簡易檢索 / 詳目顯示

研究生: 彭瀚興
Hang-hsing Peng
論文名稱: 可撓式有機薄膜電晶體之製作與分析
Farbrication and Characterization of Flexible Pentacene-Based Organic Thin-Film Transistors
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
王錫九
S. J. Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 115
中文關鍵詞: 有機薄膜電晶體持續時間撓曲應力剝離聚乙烯苯酚軟性可撓
外文關鍵詞: time dependent bending, surface damage, peeling
相關次數: 點閱:221下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以塑膠基板搭配有機介電層製作而成的可撓式有機薄膜電晶體在商業應用上具有非常好的前景,塑膠基板提供有機薄膜電晶體可撓性,而以旋轉塗佈法製作出的有機絕緣層則使得基板可在低溫環境下製作。

    在本研究中我們首先建立可撓式有機薄膜電晶體的標準製法,並且以所製作出的元件進行不同撓曲方向的持續時間撓曲實驗,以及不同撓曲方向搭配不同撓曲曲率半徑的撓曲次數實驗。不同撓曲方向的持續時間撓曲實驗對應到有機產品的收納,而不同方向搭配不同撓曲半徑的撓曲次數實驗則對應到有機產品的使用。

    實驗中,我們以光學顯微鏡、原子力顯微鏡、以及雙聚焦離子束與電子束顯微鏡分析撓曲後元件的表面以及剖面狀態,並且搭配轉移以及輸出特性曲線分析元件的劣化情況。

    研究結果顯示,撓曲方向垂直於通道對於有機薄膜電晶體的影響遠大於撓曲方向水平於通道,這是因為撓曲所產生主動層的龜裂影響了電流傳輸,而撓曲應力使得有機介電層薄膜與閘極的剝離則直接影響了元件的臨界電壓與開關電流比。


    Compared with conventional organic thin-film transistors(OTFTs), the fabrication of flexible OTFTs replace silicon substrate with plastic substrate, and replace inorganic insulator with organic insulator, which make flexible OTFTs have flexibility and allow low temperature fabrication, these two characteristics let flexible OTFTs have the prospect in commercial application.

    In our study, we establish stander process flows for the fabrication of flexible OTFTs, and then we bend our flexible OTFTs in different orientation for time dependent bending stress and bending stress in different bending radius. The time dependent bending stress simulate the condition of flexible OTFT products while storaging, and the bending stress in different bending radius simulate the condition of flexible OTFT while using.

    We use optical microscopy (OM), atomic force microscopy (AFM) and dual-beam focused ion beam/scanning electron microscopy (FIB/SEM) to observe the top view and the cross section status of flexible OTFTs after bending, we also measure the output and transfer characteristics of flexible OTFTs to find out the reason of OTFTs electronic characteristic degradation after bending.

    The experiment result indicates thatthe bending stress whose bending-orientation is perpendicular to the channel causes much damage to the active layer than the bending stress whose bending-orientation is parallel to the channel. Because cracks on active layer are perpendicular to drain current which limit the current while operating, and peeling between insulator and gate electrode will directly affect the value of on/off current ratio and threshold voltage.

    論文摘要I 誌謝III 圖目錄VI 表目錄XI 第一章 概論 1 1.1 研究背景 1 1.2 研究動機 4 1.3 論文大綱 5 第二章 有機薄膜電晶體介紹6 2.1 有機半導體介紹 6 2.1.1 有機半導體材料概論6 2.1.2 Pentacene材料特性介紹 7 2.2 有機半導體傳輸機制8 2.2.1 Hopping Model9 2.2.2 偏極子(Polaron)和雙偏極子(Bipolaron)10 2.3 有機薄膜電晶體結構11 2.4 有機薄膜電晶體操作模式14 2.5 參數萃取方式18 2.5.1 載子移動率(Mobility, μ )18 2.5.2 臨界電壓(Threshold Voltage, Vth)19 2.5.3 次臨界斜率(Subthreshold Swing)20 2.5.4 開關電流比(On/Off Current Ratio, ION/IOff)21 第三章 實驗方法與步驟22 3.1 元件製作22 3.2 有機薄膜電晶體之製作流程22 3.2.1 基板(Substrate)23 3.2.2 閘極(Gate)23 3.2.3 閘極絕緣層(Gate Insulator Layer)27 3.2.4 主動層(Active Layer)30 3.2.5 源極/汲極(Source/Drain)30 第四章 不同撓曲方向對於有機薄膜電晶體電特性之影響32 4.1 不同基板上薄膜之表面狀態與基本電特性分析32 4.1.1 閘極(Gate)32 4.1.2 閘極絕緣層(Gate Insulator Layer)34 4.1.3 主動層(Active Layer)36 4.1.4元件基本電特性介紹38 4.2 撓曲劣化機制與表面分析41 4.2.1 撓曲方向定義41 4.2.2 水平撓曲劣化之表面分析41 4.2.3垂直撓曲劣化之表面分析43 4.2.4 撓曲裂痕之微觀分析45 4.2.5撓曲劣化對於電特性的影響51 4.3 持續撓曲時間實驗56 4.3.1 持續水平撓曲後元件之電性分析58 4.3.2持續垂直撓曲後元件之電性分析64 4.3.3 持續撓曲時間綜合分析69 4.4不同撓曲次數實驗72 4.4.1曲率半徑3mm水平撓曲次數實驗72 4.4.2曲率半徑3mm垂直撓曲次數實驗76 4.4.3 曲率半徑2mm水平撓曲次數實驗82 4.4.4 曲率半徑2mm垂直撓曲次數實驗89 4.5不同撓曲次數實驗綜和分析94 第五章 結論與未來展望96 5.1 結論96 5.2 未來工作與展望96

    [1] T. Ji, J. Xie, and V. K. Varadan, “Design of pentacene thin film transistors on flexible substrates,” Proceedings of SPIE, Vol. 5763, p. 77 (2005).
    [2] Y. G. Seol, W. Heo, J. S. Park, N.-E. Lee, D. K. Lee, and Y. J. Kim, “Improvement of Mechanical and Electrical Stability of Flexible Organic Field-Effect Transistors by Multistack Hybrid Encapsulation,” Journal of The Electrochemical Society, Vol. 158, p. 931 (2011)
    [3] T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Flexible organic transistors and circuits with extreme bending stability,” Nature Materials, Vol. 9, p. 1015 (2010)
    [4] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, “Effects of O2 and H2O on electrical characteristics of pentacene thin film transistors,” Thin Solid Films, Vol. 464-465, pp. 437-440 (2004).
    [5]A.Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,” Applied Physics Letters, Vol. 49, pp. 1210 (1986).
    [6]A. Assadi, C. Svensson, M. Willander, and O. Ingans, “Field‐effect mobility of poly(3‐hexylthiophene),” Applied Physics Letters, Vol. 53, pp. 195 (1988).
    [7]J. Paloheimo, E. Punkka, H. Stubb, and P. Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [8]Z. Bao, A. Dodabalapur and A. J. Lovinger, “Soluble and processable regioregular poly(3‐hexylthiophene) for thin film field‐effect transistor applications with high mobility,” Applied Physics Letters, Vol. 69, pp. 4108 (1996).
    [9]H. Sirringhaus, N. Tessler, and R. H. Friend, “Integrated Optoelectronic Devices Based on Conjugated Polymers,” Science, Vol. 280, pp. 1741-1744 (1998).
    [10]F. Ebisawa, T. Kurokawa, and S. Nara, “Electrical properties of polyacetylene/polysiloxane interface,” Journal of Applied Physics, Vol. 54, pp. 3255 (1983).
    [11]J. H. Burroughes, C. A. Jones, and R. H. Friend, “New semiconductor device physics in polymer diodes and transistors ,” Nature, Vol. 335, pp. 137-141 (1988).
    [12]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).
    [13]J. H. Schon, Ch. Kloc, and B. Batlogg, “On the intrinsic limits of pentacene field-effect transistors,” Organic Electronics, Vol. 1, pp. 57-64, (2000).
    [14]Y. Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Device Letters, Vol. 18, pp. 606 (1997).
    [15]C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, “Molecular beam deposited thin films of pentacene for organic field effect transistor applications,” Journal of Applied Physics, Vol. 80, pp. 2501 (1996).
    [16]Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, pp. 80 (1996).
    [17]G. Horowitz, X. Peng, D. Fichou, and F. Garnier, “Role of the emiconductor/insulator interface in the characteristics of π-conjugated- oligomer-based thin-film transistors ,” Synthetic Metals, Vol. 51, pp. 419-424 (1992).
    [18]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, “C60 thin film transistors,” Applied Physics Letters, Vol. 67, pp. 121, (1995).
    [19]J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, pp. 512-515, (1993).
    [20]A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, “Organic n-type field-effect transistor,” Synthetic Metals, Vol. 66, pp. 257 (1994).
    [21]J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, “n-Channel Organic Transistor Materials Based on Naphthalene Frameworks,” Journal of the American Chemical Society, Vol. 118, pp. 11331-11332 (1996).
    [22]G. Guillaud, M. Al Sadound, and M. Maitrot, “Field-effect transistors based on intrinsic molecular semiconductors,” Chemical Physics Letters, Vol. 167, pp. 503 (1990).
    [23]Z. Bao, A. J. Lovinger, and J. Brown, “New Air-Stable n-Channel Organic Thin Film Transistors,” Journal of the American Chemical Society, Vol. 120, pp. 207 (1998).
    [24]H. Fuchigami, A. Tsumura, and H. Koezuka, “Polythienylenevinylene thin‐film transistor with high carrier mobility,” Applied Physics Letters, Vol. 63, pp. 1372 (1993).
    [25]M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, “Organic Vapor Phase Deposition,” Advanced Material, Vol.10, pp.234-238 (1998).
    [26]E. M. Conwell, “Impurity Band Conduction in Germanium and Silicon,” Physical Review Letters, Vol. 103, pp. 51-61 (1956).
    [27]N. F. Mott, “On the transition to metallic conduction in semiconductors,” Canadian Journal of Physics. Vol. 34, pp. 1356 (1956).
    [28]S. Locci, “Modeling of Physical and Electrical Characteristics of Organic Thin Film Transistors,” Ph.D dissertation, University of Cagliari, (2009).
    [29]倪偵翔,「可溶性有機薄膜電晶體材料之開發」,碩士論文,國立中央大學,桃園 (2006).
    [30]D. Kumaki, T. Umeda, and S. Tokito, “Influence of H2O and O2 on threshold voltage shift in organic thin-film transistors: Deposition of SiOH on SiO2 gate-insulator surface,” Applied Physics Letters, Vol. 92, pp. 093309 (2008).
    [31]Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, pp. 271-275 (2006).
    [32]Y. Roichman, and N. Tessler, “Structures of polymer field-effect transistor: Experimental and numerical analyses,” Applied Physics Letters, Vol. 80, pp. 151 (2002).
    [33]I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, “High- Performance Bottom Electrode Organic Thin-Film Transistors,” IEEE Transactions on electron devices, Vol. 48, pp.1060-1064 (2001).
    [34]G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, “Contact resistance in organic thin film transistors,” Applied Physics Letters, Vol. 84, (2004).
    [35]S. M. Sze, Physics of Semiconductor Devices, Wiley, New York, CH. 7, (1981)
    [36]A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, “Field-effect transistor made from solution-procceed organic semiconductors,” Synthetic Metals, Vol. 88, pp. 37-55 (1997).
    [37]F. C. Chen, T. D. Chen, B. R. Zeng, and Y. W. Chung, “Influence of mechanical strain on the electrical properties of flexible organic thin-film transistors,“ Semiconductor Science and Technology, Vol. 26, pp. 034005 (2011).
    [38]D. J. Yun, S. H. Lim, T. W. Lee, and S. W. Rhee, “Fabrication of the flexiblepentacene thin-film transistors on 304 and 430 stainless steel (SS) substrate, “ Organic Electronics, Vol. 10, pp. 970-977 (2009)
    [39]K. Fukuda, T. Yokota, K. Kuribara, T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya, “Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics, “ Applied Physics Letters, Vol. 96, pp. 053302 (2010).
    [40]G Covarel, B Bensaid, X Boddaert, S Giljean, P Benaben, and P Louis, “Characterization of organic ultra-thin film adhesion on flexible substrate using scratch test technique, ” Surface and Coatings Technology, Vol. 54,pp. 493-497 (2009)
    [41]G. Dong, and Y. Qiu, “Pentacene thin-film transistors with Ta2O5 as the gate dielectric, “ Journal of the Korean Physical Society, Vol. 54, pp. 493-497 (2009)
    [42]Y. G. Seol, N. E. Lee, S.H. Park, and J. Y. Bae, “Improvement of mechanical and electrical stabilities of flexible organic thin-film transistor by using adhesive organic interlayer, “ Organic Electronics, Vol. 9, pp. 413-417 (2008)
    [43]沈裕淵,「製作於塑膠基板上之有機薄膜電晶體及其撓曲電性量測」,碩士論文,國立雲林科技大學,雲林 (2007).
    [44]Y. G. Seol, J. G. Lee, N. E. Lee, “Effects of different electroplated gate electrodes on electrical performances of flexible organic thin film transistor and flexibility improvement,” Organic Electronics, Vol. 8, pp. 513-521 (2007)

    無法下載圖示 全文公開日期 2017/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE