用於實際場域之連續式溶氧監測之能力,導入遠端溶氧監測裝置並用於監控人工海水之動態調整溶氧濃度,從數據平台中的即時溶氧量與商用光學溶氧計之數據比較後證實了此研究開發出兼具高效能且自清潔的非貴金屬電催化材料應用於遠距監控溶氧量感測平台。
    綜合上述結果,本論文成功證實透過氮摻雜效應能大幅提升氮摻雜碳材複合材料之電催化能力並導入開發可撓曲人體汗液監控元件與自主抗生物附著溶氧感測器中,具高機械耐久性與良好使用穩定性之高效能電催化氮摻雜碳材複合材料實現了對連續式監測生理檢測/水質監控的願景。


    Understanding the levels change in biomarker over time, especially glucose, is crucial for diabetics to inform the early therapy. Recently, wearable sweat biosensors which operate in a non-invasive way have raised attention, providing continuous monitoring of the severity level. Nevertheless, the key challenges are that multiplexed motions may result in undesirable metal cracking by the rigid electrocatalytic layer, leading in decreased sensitivity and stability. To realize a reliable wearable sweat biosensor for monitoring glucose levels, in chapter 4, selecting flexible material such as polyaniline (PANI) would be needed. Additionally, introducing carbon materials, such as N-doped graphene quantum dots (N-GQDs) owing to their great electron mobility can level up it electroactivity. In this work, we designed an N-GQDs anchored PANI matrix to realize flexible wearable biosensors with high detection accuracy. Upon the enhanced electron transfer by N-GQDs, N-GQDs/PANI nanocomposite offers greater sensitivity in H2O2 detection compared to pristine PANI, resulting in sensitivity of 68.1±1.11 and 44.06±2.1 uA mM-1 cm-2, respectively. Moreover, after the glucose oxidase (GOx) immobilization, GOx/N-GQDs/PANI based biosensor had shown excellent sensitivity, selectivity, repeatability, and long-term stability for glucose detection in artificial sweat. Precise glucose detection was also maintained after integrating into a flexible electrode, the sensitivity of GOx/N-GQDs/PANI based biosensor had retained 93.2% with no apparent cracks in the morphology of nanocomposite layer, compared to GOx/Pt based one (71.3%) toward glucose detection after continuously bending test. Thus, N-GQDs/PANI nanocomposite layer can provide reliable long-term monitoring with robust electrodes for non-invasive human sweat glucose monitoring on wearable biosensor.
    Dissolved oxygen (DO) reflects the self-regulating state of the water environment. The electrochemical DO sensor measured the dynamic DO values via oxygen reduction reaction (ORR). However, the unwanted biofilm growth on the electrode surface may impact the sensitivity and stability of DO sensors in practical applications. The reactive oxygen species (ROS) such as H2O2 had been used for degrading the biofilm attached to the electrode due to its simplicity and free from contamination. Therefore, creating high-efficiency electrocatalysts of ORR with self-anti-biofouling is crucial. In chapter 5, N-doped reduced graphene oxide (N-rGO) was used to promote the two-electron pathway of ORR for generating H2O2 in a neutral medium. After modulating the pyrolysis temperature, the N content and its configuration in N-rGO can be adjusted. In the soft X-ray absorption spectrum (XAS), the photo energy of graphitic N was shifted, which confirmed that the π electrons are moving from C atom to graphitic N, resulting in the remarkable H2O2 selectivity. To identify the effect of self-anti-biofuling via H2O2 formation, N-rGO exhibits extraordinary stability with current retention of 73.29% for 48 hr in the actual sample. A remote DO monitoring device was introduced to examine the feasibility of N-rGO for continuous DO measurement in fish raising, and DO concentration was dynamically adjusted in artificial seawater. The comparison of DO value between data storage platform and commercial optical DO meter confirmed that this research has developed an electrocatalyst integrated a with remote DO monitoring with self-antibiofouling strategy.
    Last but not least, the research shed light on the role of N doping in developing carbon-based electrocatalysts, which were introduced in wearable robust glucose biosensors and the DO remote monitoring sensing platforms with high durability and reliable stability in continuous monitoring.

    致謝 I 中文摘要 I ABSTRACT III TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XIV CHAPTER 1 INTRODUCTION 1 1.1 Overview of Biosensor 1 1.1.1 The brief introduction for Biosensor 1 1.1.2 The development about Glucose Detection 1 1.1.3 The introduction of Wearable Biosensors 4 1.2 Overview of Dissolved Oxygen Sensor 6 1.2.1 The methods applied for Oxygen Dissolved Measurement 6 1.2.2 The methods of Anti-biofouling 9 CHAPTER 2 LITERATURE REVIEW AND RESEARCH SCOPE 12 2.1 Overview of reduced Graphene Oxide 12 2.2 Overview of Graphene Quantum Dots (GQDs) 13 2.3 Overview of Electrocatalyst for Enzymatic Glucose detection 15 2.3.1 Noble-Metal Catalyst 15 2.3.2 Transition Metal Catalyst 16 2.3.3 Carbon-Material Catalyst 17 2.3.4 Conducting Polymer 18 2.3.5 Development of Wearable Biosensor for Enzymatic Glucose Monitoring 19 2.4 Overview of Electrocatalyst for Two-Electron pathway of ORR 21 2.4.1 Noble-Metals and Its Nanostructure 21 2.4.2 Transition Metal, Metal Oxides and Bimetallic Nanoparticles 22 2.4.3 Carbon Materials 25 2.4.4 Effect of Heteroatom-Doping 26 2.5 Motivation and Research Scope 28 CHAPTER 3 EXPERIMENTAL PROCEDURE 31 3.1 Experimental Chemicals and Instrument 31 3.1.1 Electrochemical Analysis 32 3.1.2 Rotating Ring Disk Electrode (RRDE) 36 3.1.3 Raman Spectroscopy 38 3.1.4 X-Ray Diffractometer (XRD) 40 3.1.5 Field Emission-Scanning Electron Microscopy (FE-SEM) 41 3.1.6 Transmission Electron Microscope (TEM) 42 3.1.7 Energy-dispersive X-ray Spectroscopy (EDX) 43 3.1.8 X-ray Photoelectron Spectroscopy (XPS) 44 3.1.9 Photoluminescence Spectroscopy (PL) 46 3.1.10 X-ray Absorption Spectroscopy (XAS) 47 3.2 Experimental Materials 49 3.3 Experimental Procedure 50 3.3.1 Preparation of Graphene Quantum Dots (GQDs) 50 3.3.2 Synthesis of Nitrogen-doped Graphene Quantum Dots (N-GQDs) 50 3.3.3 Functionalized the Screen-Printed Carbon Electrode (SPCE) 50 3.3.4 Preparation of PANI, GQDs/PANI, and N-GQDs/PANI films as working electrodes 51 3.3.5 Preparation of Enzyme electrode 51 3.3.6 Preparation of Graphene Oxide (GO) 51 3.3.7 Synthesis of reduced Graphene Oxide (rGO) and Nitrogen-doped reduced Graphene Oxide (NrGO) 52 3.3.8 Preparation of Na2SO4, real Aqualcture sample, PBS and Seawater 52 3.3.9 Modification of the N-rGO Electrodes on RRDE 53 3.3.10 Electrochemical Measurement 53 3.3.11 Preparation of the SYTO® 9 Green-Fluorescent and Characterization by Fluorescence Microscope 56 CHAPTER 4 A NON-INVASIVE WEARABLE SWEAT BIOSENSOR WITH A FLEXIBLE N-GQDS/PANI NANOCOMPOSITE LAYER FOR CONTINUOUS GLUCOSE MONITORING 57 4.1 Motivation and Conceptual Design 57 4.2 Results and Discussion 60 4.2.1 Characterization of N-GQDs 60 4.2.2 Characterization of N-GQDs/PANI nanocomposite 65 4.2.3 Electrocatalytic activities for N-GQDs/PANI toward H2O2 reduction 67 4.2.4 Electrocatalytic activities for various N-GQDs modified PANI toward H2O2 reduction 72 4.2.5 Electrocatalytic activities for GOx/N-GQDs/PANI toward glucose detection and its selectivity and stability 77 4.2.6 N-GQDs/PANI modified wearable electrode for glucose monitoring 83 4.3 Summary 86 CHAPTER 5 SELECTIVITY ENHANCEMENT OF H2O2 VIA NITROGEN DOPING ENGINEERING OF REDUCED GRAPHENE OXIDE AS SELF-ANTIBIOFOULING DISSOLVED OXYGEN SENSOR 87 5.1 Motivation and Conceptual Design 87 5.2 Results and Discussion 91 5.2.1 Characterization of N-rGO 91 5.2.2 ORR Performance for N-rGO 98 5.2.3 N-rGO Modified Electrode for Anti-biofouling performance 101 5.2.4 DO Wireless Online Monitoring 107 5.3 Summary 111 CHAPTER 6 CONCLUSION AND SUGGESTION 112 6.1 General Conclusion 112 6.2 Suggestions and Prospects 113 CHAPTER 7 FUTURE PROSPECT 114 CHAPTER 8 REFERENCE 116

    [1] J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring, Nature biotechnology, 2019, 37, 389-406.
    [2] A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors: a review, Trends in biotechnology, 2014, 32, 363-371.
    [3] E.-H. Yoo, S.-Y. Lee, Glucose biosensors: an overview of use in clinical practice, Sensors, 2010, 10, 4558-4576.
    [4] J. Wang, Electrochemical glucose biosensors, Chemical reviews, 2008, 108, 814-825.
    [5] S.A. Pullano, M. Greco, M.G. Bianco, D. Foti, A. Brunetti, A.S. Fiorillo, Glucose biosensors in clinical practice: Principles, limits and perspectives of currently used devices, Theranostics, 2022, 12, 493.
    [6] E. Witkowska Nery, M. Kundys, P.S. Jelen, M. Jönsson-Niedziółka, Electrochemical glucose sensing: is there still room for improvement?, ACS Publications, 2016.
    [7] H. Chen, P. Sun, M. Qiu, M. Jiang, J. Zhao, D. Han, L. Niu, G. Cui, Co-P decorated nanoporous copper framework for high performance flexible non-enzymatic glucose sensors, Journal of Electroanalytical Chemistry, 2019, 841, 119-128.
    [8] X. Liu, W. Zhang, Z. Lin, Z. Meng, C. Shi, Z. Xu, L. Yang, X.Y. Liu, Coupling of Silk Fibroin Nanofibrils Enzymatic Membrane with Ultra‐Thin PtNPs/Graphene Film to Acquire Long and Stable On‐Skin Sweat Glucose and Lactate Sensing, Small Methods, 2021, 5, 2000926.
    [9] S. Ye, S. Feng, L. Huang, S. Bian, Recent progress in wearable biosensors: From healthcare monitoring to sports analytics, Biosensors, 2020, 10, 205.
    [10] Y. Lin, M. Bariya, H.Y.Y. Nyein, L. Kivimäki, S. Uusitalo, E. Jansson, W. Ji, Z. Yuan, T. Happonen, C. Liedert, Porous enzymatic membrane for nanotextured glucose sweat sensors with high stability toward reliable noninvasive health monitoring, Advanced Functional Materials, 2019, 29, 1902521.
    [11] Y. Zhao, Q. Zhai, D. Dong, T. An, S. Gong, Q. Shi, W. Cheng, Highly stretchable and strain-insensitive fiber-based wearable electrochemical biosensor to monitor glucose in the sweat, Analytical chemistry, 2019, 91, 6569-6576.
    [12] S. Lanzalaco, B.G. Molina, Polymers and plastics modified electrodes for biosensors: a review, Molecules, 2020, 25, 2446.
    [13] Z. Abdel Hamid, K. El-Sayed, T. Salaheldin, H. Hassan, Electrochemical Sensing of Dissolved Oxygen at Ternary Graphene Composite Modified Glassy Carbon Electrode, Egyptian Journal of Chemistry, 2021, 64, 3-4.
    [14] Y. Zhao, L. Sun, M.-f. Li, The research about detection of dissolved oxygen in water based on C8051F040, 2009 International Conference on Information Engineering and Computer Science, IEEE, 2009, pp. 1-4.
    [15] H. Tai, Y. Yang, S. Liu, D. Li, A review of measurement methods of dissolved oxygen in water, International Conference on Computer and Computing Technologies in Agriculture, Springer, 2011, pp. 569-576.
    [16] Y. Wei, Y. Jiao, D. An, D. Li, W. Li, Q. Wei, Review of dissolved oxygen detection technology: From laboratory analysis to online intelligent detection, Sensors, 2019, 19, 3995.
    [17] A. Kulkarni, S. Siahrostami, A. Patel, J.K. Nørskov, Understanding catalytic activity trends in the oxygen reduction reaction, Chemical Reviews, 2018, 118, 2302-2312.
    [18] C. Song, J. Zhang, Electrocatalytic oxygen reduction reaction, PEM fuel cell electrocatalysts and catalyst layers, Springer2008, pp. 89-134.
    [19] Y. Holade, N.E. Sahin, K. Servat, T.W. Napporn, K.B. Kokoh, Recent advances in carbon supported metal nanoparticles preparation for oxygen reduction reaction in low temperature fuel cells, Catalysts, 2015, 5, 310-348.
    [20] T. Shinagawa, A.T. Garcia-Esparza, K. Takanabe, Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Scientific reports, 2015, 5, 1-21.
    [21] A. Delgado, C. Briciu-Burghina, F. Regan, Antifouling strategies for sensors used in water monitoring: Review and future perspectives, Sensors, 2021, 21, 389.
    [22] M. Aslam, R. Ahmad, J. Kim, Recent developments in biofouling control in membrane bioreactors for domestic wastewater treatment, Separation Purification Technology, 2018, 206, 297-315.
    [23] P.-Y. Qian, S.C. Lau, H.-U. Dahms, S. Dobretsov, T. Harder, Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture, Marine Biotechnology, 2007, 9, 399-410.
    [24] J. Baker, L. Dudley, Biofouling in membrane systems—a review, Desalination, 1998, 118, 81-89.
    [25] P. Le-Clech, V. Chen, T.A. Fane, Fouling in membrane bioreactors used in wastewater treatment, Journal of membrane science, 2006, 284, 17-53.
    [26] M.T. Noori, M. Ghangrekar, C. Mukherjee, B. Min, Biofouling effects on the performance of microbial fuel cells and recent advances in biotechnological and chemical strategies for mitigation, Biotechnology advances, 2019, 37, 107420.
    [27] L. Delauney, C. Compère, M. Lehaitre, Biofouling protection for marine environmental sensors, Ocean Science Discussions, 2009, 6.
    [28] S. Erramilli, J. Genzer, Influence of surface topography attributes on settlement and adhesion of natural and synthetic species, Soft Matter, 2019, 15, 4045-4067.
    [29] A.M. Maan, A.H. Hofman, W.M. de Vos, M. Kamperman, Recent developments and practical feasibility of polymer‐based antifouling coatings, Advanced functional materials, 2020, 30, 2000936.
    [30] I. Banerjee, R.C. Pangule, R.S. Kane, Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms, Advanced materials, 2011, 23, 690-718.
    [31] Y. Hong, J. Zeng, X. Wang, K. Drlica, X. Zhao, Post-stress bacterial cell death mediated by reactive oxygen species, Proceedings of the National Academy of Sciences, 2019, 116, 10064-10071.
    [32] V.V. Komnatnyy, W.C. Chiang, T. Tolker‐Nielsen, M. Givskov, T.E. Nielsen, Bacteria‐triggered release of antimicrobial agents, Angewandte Chemie International Edition, 2014, 53, 439-441.
    [33] P. Makvandi, J.T. Gu, E.N. Zare, B. Ashtari, A. Moeini, F.R. Tay, L.-n. Niu, Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry, Acta biomaterialia, 2020, 101, 69-101.
    [34] P. Su, M. Zhou, X. Lu, W. Yang, G. Ren, J. Cai, Electrochemical catalytic mechanism of N-doped graphene for enhanced H2O2 yield and in-situ degradation of organic pollutant, Applied Catalysis B: Environmental, 2019, 245, 583-595.
    [35] A.O. Abdelhalim, V.V. Sharoyko, S.V. Ageev, V.S. Farafonov, D.A. Nerukh, V.N. Postnov, A.V. Petrov, K.N. Semenov, Graphene oxide of extra high oxidation: A wafer for loading guest molecules, The Journal of Physical Chemistry Letters, 2021, 12, 10015-10024.
    [36] X. Tan, H.A. Tahini, S.C. Smith, Understanding the high activity of mildly reduced graphene oxide electrocatalysts in oxygen reduction to hydrogen peroxide, Materials Horizons, 2019, 6, 1409-1415.
    [37] N. Morimoto, T. Kubo, Y. Nishina, Tailoring the oxygen content of graphite and reduced graphene oxide for specific applications, Scientific reports, 2016, 6, 1-8.
    [38] K. Tadyszak, J.K. Wychowaniec, J. Litowczenko, Biomedical applications of graphene-based structures, Nanomaterials, 2018, 8, 944.
    [39] M.C. Biswas, M.T. Islam, P.K. Nandy, M.M. Hossain, Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: a review, ACS Materials Letters, 2021, 3, 889-911.
    [40] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano, 2012, 6, 5102-5110.
    [41] S. Kadian, S.K. Sethi, G. Manik, Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications, Materials Chemistry Frontiers, 2021, 5, 627-658.
    [42] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy Environmental Science, 2012, 5, 8869-8890.
    [43] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene quantum dots: from chemistry and physics to applications, Advanced materials, 2019, 31, 1808283.
    [44] P. Zuo, X. Lu, Z. Sun, Y. Guo, H. He, A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots, Microchimica Acta, 2016, 183, 519-542.
    [45] J. Wang, G. Liu, K. Cham-Fai Leung, R. Loffroy, P.-X. Lu, X.J. Wang, Opportunities and challenges of fluorescent carbon dots in translational optical imaging, Current pharmaceutical design, 2015, 21, 5401-5416.
    [46] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Advances in colloid interface science, 2018, 259, 44-64.
    [47] Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T.H. Zeng, Y. Sun, Versatile graphene quantum dots with tunable nitrogen doping, Particle Systems Characterization, 2014, 31, 597-604.
    [48] F. Wu, T. Huang, Y. Hu, X. Yang, Q. Xie, One-pot electrodeposition of a composite film of glucose oxidase, imidazolium alkoxysilane and chitosan on a reduced graphene oxide–Pt nanoparticle/Au electrode for biosensing, Journal of Electroanalytical Chemistry, 2016, 781, 296-303.
    [49] J. Li, H. Hu, H. Li, C. Yao, Recent developments in electrochemical sensors based on nanomaterials for determining glucose and its byproduct H2O2, Journal of Materials Science, 2017, 52, 10455-10469.
    [50] L. Hao, S.-S. Li, J. Wang, Y. Tan, L. Bai, A. Liu, MnO2/multi-walled carbon nanotubes based nanocomposite with enhanced electrocatalytic activity for sensitive amperometric glucose biosensing, Journal of Electroanalytical Chemistry, 2020, 878, 114602.
    [51] P. Salazar, M. Martín, R. O’Neill, R. Roche, J. González-Mora, Improvement and characterization of surfactant-modified Prussian blue screen-printed carbon electrodes for selective H2O2 detection at low applied potentials, Journal of Electroanalytical Chemistry, 2012, 674, 48-56.
    [52] B. Feldman, R.W. Murray, Electron diffusion in wet and dry Prussian blue films on interdigitated array electrodes, Inorganic Chemistry, 1987, 26, 1702-1708.
    [53] A.A. Karyakin, E.E. Karyakina, Prussian Blue-basedartificial peroxidase'as a transducer for hydrogen peroxide detection. Application to biosensors, Sensors and Actuators B: Chemical
    1999, 57, 268-273.
    [54] Y. Yang, K. Chiang, N. Burke, Porous carbon-supported catalysts for energy and environmental applications: A short review, Catalysis Today, 2011, 178, 197-205.
    [55] X. Qin, A.M. Asiri, K.A. Alamry, A.O. Al-Youbi, X. Sun, Carbon nitride dots can serve as an effective stabilizing agent for reduced graphene oxide and help in subsequent assembly with glucose oxidase into hybrids for glucose detection application, Electrochimica Acta, 2013, 95, 260-267.
    [56] H. Razmi, R. Mohammad-Rezaei, Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination, Biosensors and Bioelectronics, 2013, 41, 498-504.
    [57] V. Osuna, A. Vega-Rios, E.A. Zaragoza-Contreras, I.A. Estrada-Moreno, R.B. Dominguez, Progress of polyaniline glucose sensors for diabetes mellitus management utilizing enzymatic and non-enzymatic detection, Biosensors, 2022, 12, 137.
    [58] H. Al-Sagur, S. Komathi, M. Khan, A. Gurek, A. Hassan, A novel glucose sensor using lutetium phthalocyanine as redox mediator in reduced graphene oxide conducting polymer multifunctional hydrogel, Biosensors and Bioelectronics, 2017, 92, 638-645.
    [59] L.B. Baker, Sweat testing methodology in the field: Challenges and best practices, Sports Sci. Exchange, 2016, 28, 1-6.
    [60] Y. Lei, W. Zhao, Y. Zhang, Q. Jiang, J.H. He, A.J. Baeumner, O.S. Wolfbeis, Z.L. Wang, K.N. Salama, H.N. Alshareef, A MXene‐based wearable biosensor system for high‐performance in vitro perspiration analysis, Small, 2019, 15, 1901190.
    [61] H.Y.Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T.S. Liaw, E. Jansson, C.H. Ahn, J.A. Hangasky, J. Zhao, Y. Lin, Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat, Science advances, 2019, 5, eaaw9906.
    [62] Z. Xu, J. Song, B. Liu, S. Lv, F. Gao, X. Luo, P. Wang, A conducting polymer PEDOT: PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat, Sensors and Actuators B: Chemical, 2021, 348, 130674.
    [63] C. Pan, J. Wang, X. Ji, L. Liu, Stretchable, compressible, self-healable carbon nanotube mechanically enhanced composite hydrogels with high strain sensitivity, Journal of Materials Chemistry C, 2020, 8, 1933-1942.
    [64] I. Jeerapan, J.R. Sempionatto, A. Pavinatto, J.-M. You, J. Wang, Stretchable biofuel cells as wearable textile-based self-powered sensors, Journal of Materials Chemistry A, 2016, 4, 18342-18353.
    [65] J.S. Jirkovský, I. Panas, E. Ahlberg, M. Halasa, S. Romani, D.J. Schiffrin, Single atom hot-spots at Au–Pd nanoalloys for electrocatalytic H2O2 production, Journal of the American Chemical Society, 2011, 133, 19432-19441.
    [66] Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny, J.H. Lee, H. Gao, Y. Zhang, H.L. Xin, S. Siahrostami, Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon, Nature communications, 2020, 11, 1-9.
    [67] C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim, M. Choi, Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface, The Journal of Physical Chemistry C, 2014, 118, 30063-30070.
    [68] G.V. Fortunato, E. Pizzutilo, A.M. Mingers, O. Kasian, S. Cherevko, E.S. Cardoso, K.J. Mayrhofer, G. Maia, M. Ledendecker, Impact of palladium loading and interparticle distance on the selectivity for the oxygen reduction reaction toward hydrogen peroxide, The Journal of Physical Chemistry C, 2018, 122, 15878-15885.
    [69] N. Wang, S. Ma, P. Zuo, J. Duan, B. Hou, Recent Progress of Electrochemical Production of Hydrogen Peroxide by Two‐Electron Oxygen Reduction Reaction, Advanced Science, 2021, 8, 2100076.
    [70] E. Jung, H. Shin, W. Hooch Antink, Y.-E. Sung, T. Hyeon, Recent advances in electrochemical oxygen reduction to H2O2: catalyst and cell design, ACS Energy Letters, 2020, 5, 1881-1892.
    [71] Z. Zheng, Y.H. Ng, D.W. Wang, R. Amal, Epitaxial growth of Au–Pt–Ni nanorods for direct high selectivity H2O2 production, Advanced Materials, 2016, 28, 9949-9955.
    [72] H. Zhao, Z.Y. Yuan, Design Strategies of Non‐Noble Metal‐Based Electrocatalysts for Two‐Electron Oxygen Reduction to Hydrogen Peroxide, ChemSusChem, 2021, 14, 1616-1633.
    [73] Y. Sun, L. Silvioli, N.R. Sahraie, W. Ju, J. Li, A. Zitolo, S. Li, A. Bagger, L. Arnarson, X. Wang, Activity–selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal–nitrogen–carbon catalysts, Journal of the American Chemical Society, 2019, 141, 12372-12381.
    [74] J. Wu, A. Mehmood, G. Zhang, S. Wu, G. Ali, A. Kucernak, Highly selective O2 reduction to H2O2 catalyzed by cobalt nanoparticles supported on nitrogen-doped carbon in alkaline solution, ACS Catalysis, 2021, 11, 5035-5046.
    [75] R.-Q. Zhang, T.-H. Lee, B.-D. Yu, C. Stampfl, A. Soon, The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology, Physical Chemistry Chemical Physics, 2012, 14, 16552-16557.
    [76] K. Jiang, S. Back, A.J. Akey, C. Xia, Y. Hu, W. Liang, D. Schaak, E. Stavitski, J.K. Nørskov, S. Siahrostami, Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination, Nature communications, 2019, 10, 1-11.
    [77] E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee, H.S. Lee, J. Kim, W. Hooch Antink, S. Park, K.-S. Lee, Atomic-level tuning of Co–N–C catalyst for high-performance electrochemical H2O2 production, Nature Materials, 2020, 19, 436-442.
    [78] D. Zhao, Z. Zhuang, X. Cao, C. Zhang, Q. Peng, C. Chen, Y. Li, Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation, Chemical Society Reviews, 2020, 49, 2215-2264.
    [79] S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu, K. Liu, C. Cai, Q. Wang, H. Li, X. Li, Chemical Identification of Catalytically Active Sites on Oxygen‐doped Carbon Nanosheet to Decipher the High Activity for Electro‐synthesis Hydrogen Peroxide, Angewandte Chemie, 2021, 133, 16743-16750.
    [80] G. Ding, C. Li, W. Liu, X. Zhao, Y. Jiang, Y. Lu, Enhanced H2O2 electrosynthesis on kneading oxidized carbon nanotubes, Applied Surface Science, 2022, 580, 152293.
    [81] C. Hu, L. Dai, Doping of carbon materials for metal‐free electrocatalysis, Advanced Materials, 2019, 31, 1804672.
    [82] J. Park, Y. Nabae, T. Hayakawa, M.-a. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon, Acs Catalysis, 2014, 4, 3749-3754.
    [83] L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells, ACS nano, 2010, 4, 1321-1326.
    [84] S.N. Faisal, E. Haque, N. Noorbehesht, W. Zhang, A.T. Harris, T.L. Church, A.I. Minett, Pyridinic and graphitic nitrogen-rich graphene for high-performance supercapacitors and metal-free bifunctional electrocatalysts for ORR and OER, RSC advances, 2017, 7, 17950-17958.
    [85] L. Zhang, Z. Xia, Mechanisms of oxygen reduction reaction on nitrogen-doped graphene for fuel cells, The Journal of Physical Chemistry C, 2011, 115, 11170-11176.
    [86] M.N. Groves, C. Malardier-Jugroot, M. Jugroot, Improving platinum catalyst durability with a doped graphene support, The Journal of Physical Chemistry C, 2012, 116, 10548-10556.
    [87] H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, ACS catalysis, 2012, 2, 781-794.
    [88] Y. Zhou, G. Chen, J. Zhang, A review of advanced metal-free carbon catalysts for oxygen reduction reactions towards the selective generation of hydrogen peroxide, Journal of Materials Chemistry A, 2020, 8, 20849-20869.
    [89] Z. Bao, J. Zhao, S. Zhang, L. Ding, X. Peng, G. Wang, Z. Zhao, X. Zhong, Z. Yao, J. Wang, Synergistic effect of doped nitrogen and oxygen-containing functional groups on electrochemical synthesis of hydrogen peroxide, Journal of Materials Chemistry A, 2022, 10, 4749-4757.
    [90] H.N. Fernandez‐Escamilla, J. Guerrero‐Sanchez, E. Contreras, J.M. Ruiz‐Marizcal, G. Alonso‐Nunez, O.E. Contreras, R.M. Felix‐Navarro, J.M. Romo‐Herrera, N. Takeuchi, Understanding the Selectivity of the Oxygen Reduction Reaction at the Atomistic Level on Nitrogen‐Doped Graphitic Carbon Materials, Advanced Energy Materials, 2021, 11, 2002459.
    [91] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications, John Wiley & Sons2022.
    [92] M. Yu, E. Budiyanto, H. Tüysüz, Principles of Water Electrolysis and Recent Progress in Cobalt‐, Nickel‐, and Iron‐Based Oxides for the Oxygen Evolution Reaction, Angewandte Chemie International Edition, 2022, 61, e202103824.
    [93] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of chemical education, 2018, 95, 197-206.
    [94] X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for nonelectrochemists, Advanced Energy Materials, 2019, 9, 1900747.
    [95] D.J. Chesney, Laboratory Techniques in Electroanalytical Chemistry, Edited by Peter T. Kissinger (Purdue University) and William R. Heineman (University of Cincinnati). Dekker: Monticello, NY. 1996. xxii+ 986 pp. $79. ISBN 0-8247-9445-1, ACS Publications, 1996.
    [96] L. Caizán-Juanarena, C. Borsje, T. Sleutels, D. Yntema, C. Santoro, I. Ieropoulos, F. Soavi, A. Ter Heijne, Combination of bioelectrochemical systems and electrochemical capacitors: principles, analysis and opportunities, Biotechnology advances, 2020, 39, 107456.
    [97] T. Hirt, H. Palmer, Quantitative Determination of Carbon Suboxide by Gas Chromatography, Analytical Chemistry, 1962, 34, 164-164.
    [98] K. Sun, W. Xu, X. Lin, S. Tian, W.F. Lin, D. Zhou, X. Sun, Electrochemical oxygen reduction to hydrogen peroxide via a two‐electron transfer pathway on carbon‐based single‐atom catalysts, Advanced Materials Interfaces, 2021, 8, 2001360.
    [99] J. Wang, C.-X. Zhao, J.-N. Liu, D. Ren, B.-Q. Li, J.-Q. Huang, Q. Zhang, Quantitative kinetic analysis on oxygen reduction reaction: A perspective, Nano Materials Science, 2021, 3, 313-318.
    [100] Y. Xia, X. Zhao, C. Xia, Z.-Y. Wu, P. Zhu, J.Y.T. Kim, X. Bai, G. Gao, Y. Hu, J. Zhong, Highly active and selective oxygen reduction to H2O2 on boron-doped carbon for high production rates, Nature Communications, 2021, 12, 1-12.
    [101] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers, 2021, 1, 1-16.
    [102] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry, 2015, 45, 289-299.
    [103] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal, 2014, 2014.
    [104] V.-D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), Characterization of Nanoparticles, Elsevier2020, pp. 397-417.
    [105] W. Giurlani, E. Berretti, M. Innocenti, A. Lavacchi, Measuring the thickness of metal coatings: A review of the methods, Coatings, 2020, 10, 1211.
    [106] T.V. Ivanova, D. Permyakov, E. Khestanova, Mechanical deformation of atomically thin layers during stamp transfer, Journal of Physics: Conference Series, IOP Publishing, 2021, p. 012058.
    [107] L. Fu, Y. Tang, Y. Lin, Advances in Synchrotron Radiation‐based X‐ray Absorption Spectroscopy to Characterize the Fine Atomic Structure of Single‐atom Nanozymes, Chemistry–An Asian Journal, 2020, 15, 2110-2116.
    [108] G. Qiu, A. Zhu, C. Zhang, Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range, RSC advances, 2017, 7, 35330-35339.
    [109] R. Das, S. Parveen, A. Bora, P. Giri, Origin of high photoluminescence yield and high SERS sensitivity of nitrogen-doped graphene quantum dots, Carbon, 2020, 160, 273-286.
    [110] K. Dutta, S. De, B. Das, S. Bera, B. Guria, M.S. Ali, D. Chattopadhyay, Development of an Efficient Immunosensing Platform by Exploring Single-Walled Carbon Nanohorns (SWCNHs) and Nitrogen Doped Graphene Quantum Dot (N-GQD) Nanocomposite for Early Detection of Cancer Biomarker, ACS Biomaterials Science Engineering, 2021, 7, 5541-5554.
    [111] G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, S.S. Saavedra, Exploring the emissive states of heteroatom-doped graphene quantum dots, The Journal of Physical Chemistry C, 2018, 122, 6483-6492.
    [112] M. Treblow, Organic chemistry (Morrison, Robert T.; Boyd, Robert Neilson), ACS Publications, 1967.
    [113] S.H. Jin, D.H. Kim, G.H. Jun, S.H. Hong, S. Jeon, Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups, ACS nano, 2013, 7, 1239-1245.
    [114] W. Peng, S. Li, M. Li, M. Chen, Y. Yang, Enhancement of the electron transportation in the perovskite solar cells via optimizing the photoelectric properties of electron transport layer with nitrogen-doped graphene quantum dots, Journal of Materials Science: Materials in Electronics, 2022, 1-14.
    [115] H. Kuzhandaivel, S. Manickam, S.K. Balasingam, M.C. Franklin, H.-J. Kim, K.S. Nallathambi, Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors, New Journal of Chemistry, 2021, 45, 4101-4110.
    [116] B. Butoi, A. Groza, P. Dinca, A. Balan, V. Barna, Morphological and structural analysis of polyaniline and poly (o-anisidine) layers generated in a DC glow discharge plasma by using an oblique angle electrode deposition configuration, Polymers, 2017, 9, 732.
    [117] J. Wang, S. Zhang, Synthesis of polyaniline-sulfur composites with different nanostructures via an interfacial emulsification method and a micelle template method and their properties, RSC advances, 2020, 10, 11455-11462.
    [118] A. Lopera-Valle, A. Elias, Amine responsive poly (lactic acid)(PLA) and succinic anhydride (SAh) graft-polymer: synthesis and characterization, Polymers, 2019, 11, 1466.
    [119] Y.-C. Guo, C. Cai, Y.-H. Zhang, Observation of conformational changes in ethylene glycol–water complexes by FTIR–ATR spectroscopy and computational studies, Aip Advances, 2018, 8, 055308.
    [120] F. Zeng, Z. Qin, B. Liang, T. Li, N. Liu, M. Zhu, Polyaniline nanostructures tuning with oxidants in interfacial polymerization system, Progress in Natural Science: Materials International, 2015, 25, 512-519.
    [121] S.-k. Hu, S. Chen, X.-y. Zhao, M.-m. Guo, L.-q. Zhang, The shape-memory effect of hindered phenol (AO-80)/acrylic rubber (ACM) composites with tunable transition temperature, Materials, 2018, 11, 2461.
    [122] M. Jamdegni, A. Kaur, Electrochromic behavior of highly stable, flexible electrochromic electrode based on covalently bonded polyaniline-graphene quantum dot composite, Journal of the Electrochemical Society, 2019, 166, H502.
    [123] G.G. Gebreegziabher, A.S. Asemahegne, D.W. Ayele, D. Mani, R. Narzary, P.P. Sahu, A. Kumar, Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell, Carbon Letters, 2020, 30, 1-11.
    [124] E. Song, J.-W. Choi, Conducting polyaniline nanowire and its applications in chemiresistive sensing, Nanomaterials, 2013, 3, 498-523.
    [125] N.G. Skinner, E.A. Hall, Investigation of the origin of the glucose response in a glucose oxidase| polyaniline system, Journal of Electroanalytical Chemistry, 1997, 420, 179-188.
    [126] Q. Wang, S. Qiu, S. Wang, J. Shang, R. Zhao, X. Wu, W. Chen, H. Zhou, X. Wang, Graphene oxide/polyaniline nanotube composites synthesized in alkaline aqueous solution, Synthetic Metals, 2015, 210, 314-322.
    [127] J.K. Kim, M.J. Park, S.J. Kim, D.H. Wang, S.P. Cho, S. Bae, J.H. Park, B.H. Hong, Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells, ACS Nano, 2013, 7, 7207-7212.
    [128] S. Wang, J. Shang, Q. Wang, W. Zhang, X. Wu, J. Chen, W. Zhang, S. Qiu, Y. Wang, X. Wang, Enhanced electrochemical performance by strongly anchoring highly crystalline polyaniline on multiwalled carbon nanotubes, ACS applied materials and interfaces, 2017, 9, 43939-43949.
    [129] A.B. Siddique, K. Morrison, G. Venkat, A.K. Pramanick, N. Banerjee, M. Ray, Charge transport through functionalized graphene quantum dots embedded in a polyaniline matrix, ACS Applied Electronic Materials, 2021, 3, 1437-1446.
    [130] R. Nandan, H.R. Devi, R. Kumar, A.K. Singh, C. Srivastava, K.K. Nanda, Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N x Centers for Energy-Efficient Oxygen Reduction Reaction, ACS applied materials, 2020, 12, 36026-36039.
    [131] Y. Guo, J. He, T. Wang, H. Xue, Y. Hu, G. Li, J. Tang, X. Sun, Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon, Journal of Power Sources, 2011, 196, 9299-9307.
    [132] E. Frackowiak, G. Lota, J. Machnikowski, C. Vix-Guterl, F. Béguin, Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content, Electrochimica Acta, 2006, 51, 2209-2214.
    [133] D. Hulicova‐Jurcakova, M. Kodama, S. Shiraishi, H. Hatori, Z.H. Zhu, G.Q. Lu, Nitrogen‐enriched nonporous carbon electrodes with extraordinary supercapacitance, Advanced Functional Materials, 2009, 19, 1800-1809.
    [134] G. Lota, K. Lota, E. Frackowiak, Nanotubes based composites rich in nitrogen for supercapacitor application, Electrochemistry Communications, 2007, 9, 1828-1832.
    [135] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters, 2011, 11, 2472-2477.
    [136] E. Frackowiak, Carbon materials for supercapacitor application, Physical chemistry chemical physics, 2007, 9, 1774-1785.
    [137] S. Wu, T. Wang, C. Wang, Z. Gao, C. Wang, Improvement of Selectivity and Stability of Amperometric Detection of Hydrogen Peroxide Using Prussian Blue‐PAMAM Supramolecular Complex Membrane as a Catalytic Layer, Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 2007, 19, 659-667.
    [138] C. Cui, J.Y. Lee, Effect of polyaniline on oxygen reduction in buffered neutral solution, Journal of Electroanalytical Chemistry, 1994, 367, 205-212.
    [139] C.-T. Chang, C.-Y. Lin, Electrochemical reduction of hydrogen peroxide by nanostructured hematite modified electrodes, RSC advances, 2016, 6, 67428-67434.
    [140] T. Kuwahara, K. Ogawa, D. Sumita, M. Kondo, M. Shimomura, Amperometric glucose sensing with polyaniline/poly (acrylic acid) composite film bearing glucose oxidase and catalase based on competitive oxygen consumption reactions, Journal of Electroanalytical Chemistry, 2018, 811, 62-67.
    [141] A. Popov, R. Aukstakojyte, J. Gaidukevic, V. Lisyte, A. Kausaite-Minkstimiene, J. Barkauskas, A. Ramanaviciene, Reduced graphene oxide and polyaniline nanofibers nanocomposite for the development of an amperometric glucose biosensor, Sensors, 2021, 21, 948.
    [142] T. Homma, D. Sumita, M. Kondo, T. Kuwahara, M. Shimomura, Amperometric glucose sensing with polyaniline/poly (acrylic acid) composite film bearing covalently-immobilized glucose oxidase: A novel method combining enzymatic glucose oxidation and cathodic O2 reduction, Journal of Electroanalytical Chemistry, 2014, 712, 119-123.
    [143] D. Wan, S. Yuan, G. Li, K. Neoh, E. Kang, Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode, ACS applied materials, 2010, 2, 3083-3091.
    [144] X. Feng, H. Cheng, Y. Pan, H. Zheng, Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite, Biosensors, 2015, 70, 411-417.
    [145] H. Xue, Z. Shen, Y. Li, Polyaniline–polyisoprene composite film based glucose biosensor with high permselectivity, Synthetic metals, 2001, 124, 345-349.
    [146] B. Hansen, M.A. Hocevar, C.A. Ferreira, A facile and simple polyaniline-poly (ethylene oxide) based glucose biosensor, Synthetic Metals, 2016, 222, 224-231.
    [147] H. Al-Sagur, S. Komathi, H. Karakaş, D. Atilla, A. Gürek, T. Basova, N. Farmilo, A. Hassan, A glucose biosensor based on novel Lutetium bis-phthalocyanine incorporated silica-polyaniline conducting nanobeads, Biosensors, 2018, 102, 637-645.
    [148] D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures, ACS nano, 2013, 7, 3540-3546.
    [149] N.M. Wilson, D.W. Flaherty, Mechanism for the direct synthesis of H2O2 on Pd clusters: heterolytic reaction pathways at the liquid–solid interface, Journal of the American Chemical Society, 2016, 138, 574-586.
    [150] T. Zhou, N. Zhang, C. Wu, Y. Xie, Surface/interface nanoengineering for rechargeable Zn–air batteries, Energy & Environmental Science
    2020, 13, 1132-1153.
    [151] N. Sanchez-Padilla, R. Benavides, C. Gallardo, S. Fernandez, E. De-Casas, D. Morales-Acosta, Influence of doping level on the electrocatalytic properties for oxygen reduction reaction of N-doped reduced graphene oxide, International Journal of Hydrogen Energy, 2021, 46, 26040-26052.
    [152] J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, 64, 225-229.
    [153] N.P. Ngidi, M.A. Ollengo, V.O. Nyamori, Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials, 2019, 12, 3376.
    [154] N. Hidayah, W.-W. Liu, C.-W. Lai, N. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 150002.
    [155] L.K. Putri, B.-J. Ng, W.-J. Ong, H.W. Lee, W.S. Chang, S.-P. Chai, Heteroatom nitrogen-and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution, ACS applied materials, 2017, 9, 4558-4569.
    [156] X.-F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia, Scientific reports, 2016, 6, 1-10.
    [157] H. Miao, S. Li, Z. Wang, S. Sun, M. Kuang, Z. Liu, J. Yuan, Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction, International Journal of Hydrogen Energy, 2017, 42, 28298-28308.
    [158] J. Bai, Q. Zhu, Z. Lv, H. Dong, J. Yu, L. Dong, Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, International journal of hydrogen energy, 2013, 38, 1413-1418.
    [159] K. Kinoshita, Carbon: electrochemical and physicochemical properties, Wiley: New York, 1988.
    [160] X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide, Journal of the American Chemical Society, 2009, 131, 15939-15944.
    [161] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS nano, 2011, 5, 4350-4358.
    [162] D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, Toward N-doped graphene via solvothermal synthesis, Chemistry of Materials, 2011, 23, 1188-1193.
    [163] S. Sahoo, J.-J. Shim, Nanostructured 3D zinc cobaltite/nitrogen-doped reduced graphene oxide composite electrode for supercapacitor applications, Journal of industrial engineering chemistry, 2017, 54, 205-217.
    [164] V. Duraisamy, R. Krishnan, S.M. Senthil Kumar, N-doped hollow mesoporous carbon nanospheres for oxygen reduction reaction in alkaline media, ACS Applied Nano Materials, 2020, 3, 8875-8887.
    [165] C. Ehlert, W.E. Unger, P. Saalfrank, C K-edge NEXAFS spectra of graphene with physical and chemical defects: a study based on density functional theory, Physical Chemistry Chemical Physics, 2014, 16, 14083-14095.
    [166] S.C. Ray, W. Pong, P. Papakonstantinou, Electronic structure and field emission properties of nitrogen doped graphene nano-flakes (GNFs: N) and carbon nanotubes (CNTs: N), Applied Surface Science, 2016, 380, 301-304.
    [167] D. Geng, S. Yang, Y. Zhang, J. Yang, J. Liu, R. Li, T.-K. Sham, X. Sun, S. Ye, S. Knights, Nitrogen doping effects on the structure of graphene, Applied Surface Science, 2011, 257, 9193-9198.
    [168] S. Ray, C. Pao, H. Tsai, J. Chiou, W. Pong, C. Chen, M.-H. Tsai, P. Papakonstantinou, L. Chen, K. Chen, A comparative study of the electronic structures of oxygen-and chlorine-treated nitrogenated carbon nanotubes by x-ray absorption and scanning photoelectron microscopy, Applied Physics Letters, 2007, 91, 202102.
    [169] C.-H. Chuang, S.C. Ray, D. Mazumder, S. Sharma, A. Ganguly, P. Papakonstantinou, J.-W. Chiou, H.-M. Tsai, H.-W. Shiu, C.-H. Chen, Chemical modification of graphene oxide by nitrogenation: an X-ray absorption and emission spectroscopy study, Scientific reports, 2017, 7, 1-10.
    [170] N. Soin, S.C. Ray, S. Sarma, D. Mazumder, S. Sharma, Y.-F. Wang, W.-F. Pong, S.S. Roy, A.M. Strydom, Tuning the electronic and magnetic properties of nitrogen-functionalized few-layered graphene nanoflakes, The Journal of Physical Chemistry C, 2017, 121, 14073-14082.
    [171] K.H. Koh, Y.J. Kim, A.H.B. Mostaghim, S. Siahrostami, T.H. Han, Z. Chen, Elaborating Nitrogen and Oxygen Dopants Configurations within Graphene Electrocatalysts for Two-Electron Oxygen Reduction, ACS Materials Letters, 2022, 4, 320-328.
    [172] J. Zhong, J.-J. Deng, B.-H. Mao, T. Xie, X.-H. Sun, Z.-G. Mou, C.-H. Hong, P. Yang, S.-D. Wang, Probing solid state N-doping in graphene by X-ray absorption near-edge structure spectroscopy, Carbon, 2012, 50, 335-338.
    [173] L.-S. Zhang, X.-Q. Liang, W.-G. Song, Z.-Y. Wu, Identification of the nitrogen species on N-doped graphene layers and Pt/NG composite catalyst for direct methanol fuel cell, Physical Chemistry Chemical Physics, 2010, 12, 12055-12059.
    [174] X. Liang, J. Zhong, Y. Shi, J. Guo, G. Huang, C. Hong, Y. Zhao, Hydrothermal synthesis of highly nitrogen-doped few-layer graphene via solid–gas reaction, Materials Research Bulletin, 2015, 61, 252-258.
    [175] S. Liu, Y. Zhang, B. Ge, F. Zheng, N. Zhang, M. Zuo, Y. Yang, Q. Chen, Constructing Graphitic‐Nitrogen‐Bonded Pentagons in Interlayer‐Expanded Graphene Matrix toward Carbon‐Based Electrocatalysts for Acidic Oxygen Reduction Reaction, Advanced Materials, 2021, 33, 2103133.
    [176] Y. Dong, Q. Zhang, Z. Tian, B. Li, W. Yan, S. Wang, K. Jiang, J. Su, C.W. Oloman, E.L. Gyenge, Ammonia thermal treatment toward topological defects in porous carbon for enhanced carbon dioxide electroreduction, Advanced Materials, 2020, 32, 2001300.
    [177] J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji, H. Lan, H. Liu, J. Qu, Graphitic N in nitrogen-Doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction, Carbon, 2020, 163, 154-161.
    [178] Y. Ding, W. Zhou, J. Gao, F. Sun, G. Zhao, H2O2 Electrogeneration from O2 Electroreduction by N‐Doped Carbon Materials: A Mini‐Review on Preparation Methods, Selectivity of N Sites, and Prospects, Advanced Materials Interfaces, 2021, 8, 2002091.
    [179] A. Hegde, G. Bhat, S. Mallya, Effect of exposure to hydrogen peroxide on the virulence of Escherichia coli, Indian Journal of Medical Microbiology, 2008, 26, 25-28.
    [180] A. Mai-Prochnow, P. Lucas-Elio, S. Egan, T. Thomas, J.S. Webb, A. Sanchez-Amat, S. Kjelleberg, Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria, Journal of bacteriology, 2008, 190, 5493-5501.
    [181] M.F. Hossain, S. McCracken, G. Slaughter, Electrochemical laser induced graphene-based oxygen sensor, Journal of Electroanalytical Chemistry, 2021, 899, 115690.
    [182] Y. Wang, T. Hosono, Y. Hasebe, Hemin-adsorbed carbon felt for sensitive and rapid flow-amperometric detection of dissolved oxygen, Microchimica Acta, 2013, 180, 1295-1302.
    [183] R.d.C.S. Luz, F.S. Damos, A.A. Tanaka, L.T. Kubota, Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode, Sensors and Actuators B: Chemical, 2006, 114, 1019-1027.
    [184] K.S. Devi, A. Jain, S.-T. Huang, A.S. Kumar, Metal and heteroatoms-free carbon soot obtained from atmospheric combustion of naphthalene for sensitive dissolved oxygen reduction reaction and sensing in neutral media, Electrochimica Acta, 2019, 296, 407-417.
    [185] W. Li, X. Li, X. Zhang, J. Wu, X. Tian, M.-J. Zeng, J. Qu, Z.-Z. Yu, Flexible poly (vinyl alcohol)–polyaniline hydrogel film with vertically aligned channels for an integrated and self-healable supercapacitor, ACS Applied Energy Materials, 2020, 3, 9408-9416.
    [186] S. Gao, M. Wang, Y. Chen, M. Tian, Y. Zhu, X. Wei, T. Jiang, An advanced electro-Fenton degradation system with triboelectric nanogenerator as electric supply and biomass-derived carbon materials as cathode catalyst, Nano Energy, 2018, 45, 21-27.

    無法下載圖示 全文公開日期 2027/09/01 (校內網路)
    全文公開日期 2027/09/01 (校外網路)
    全文公開日期 2027/09/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE