簡易檢索 / 詳目顯示

研究生: 周姝妤
Shu-Yu Jhou
論文名稱: 運動鞋品之結構設計與計算力學技術開發研究
Development of the Computational Simulation Techniques for Athletic Footwear Biomechanics and Structural Designs
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 林峻立
Chun-Li Lin
張家豪
Jia-Hao Chang
趙振綱
Ching-Kong Chao
許維君
Wei-Chun Hsu,
徐慶琪
Ching-Chi Hsu
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 179
中文關鍵詞: 有限元素分析運動鞋抓地力折彎靈活性吸震性能晶格結構
外文關鍵詞: footwear, traction, bending flexibility, shock absorption,
相關次數: 點閱:274下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今受益於人們對運動及健康意識的提升,帶動全球運動鞋市場快速發展及增大其市場需求。有別傳統的產品開發流程,透過數位化模式,將3D 列印、數位建模及有限元素分析等技術導入製鞋業,可縮短產品開發至上市時間、提升製程及設計上的彈性、提高產品品質及競爭力。此外,以有限元素分析技術模擬鞋品功能性測試,可有效減少傳統打樣測試的數量、時間及成本。本論文的目的為建立有限元素分析模型來評估運動鞋之抓地力、折彎靈活性及緩衝吸震能力之表現。
    在運動鞋抓地力分析中,透過足底壓力量測系統收取行進中之足底壓力分佈,並將此數據做為模擬之受力條件,探討不同鞋底紋路樣式對摩擦力及實際接觸面積之影響。由電腦數值模擬結果得知在乾式止滑情況下,摩擦力與實際接觸面積有線性正相關關係,鞋底紋路的夾角、寬度設計、幾何形狀及其擺放方向皆會影響摩擦力。
    在運動鞋中底折彎分析中,建立四種不同溝槽設計之中底模型,計算其彎曲力矩及應力,藉此探討中底溝槽設計及折彎軸對折彎性能及耐用度的影響。由電腦數值模擬結果得知在中底加入溝槽設計可減少彎曲力矩,增加其折彎靈活度。針對三種不同的溝槽設計可得知,較寬及長且方向沿著折彎軸的溝槽設計有較佳的折彎靈活度及耐用度。
    在三維列印晶格結構之中底元件衝擊分析中,利用有限元素顯式求解法計算晶格結構受衝擊時之變形量及沖頭加速度,藉此探討晶格結構設計對緩衝性能的影響。由電腦數值模擬結果得知將微結構直徑尺寸縮小、改變晶格結構樣式設計、整體微結構高度增加,這些參數改變都會增加晶格結構之吸震性能。此外,不同於單一晶格樣式排列之多層晶格結構,混合晶格樣式排列之多層晶格結構可在結構受衝擊時同時兼顧變形量及吸震性能。
    本論文之研究成果可提供給製鞋產業於產品開發前期應用的依據,並使產品開發設計者不僅能優化產品性能也能提升開發效率。


    With the rising concern towards exercising and increasing health consciousness, the demand for athlete footwear products has accelerated worldwide. The digital product development process, including three-dimensional (3D) printing and computational modelling with finite element analysis (FEA), has become a promising solution for manufacturing previously impossible geometries, optimizing the product performance and manufacturing process, and achieving faster time to market. Furthermore, the use of FEA enables the footwear industry to simulate the functionalities of athletic footwear without the necessity to manufacture physical prototypes. This thesis detailes the development of the FEA process, evaluating the performance of footwear traction, bending flexibility, and shock absorption.
    To begin with traction analysis, an approach that integrated digital sculpting technology and the finite element method with gait analysis was employed to evaluate the traction performance of athletic footwear under subject-specific loading. The friction force and actual contact area between the shoe and the ground during the gait were predicted. The results suggested that both the tread design, geometric shape, and orientation contributed to the friction force in dry condition.
    For the bending analysis, the midsoles with different groove cut designs were developed to investigate how the groove cut affected their bending response by predicting their bending moment and von-Mises stress. Overall, adding a groove cut could improve the flexibility of the midsole. The results suggested that a midsole with a wider and longer groove cut aligned with the bending axis could achieve better flexibility and durability.
    In the shock absorption analysis, explicit FEA was used to simulate the dynamic impact response of various 3D printed lattice structures. The shock absorption capability of lattice structures was quantified by predicting their deformation and g-max score under an impact load. The results suggested that reducing the strut diameter, altering the strut length and number, or increasing the structural height of the single-cell morphology lattice designs could improve their shock absorption capability. Furthermore, multi-morphology lattice designs would be the solution to achieve both a lower g-max score and without significantly increasing their deformation.
    The FEA process presented in this thesis can be adopted in the footwear industry for product development in the early design phases to optimize footwear design in a more efficient and less costly product development process.

    中文摘要 I Abstract II Acknowledgements III List of Abbreviations IV Chapter 1. Introduction 1 1.1 Research Content 1 1.2 Research Aim and Objectives 2 1.3 Structure of the Thesis 2 Chapter 2. Literature Review 4 2.1 Introduction of Athlete Footwear 4 2.1.1 Anatomy of Athlete Footwear 4 2.1.2 The Function Requirement of an Athlete Footwear 5 2.2 Introduction of 3D Printed Lattice Structure 6 2.2.1 3D Printed Technique 6 2.2.2 Lattice Structure 10 2.3 Introduction of Finite Element Method 11 2.3.1 Implicit Solution Method 13 2.3.2 Explicit Solution Method 13 2.4 The FEA and Experimental Measurement in Footwear Design 14 2.4.1 Footwear Traction Analysis 14 2.4.2 Footwear Shock Absorption Analysis 17 2.4.3 Footwear Flexibility Analysis 19 2.5 The FEA and Experimental Measurement in Shock Absorption of 3D Printed Lattice Structure 22 2.6 Summery 23 Chapter 3. A Computational Simulation Combing Plantar Pressure Footprint for Athlete Footwear Traction Analysis 25 3.1 Introduction 25 3.2 Aim and Objectives 25 3.3 Study Design 26 3.4 Dynamic Plantar Pressure Measurement 26 3.4.1 Human Gait Cycle 27 3.4.2 Experiment Equipment 29 3.4.3 Subject and Experiment Protocol 30 3.4.4 Data Processing and Analysis 30 3.5 Finite Element Analysis 33 3.5.1 Development of Shoe-ground Model 33 3.5.2 Finite Element Modelling 36 3.5.3 Simulated Condition and Data Output 38 3.5.4 Convergence Analysis 41 3.5.5 Finite Element Results 42 3.6 Mechanical Standard Test 45 3.6.1 Measurement Device 45 3.6.2 Testing Specimen and Floor 46 3.6.3 Operating Procedure 47 3.6.4 The Results of Friction Measurement 48 3.7 Experimental-computational Correlation 49 3.8 Discussion 49 3.9 Summary 51 Chapter 4. Application of Finite Element Analysis Combing Plantar Pressure Footprint to Evaluate the Footwear Traction Performance. 53 4.1 Introduction 53 4.2 Aim and Objectives 53 4.3 Case study 1: The Predictive Friction Force and Actual Contact Area of Computational Footwear Model with Different Tread Patterns 54 4.3.1 Introduction 54 4.3.2 Material and Methods 54 4.3.3 Results 57 4.3.4 Discussion 60 4.3.5 Summary 61 4.4 Case study 2: A Comparison of the Tread Geometry Shape in Footwear Traction Performance 62 4.4.1 Introduction 62 4.4.2 Material and Methods 62 4.4.3 Results 65 4.4.4 Discussion 66 4.4.5 Summary 67 4.5 Case study 3: A Comparison of Different Simulation Modelling Methods in Footwear Traction Analysis 67 4.5.1 Introduction 68 4.5.2 Material and Methods 68 4.5.3 Results 74 4.5.4 Discussion 77 4.5.5 Summary 77 4.6 Chapter Summary 78 Chapter 5. A Computational Simulation Process for Athletic Footwear Bending Stiffness Analysis 79 5.1 Introduction 79 5.2 Aim and Objectives 79 5.3 Experiment Procedure for Determination of Stress–strain Curves 80 5.4 Finite Element Approach 81 5.4.1 Finite Element Modelling 81 5.4.2 Simulation Conditions and Data Output 83 5.4.3 Convergence Analysis 85 5.4.4 Finite Element Results 86 5.5 Discussion 89 5.6 Summary 90 Chapter 6. A Computational Simulation Process for the Shock Absorption Capability Analysis of 3D Printed Midsole Component under Dynamic Impact 91 6.1 Introduction 91 6.2 Aim and Objectives 91 6.3 Explicit Finite Element Analysis 92 6.3.1 Design of Lattice Structure 92 6.3.2 Finite Element Modelling 95 6.3.3 Dynamic Simulation and Data Processing 98 6.3.4 Convergence Analysis 100 6.3.5 Finite Element Results 101 6.4 Mechanical Shock Absorption Standard Test 104 6.4.1 Measurement Device 104 6.4.2 Specimens Fabrication 105 6.4.3 Operating Procedure 107 6.4.4 The Results of Mechanical Test Measurement 107 6.5 Experimental-computational Correlation 109 6.6 Discussion 110 6.7 Summary 112 Chapter 7. Application of Dynamic Shock Absorption Analysis 114 7.1 Introduction 114 7.2 Aim and Objectives 114 7.3 Case study 1: The Comparison of Material Property in Shock Absorption and Collapse Response of Sandwich Structures under Dynamic Impact 114 7.3.1 Introduction 115 7.3.2 Material and methods 115 7.3.3 Results 116 7.3.4 Discussion 119 7.3.5 Summary 119 7.4 Case study 2: Shock Absorption Capability of Sandwich Structure with the Multi-Morphology Lattice Core under Dynamic Impact 120 7.4.1 Introduction 120 7.4.2 Material and Methods 121 7.4.3 Results 124 7.4.4 Discussion 129 7.4.5 Summary 129 7.5 Chapter Summary 130 Chapter 8. Conclusion and Future Work 131 8.1 Conclusion 131 8.2 Future Work 132 8.2.1 Influence of Ground Conditions on Traction Performance 132 8.2.2 Representative Loading Conditions 132 8.2.3 Additional Experimental Validation for FEA 132 8.2.4 Further Development of Modelling Techniques 133 8.2.5 Practical Application of Lattice Structure 133 Reference 134 Appendix A Plantar pressure data processing 148 Step 1 Plantar pressure data export 148 Step 2 Regions of interest identification 150 Step 3 Development of corresponding regions on FE insole model 151 Step 4 Plantar pressure data recalculation 152 Step 5 Contact pressure data reordering 153

    1. Insights™, F.B. "Sports Footwear Market Size, Share & Industry Analysis, By Gender (Men, Women, and Kids), End-User (Professional Users and Recreational Users), Distribution Channel (Online and Offline), and Regional Forecasts, 2019 - 2026"; Fortune Business Insights™ Pvt. Ltd.: India, 2020.
    2. Cui, Q.; Yue, F. Parametric Design of Personalized 3D Printed Sneakers. In Proceedings of the 2019 DigitalFUTURES; Springer Singapore: 2020; pp. 82-92.
    3. Levine, D. Athletic Shoe Evaluation. In Athletic Footwear and Orthoses in Sports Medicine, Werd, M.B., Knight, E.L., Eds.; Springer New York: New York, 2010; pp. 55-62.
    4. Clifton, P.; Subic, A.; Burton, M.; Bedford, A.; Schembri, A. Functional characteristics of running shoes for different user groups. Proceedings of the International Conference on Engineering Design, ICED 2013, 1, 299-308.
    5. McPoil, T.G. Athletic footwear: Design, Performance and Selection Issues. Journal of Science and Medicine in Sport 2000, 3, 260-267.
    6. Reinschmidt, C.; Nigg, B.M. Current Issues in the Design of Running and Court Shoes. Sportverletzung Sportschaden : Organ der Gesellschaft für Orthopädisch-Traumatologische Sportmedizin 2000, 14, 71-81.
    7. Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Footwear Traction and Lower Extremity Joint Loading. The American Journal of Sports Medicine 2010, 38, 1221-1228.
    8. Wannop, J.W.; Worobets, J.T.; Stefanyshyn, D.J. Footwear Traction and Lower Extremity Joint Loading. The American Journal of Sports Medicine 2010, 38, 1221-1228.
    9. Maropoulos, S.; Korakidis, G.; Fasnakis, D.; Papanikolaou, S.; Papagiannaki, M.; Arabazti, F.; Nagit, G.; Dodun, O.; Merticaru, V.; Coteata, M.; et al. The Effect of Cushioning System on Impact Attenuation of Athletic Footwear. In Proceedings of the 21st Innovative Manufacturing Engineering & Energy International Conference – IManE&E 2017, Iasi, Romania, 2017; p. 08018.
    10. Chen, C.H.; Tu, K.H.; Liu, C.; Shiang, T.Y. Effects of Forefoot Bending Elasticity of Running Shoes on Gait and Running Performance. Human Movement Science 2014, 38, 163-172.
    11. Gross, B.C.; Erkal, J.L.; Lockwood, S.Y.; Chen, C.; Spence, D.M. Evaluation of 3D Printing and its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry 2014, 86, 3240-3253.
    12. Walker, J.L.; Santoro, M. Chapter 9 - Processing and Production of Bioresorbable Polymer Scaffolds for Tissue Engineering. In Bioresorbable Polymers for Biomedical Applications, Perale, G., Hilborn, J., Eds.; Woodhead Publishing: 2017; pp. 181-203.
    13. Viera Rey, D.F.; St-Pierre, J.-P. Chapter 6 - Fabrication Techniques of Tissue Engineering Scaffolds. In Handbook of Tissue Engineering Scaffolds: Volume One, Mozafari, M., Sefat, F., Atala, A., Eds.; Woodhead Publishing: 2019; pp. 109-125.
    14. Zhu, W.; Ock, J.; Ma, X.; Li, W.; Chen, S. Chapter 2 - 3D Printing and Nanomanufacturing. In 3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine; Academic Press: 2015; pp. 25-55.
    15. Farahani, R.D.; Therriault, D.; Dubé, M.; Bodkhe, S.; Mahdavi, M. 6.13 Additive Manufacturing of Multifunctional Nanocomposites and Composites. In Comprehensive Composite Materials II, Beaumont, P.W.R., Zweben, C.H., Eds.; Elsevier: Amsterdam, Netherlands, 2018; Volume 6, pp. 380-407.
    16. Song, X.; Zhai, W.; Huang, R.; Fu, J.; Fu, M.; Li, F. Metal-Based 3D-Printed Micro Parts & Structures. In Reference Module in Materials Science and Materials Engineering Elsevier: 2020.
    17. Chen, Z.; Cao, S.; Wu, X.; Davies, C.H.J. Chapter 13 - Surface Roughness and Fatigue Properties of Selective Laser Melted Ti–6Al–4V Alloy. In Additive Manufacturing for the Aerospace Industry, Froes, F., Boyer, R., Eds.; Elsevier: 2019; pp. 283-299.
    18. Jiao, L.; Chua, Z.Y.; Moon, S.K.; Song, J.; Bi, G.; Zheng, H. Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts. Nanomaterials (Basel) 2018, 8.
    19. Mattana, G.; Loi, A.; Woytasik, M.; Barbaro, M.; Noël, V.; Piro, B. Inkjet-Printing: A New Fabrication Technology for Organic Transistors. Advanced Materials Technologies 2017, 2, 1700063.
    20. Hagedorn, Y. Chapter 6 - Laser Additive Manufacturing of Ceramic Components. In Laser Additive Manufacturing, Brandt, M., Ed.; Woodhead Publishing: 2017; pp. 163-180.
    21. Seharing, A.; Azman, A.H.; Abdullah, S. A Review on Integration of Lightweight Gradient Lattice Structures in Additive Manufacturing Parts. Advances in Mechanical Engineering 2020, 12, 168781402091695.
    22. Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2 ed.; Cambridge University Press: Cambridge, 1997.
    23. Huang, Y.; Xue, Y.; Wang, X.; Han, F. Mechanical Behavior of Three-dimensional Pyramidal Aluminum Lattice Materials. Materials Science and Engineering: A 2017, 696, 520-528.
    24. Han, Y.; Lu, W.F. A Novel Design Method for Nonuniform Lattice Structures Based on Topology Optimization. Journal of Mechanical Design 2018, 140.
    25. Gibson, L.J. Modelling the Mechanical Behavior of Cellular Materials. Materials Science and Engineering: A 1989, 110, 1-36.
    26. Habib, F.N.; Iovenitti, P.; Masood, S.H.; Nikzad, M. Fabrication of Polymeric Lattice Structures for Optimum Energy Absorption using Multi Jet Fusion Technology. Materials & Design 2018, 155, 86-98.
    27. Brennan-Craddock, J.; Brackett, D.; Wildman, R.; Hague, R. The Design of Impact Absorbing Structures for Additive Manufacture. Journal of Physics: Conference Series 2012, 382, 012042.
    28. Tancogne-Dejean, T.; Spierings, A.B.; Mohr, D. Additively-manufactured Metallic Micro-lattice Materials for High Specific Energy Absorption under Static and Dynamic Loading. Acta Materialia 2016, 116, 14-28.
    29. Dong, G.; Tessier, D.; Zhao, Y.F. Design of Shoe Soles Using Lattice Structures Fabricated by Additive Manufacturing. In Proceedings of the International Conference on Engineering Design, ICED 2019, Delft, The Netherlands 2019; pp. 719-728.
    30. Tang, L.; Wang, L.; Bao, W.; Zhu, S.; Li, D.; Zhao, N.; Liu, C. Functional Gradient Structural Design of Customized Diabetic Insoles. Journal of the Mechanical Behavior of Biomedical Materials 2019, 94, 279-287.
    31. Teixeira, R.; Coelho, C.; Oliveira, J.; Gomes, J.; Pinto, V.V.; Ferreira, M.J.; Nóbrega, J.M.; Silva, A.F.d.; Carneiro, O.S. Towards Customized Footwear with Improved Comfort. Materials 2021, 14, 1738.
    32. Athanasiou, L.S.; Fotiadis, D.I.; Michalis, L.K. Chapter 10 - Structure and Mechanical Behavior of Atherosclerotic Plaque. In Atherosclerotic Plaque Characterization Methods Based on Coronary Imaging, Athanasiou, L.S., Fotiadis, D.I., Michalis, L.K., Eds.; Academic Press: Oxford, 2017; pp. 181-198.
    33. Becker, A.A. An Introductory Guide to Finite Element Analysis; Professional engineering publishing: London, 2004.
    34. Nolan, D.; Lally, C. Chapter 16 - Coupled Finite Element–Agent-Based Models for the Simulation of Vascular Growth and Remodeling. In Numerical Methods and Advanced Simulation in Biomechanics and Biological Processes, Cerrolaza, M., Shefelbine, S.J., Garzón-Alvarado, D., Eds.; Academic Press: 2018; pp. 283-300.
    35. Wriggers, P. Chapter 1 - Introduction. In Nonlinear Finite Element Methods; Springer Berlin Heidelberg: 2001.
    36. Kurowski, P.M. Chapter 1: Introduction. In Finite Element Analysis for Design Engineers; SAE International: 2016.
    37. Yang, K.H. Chapter 8 - Modal and Transient Dynamic Analysis. In Basic Finite Element Method as Applied to Injury Biomechanics, Yang, K.-H., Ed.; Academic Press: 2018; pp. 309-382.
    38. Christensen, J.; Bastien, C. Chapter 2 - Numerical Techniques for Structural Assessment of Vehicle Architectures. In Nonlinear Optimization of Vehicle Safety Structures, Christensen, J., Bastien, C., Eds.; Butterworth-Heinemann: Oxford, 2016; pp. 51-105.
    39. Yang, D.Y.; Jung, D.W.; Song, I.S.; Yoo, D.J.; Lee, J.H. Comparative Investigation into Implicit, Explicit, and Iterative Implicit/Explicit Schemes for the Simulation of Sheet-metal Forming Processes. Journal of Materials Processing Technology 1995, 50, 39-53.
    40. Esgandari, M.; Olatunbosun, O. Implicit–explicit co-simulation of brake noise. Finite Elements in Analysis and Design 2015, 99, 16-23.
    41. LSTC. LS-DYNA® Analysis for Structural Mechanics. Available online: (accessed on
    42. Cheung, J.T.M.; Yu, J.; Wong, D.W.-C.; Zhang, M. Current Methods in Computer-aided Engineering for Footwear Design. Footwear Science 2009, 1, 31-46.
    43. Iraqi, A.; Vidic, N.S.; Redfern, M.S.; Beschorner, K.E. Prediction of Coefficient of Friction Based on Footwear Outsole Features. Applied Ergonomics 2020, 82, 102963.
    44. Jones, T.; Iraqi, A.; Beschorner, K. Performance Testing of Work Shoes Labeled as Slip Resistant. Applied Ergonomics 2018, 68, 304-312.
    45. Li, K.W.; Meng, F.; Zhang, W. Friction between Footwear and Floor Covered with Solid Particles under Dry and Wet Conditions. International Journal of Occupational Safety and Ergonomics 2014, 20, 43-53.
    46. Chang, W.R.; Grönqvist, R.; Leclercq, S.; Brungraber, R.; Mattke, U.; Strandberg, L.; Thorpe, S.; Myung, R.; Makkonen, L.; Courtney, T. The Role of Friction in the Measurement of Slipperiness, Part 2: Survey of Friction Measurement Devices. Ergonomics 2001, 44, 1233-1261.
    47. Li, K.W.; Chen, C.J. The Effect of Shoe Soling Tread Groove Width on the Coefficient of Friction with Different Sole Materials, Floors, and Contaminants. Applied Ergonomics 2004, 35, 499-507.
    48. Li, K.W.; Chen, C.J. Effects of Tread Groove Orientation and Width of the Footwear Pads on Measured Friction Coefficients. Safety Science 2005, 43, 391-405.
    49. Li, K.W.; Wu, H.H.; Lin, Y.C. The Effect of Shoe Sole Tread Groove Depth on the Friction Coefficient with Different Tread Groove Widths, Floors and Contaminants. Applied ergonomics 2006, 37, 743-748.
    50. Mohamed, M.K.; Samy, A.; Ali, W.Y. Friction Coefficient of Rubber Shoe Soles Sliding Against Ceramic Flooring. KGK Kautschuk Gummi Kunststoffe 2011, 64, 44-49.
    51. Shibataa, K.; Abea, S.; Yamaguchia, T.; Hokkirigwaa, K. Evaluation for Slip Resistance of Floor Sheets and Shoe Sole with Newly Developed Mobile Friction Measurement System. In Proceedings of the 19th Triennial Congress of the IEA, Melbourne , Australia, 2015.
    52. Tan, A.T.; Chee, A. Numerical Simulation on Outsole of Basketball Shoes Numerical Simulation on Outsole of Basketball Shoes. In Proceedings of the EURECA 2013, Malaysia, 2014.
    53. Hale, J.; O'Connell, A.; Lewis, R.; Carré, M.J.; Rongong, J.A. An Evaluation of Shoe Tread Parameters using FEM. Tribology International 2021, 153, 106570.
    54. Huang, Q.; Hu, M.; Xu, B.; Wu, J.; Zhou, J. Feasibility of Application of Finite Element Method in Shoe Slip Resistance Test. Leather and Footwear Journal 2018, 18, 139-148.
    55. K.E., B. Development of a Computational Model for Shoe-floor Contaminant Friction, University of Pittsburgh, 2008.
    56. Matteo, M.; Signetti, S.; Mazzanti, B.; Bruzzi, P.; Pugno, N.; Colonna, M. Effect of Material Elastic Properties and Surface Roughness on Grip Performances of Ski Boot Soles under Wet and Icy Conditions. International Journal of Industrial Ergonomics 2017, 61, 62-70.
    57. Moghaddam, S.R.M.; Acharya, A.; Redfern, M.S.; Beschorner, K.E. Predictive Multiscale Computational Model of Shoe-floor Coefficient of Friction. Journal of Biomechanics 2018, 66, 145-152.
    58. Lafortune, M.; Hennig, E. Cushioning Properties of Footwear during Walking: Accelerometer and Force Platform Measurements. Clinical Biomechanics 1992, 7 3, 181-184.
    59. Kulmala, J.P.; Kosonen, J.; Nurminen, J.; Avela, J. Running in Highly Cushioned Shoes Increases Leg Stiffness and Amplifies Impact Loading. Scientific Reports 2018, 8, 17496.
    60. Price, C.; Cooper, G.; Graham-Smith, P.; Jones, R. A Mechanical Protocol to Replicate Impact in Walking Footwear. Gait Posture 2014, 40, 26-31.
    61. Chiu, H.T.; Shiang, T.Y. Effects of Insoles and Additional Shock Absorption Foam on the Cushioning Properties of Sport Shoes. Journal of Applied Biomechanics 2007, 23, 119-127.
    62. Creaby, M.W.; May, K.; Bennell, K.L. Insole Effects on Impact Loading during Walking. Ergonomics 2011, 54, 665-671.
    63. Liu, L. Comparison of Shock Absorption Performance of Basketball Shoe with Different Sole Structures. Leather and Footwear Journal 2018, 18, 45-52.
    64. Huang, Y. The Finite Element Analysis on Shock Absorption Test of Air-cushion in Shoes, National Chiao Tung University Taiwan, 2009.
    65. Cui, F.; Lee, H.P.; Zeng, X. Impact Analysis of Shoes using the Structural Intensity Technique. In Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, Berlin, Heidelberg, 2009//, 2009; pp. 2081-2084.
    66. Chen, X.; Hao, X.; Zhao, S. Dynamic Numerical Analysis of the “Foot – Training Shoe“Model. Procedia Manufacturing 2015, 3, 5519-5526.
    67. Stefanyshyn, D.J.; Wannop, J.W. The Influence of Forefoot Bending Stiffness of Footwear on Athletic Injury and Performance. Footwear Science 2016, 8, 51-63.
    68. Willwacher, S.; Konig, M.; Potthast, W.; Bruggemann, G.P. Does Specific Footwear Facilitate Energy Storage and Return at the Metatarsophalangeal Joint in Running? Journal of Applied Biomechanics 2013, 29, 583-592.
    69. Roy, J.P.; Stefanyshyn, D.J. Shoe Midsole Longitudinal Bending Stiffness and Running Economy, Joint Energy, and EMG. Medicine & Science in Sports & Exercise 2006, 38, 562-569.
    70. Oh, K.; Park, S. The Bending Stiffness of Shoes is Beneficial to Running Energetics if it does not Disturb the Natural MTP Joint Flexion. Journal of Biomechanics 2017, 53, 127-135.
    71. Fraser, S.; Harland, A.; Smith, P.; Lucas, T. A Study of Football Footwear Bending Stiffness. Procedia Engineering 2014, 72, 315-320.
    72. Hladnik, J.; Resman, F.; Jerman, B. Flexion Stiffness of a Racing Cross-country Ski Boot. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology 2014, 228, 223-232.
    73. Krumm, D.; Schwanitz, S.; Odenwald, S. Development and Reliability Quantification of a Novel Test Set-up for Measuring Footwear Bending Stiffness. Sports Engineering 2013, 16, 13-19.
    74. Park, C.C.; Choi, W.S.; Lee, J.N. Effects of Hardness and Thickness of Polyurethane Foam Midsoles on Bending Properties of the Footwear. Fibers and Polymers 2007, 8, 192-197.
    75. G.E., M. Boundary Conditions for the Virtual Testing of Athletic Footwear, Loughborough University, 2007.
    76. M., F. A Method of Using Computer Simulation to Assess the Functional Performance of Football Boots, Loughborough University, Englan, 2015.
    77. Nishiwaki, T. Running Shoe Sole Stiffness Evaluation Method Based on Eigen Vibration Analysis. Sports Technology 2008, 1, 76-82.
    78. Nishiwaki, T.; Nakaya, S. Footwear Sole Stiffness Evaluation Method Corresponding to Gait Patterns Based on Eigenvibration Analysis. Footwear Science 2009, 1, 95-101.
    79. Papagiannis, P.; Koutkalaki, Z.; Azariadis, P.; Papanikos, P. Definition and Evaluation of Plantar Mechanical Comfort for the Support of Footwear Design. Computer-Aided Design and Applications 2015, 13, 162-172.
    80. Papagiannis, P.; Azariadis, P.; Papanikos, P. Evaluation and Optimization of Footwear Comfort Parameters using Finite Element Analysis and a Discrete Optimization Algorithm. In Proceedings of the 17th World Textile Conference AUTEX 2017, 2017/10, 2017; p. 162010.
    81. E., A.P.Y.; P., W.A.; T., Y.; P., B.A.; J., J.; B., B. Optimization of Mechanical Parameters on Outsole Shoes Orthotic Comfort Using Finite Element Analysis. In Proceedings of the 2019 International Biomedical Instrumentation and Technology Conference (IBITeC), 23-24 Oct. 2019, 2019; pp. 31-36.
    82. Askari, G.H.; Dar, U.A.; Abid, M.; Nutkani, M.B.; Pasha, R.A.; Jamil, A. Energy Absorption and Compression Behaviour of Polymeric 3D Printed Lattice Structures - Experimental and Numerical Study. In Proceedings of the 2021 International Bhurban Conference on Applied Sciences and Technologies (IBCAST) Islamabad, Pakistan, 2021; pp. 198-203.
    83. Chen, X.; Ji, Q.; Wei, J.; Tan, H.; Yu, J.; Zhang, P.; Laude, V.; Kadic, M. Light-weight Shell-lattice Metamaterials for Mechanical Shock Absorption. International Journal of Mechanical Sciences 2020, 169, 105288.
    84. Dar, U.A.; Mian, H.H.; Abid, M.; Topa, A.; Sheikh, M.Z.; Bilal, M. Experimental and Numerical Investigation of Compressive Behavior of Lattice Structures Manufactured through Projection Micro Stereolithography. Materials Today Communications 2020, 25, 101563.
    85. Niknam, H.; Akbarzadeh, A.H. Graded Lattice Structures: Simultaneous Enhancement in Stiffness and Energy Absorption. Materials & Design 2020, 196, 109129.
    86. Wang, S.; Wang, J.; Xu, Y.; Zhang, W.; Zhu, J. Compressive Behavior and Energy Absorption of Polymeric Lattice Structures Made by Additive Manufacturing. Frontiers of Mechanical Engineering 2019, 15, 319-327.
    87. Shen, F.; Yuan, S.; Guo, Y.; Zhao, B.; Bai, J.; Qwamizadeh, M.; Chua, C.K.; Wei, J.; Zhou, K. Energy Absorption of Thermoplastic Polyurethane Lattice Structures via 3D Printing: Modeling and Prediction. International Journal of Applied Mechanics 2016, 08, 1640006.
    88. Bai, L.; Gong, C.; Chen, X.; Sun, Y.; Xin, L.; Pu, H.; Peng, Y.; Luo, J. Mechanical Properties and Energy Absorption Capabilities of Functionally Graded Lattice Structures: Experiments and Simulations. International Journal of Mechanical Sciences 2020, 182, 105735.
    89. Duan, Y.; Du, B.; Shi, X.; Hou, B.; Li, Y. Quasi-static and Dynamic Compressive Properties and Deformation Mechanisms of 3D Printed Polymeric Cellular Structures with Kelvin Cells. International Journal of Impact Engineering 2019, 132, 103303.
    90. Turner, A.J.; Al Rifaie, M.; Mian, A.; Srinivasan, R. Low-Velocity Impact Behavior of Sandwich Structures with Additively Manufactured Polymer Lattice Cores. Journal of Materials Engineering and Performance 2018, 27, 2505-2512.
    91. Al Rifaie, M.; Mian, A.; Katiyar, P.; Majumdar, P.; Srinivasan, R. Drop-Weight Impact Behavior of Three-Dimensional Printed Polymer Lattice Structures with Spatially Distributed Vertical Struts. Journal of Dynamic Behavior of Materials 2019, 5, 387-395.
    92. Kardel, K.; Ghaednia, H.; Carrano, A.L.; Marghitu, D.B. Experimental and Theoretical Modeling of Behavior of 3D-printed Polymers under Collision with a Rigid Rod. Additive Manufacturing 2017, 14, 87-94.
    93. Alamdari, A.; Krovi, V.N. A Review of Computational Musculoskeletal Analysis of Human Lower Extremities. In Human Modeling for Bio-Inspired Robotics, Ueda, J., Kurita, Y., Eds.; Academic Press: 2017; pp. 37-73.
    94. Neumann, D.A. Chapter 15 - Kinesiology of Walking. In Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation; United States, 2010; pp. 627-681.
    95. Silva, L.M.; Stergiou, N. Chapter 7 - The Basics of Gait Analysis. In Biomechanics and Gait Analysis, Stergiou, N., Ed.; Academic Press: 2020; pp. 225-250.
    96. ISO. Footwear — Test Method for Slip Resistance. Personal Protective Equipment 2012, ISO 13287.
    97. Rigas, C. Spatial parameters of gait related to the position of the foot on the ground. Prosthetics and Orthotics International 1984, 8, 130-134.
    98. Menz, H.B.; Latt, M.D.; Tiedemann, A.; Mun San Kwan, M.; Lord, S.R. Reliability of the GAITRite® Walkway System for the Quantification of Temporo-spatial Parameters of Gait in Young and Older People. Gait & Posture 2004, 20, 20-25.
    99. Verdejo, R.; Mills, N.J. Heel-shoe Interactions and the Durability of EVA Foam Running-shoe Midsoles. Journal of Biomechanics 2004, 37, 1379-1386.
    100. Benkahla, J.; Baranger, T.N.; Issartel, J. Experimental and Numerical Simulation of Elastomeric Outsole Bending. Experimental Mechanics 2012, 52, 1461-1473.
    101. Chen, W.M.; Lee, S.J.; Lee, P.V. Plantar Pressure Relief under the Metatarsal Heads: Therapeutic Insole Design using Three-dimensional Finite Element Model of the Foot. Journal of Biomechanics 2015, 48, 659-665.
    102. Cheung, J.; Zhang, M. Finite Element Modeling of the Human Foot and Footwear. In Proceedings of the 2006 ABAQUS Users’ Conference, Cambridge, Massachusetts, USA, 2006.
    103. Puso, M.A. A Highly Efficient Enhanced Assumed Strain Physically Stabilized Hexahedral Element. International Journal for Numerical Methods in Engineering 2000, 49, 1029-1064.
    104. Mohamed, M.K.; Samy, A.; Ali, W.Y. Friction Coefficient of Rubber Shoes Sliding against Ceramic Flooring. KGK Kautschuk Gummi Kunststoffe 2012, 65, 52-57.
    105. Miller, J.M. “Slippery” Work Surfaces: Towards a Performance Definition and Quantitative Coefficient of Friction Criteria. Journal of Safety Research 1983, 14, 145-158.
    106. Chang, K.H. Chapter 7 - Structural Analysis. In e-Design, Chang, K.-H., Ed.; Academic Press: Boston, 2015; pp. 325-390.
    107. Li, K.W.; Chang, W.-R.; Leamon, T.B.; Chen, C.J. Floor Slipperiness Measurement: Friction Coefficient, Roughness of Floors, and Subjective Perception under Spillage Conditions. Safety Science 2004, 42, 547-565.
    108. Grönqvist, R.; Hirvonen, M.; Tohv, A. Evaluation of Three Portable Floor Slipperiness Testers. International Journal of Industrial Ergonomics 2000, 25, 85-95.
    109. Link, R.E.; Powers, C.M.; Kulig, K.; Flynn, J.; Brault, J. Repeatability and Bias of Two Walkway Safety Tribometers. Journal of Testing and Evaluation - J TEST EVAL 1999, 27.
    110. Asim, M.; Jawaid, M.; Saba, N.; Ramengmawii; Nasir, M.; Sultan, M.T.H. Chapter 1 - Processing of Hybrid Polymer Composites—A Review. In Hybrid Polymer Composite Materials, Thakur, V.K., Thakur, M.K., Gupta, R.K., Eds.; Woodhead Publishing: 2017; pp. 1-22.
    111. Nair, A.B.; Joseph, R. Chapter 9 - Eco-friendly Bio-composites using Natural Rubber (NR) Matrices and Natural Fiber Reinforcements. In Chemistry, Manufacture and Applications of Natural Rubber, Kohjiya, S., Ikeda, Y., Eds.; Woodhead Publishing: 2014; pp. 249-283.
    112. ASTM. Standard method of test for using a portable inclinable articulated strut slip tester (PIAST). Annual Book of ASTM Standards 2001, F-1677-96.
    113. Burnfield, J.M.; Powers, C.M. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Ergonomics 2006, 49, 982-995.
    114. Li, K.; Meng, F.; Zhang, W. Friction Between Footwear and Floor Covered With Solid Particles Under Dry and Wet Conditions. International journal of occupational safety and ergonomics 2014, 20, 43-53.
    115. Aschan, C.; Hirvonen, M.; Mannelin, T.; Rajamäki, E. Development and validation of a novel portable slip simulator. Applied Ergonomics 2005, 36, 585-593.
    116. SATRA. SATRA TM144: Friction (slip resistance) of Footwear and Floorings. 2011.
    117. Beschorner, K.; Redfern, M.; Porter, W.; Debski, R. Effects of slip testing parameters on measured coefficient of friction. Applied ergonomics 2007, 38, 773-780.
    118. Redfern, M.S.; Bidanda, B. Slip resistance of the shoe-floor interface under biomechanically-relevant conditions. Ergonomics 1994, 37, 511-524.
    119. Grönqvist, R.; Matz, S.; Hirvonen, M. Assessment of shoe-floor slipperiness with respect to contact-time-related variation in friction during heel strike. Occupational Ergonomics 2002, 3, 197-208.
    120. Bowden, F.P.; Leben, L. Nature of Sliding and the Analysis of Friction. Nature 1938, 141, 691-692.
    121. Bowden, F.P.; Tabor, D. Friction: An Introduction to Tribology; Anchor Press: 1973.
    122. Dowson, D. Chapter - 1 Introduction. In Tribology Series, Gahr, K.-H.Z., Ed.; Elsevier: 1987; Volume 10, pp. 1-7.
    123. Czichos, H. Chapter 1 - Introduction to Friction and Wear. In Composite Materials Series, Friedrich, K., Ed.; Elsevier: 1986; Volume 1, pp. 1-23.
    124. Derieux, J.B. The Coefficient of Friction of Rubber. Rubber Chemistry and Technology 1935, 8, 441-442.
    125. Sato, S.; Yamaguchi, T.; Shibata, K.; Nishi, T.; Moriyasu, K.; Harano, K.; Hokkirigawa, K. Dry Sliding Friction and Wear Behavior of Thermoplastic Polyurethane Against Abrasive Paper. Biotribology 2020, 23, 100130.
    126. Kogut, L.; Etsion, I. A Static Friction Model for Elastic-Plastic Contacting Rough Surfaces. Journal of Tribology 2004, 126, 34-40.
    127. Krim, J.; Stuewer, R. Resource Letter: FMMLS-1: Friction at Macroscopic and Microscopic Length Scales. American Journal of Physics 2002, 70, 890-897.
    128. Kanaga Karuppiah, K.S.; Bruck, A.L.; Sundararajan, S. Evaluation of Friction Behavior and its Contact-area Dependence at the Micro-and Nano-scales. Tribology Letters 2009, 36, 259-267.
    129. Song, B.; Yan, S. Relationship between the Real Contact Area and Contact Force in Pre-sliding Regime. Chinese Physics B 2017, 26, 074601.
    130. Yamaguchi, T.; Sugawara, T.; Takahashi, M.; Shibata, K.; Moriyasu, K.; Nishiwaki, T.; Hokkirigawa, K. Effect of Porosity and Normal Load on Dry Sliding Friction of Polymer Foam Blocks. Tribology Letters 2018, 66.
    131. Johnson, K.L.; Kendall, K.; Roberts, A.D. Surface Energy and the Contact of Elastic Solids. Proceedings of the Royal Society of London. A Mathematical and Physical Sciences 1971, 324, 301-313.
    132. Roy Chowdhury, S.K.; Ghosh, P. Adhesion and Adhesional Friction at the Contact between Solids. Wear 1994, 174, 9-19.
    133. Barry, B.; Milburn, P. Tribology, friction and traction: understanding shoe-surface interaction. Footwear Science 2013, 5, 137-145.
    134. Wang, H.; Chen, L. A General Model for Dynamic Contact Angle over Full Speed Regime. arXiv 2019, 1, 1902.01204.
    135. SATRA. PM142–Falling Mass Shock Absorption Test. 1992.
    136. Lin, C.L.; Wang, M.J.; Drury, C.G. Biomechanical, Physiological and Psychophysical Evaluations of Clean Room Boots. Ergonomics 2007, 50, 481-496.
    137. Attaran, M. The Rise of 3-D printing: The Advantages of Additive Manufacturing over Traditional Manufacturing. Business Horizons 2017, 60, 677-688.
    138. Kalita, S.J. Chapter 13 - Rapid Prototyping in Biomedical Engineering: Structural Intricacies of Biological Materials. In Biointegration of Medical Implant Materials, Sharma, C.P., Ed.; Woodhead Publishing: 2010; pp. 349-397.
    139. Abate, K.M.; Nazir, A.; Yeh, Y.-P.; Chen, J.-E.; Jeng, J.-Y. Design, Optimization, and Validation of Mechanical Properties of Different Cellular Structures for Biomedical Application. The International Journal of Advanced Manufacturing Technology 2019, 106, 1253-1265.
    140. Ling, C.; Cernicchi, A.; Gilchrist, M.D.; Cardiff, P. Mechanical Behaviour of Additively-manufactured Polymeric Octet-truss Lattice Structures under Quasi-static and Dynamic Compressive Loading. Materials & Design 2019, 162, 106-118.
    141. Smith, M.; Guan, Z.; Cantwell, W.J. Finite Element Modelling of the Compressive Response of Lattice Structures Manufactured using the Selective Laser Melting Technique. International Journal of Mechanical Sciences 2013, 67, 28-41.
    142. Luxner, M.H.; Stampfl, J.; Pettermann, H.E. Finite Element Modeling Concepts and Linear Analyses of 3D Regular Open Cell Structures. Journal of Materials Science 2005, 40, 5859-5866.
    143. Bates, S.R.G.; Farrow, I.R.; Trask, R.S. Compressive Behaviour of 3D Printed Thermoplastic Polyurethane Honeycombs with Graded Densities. Materials & Design 2019, 162, 130-142.
    144. Bates, S.R.G.; Farrow, I.R.; Trask, R.S. 3D Printed Polyurethane Honeycombs for Repeated Tailored Energy Absorption. Materials & Design 2016, 112, 172-183.
    145. Miao, Y.; He, H.; Li, Z. Strain Hardening Behaviors and Mechanisms of Polyurethane under Various Strain Rate Loading. Polymer Engineering & Science 2020, 60, 1083-1092.
    146. Sur, A.; Narkhede, S.; Darvekar, S. Applications, Manufacturing and Thermal Characteristics of Micro-Lattice Structures: Current State of the Art. Engineering Journal 2019, 23, 419-431.
    147. Fashanu, O.; Murphy, D.; Spratt, M.; Newkirk, J.; Chandrashekhara, K.; Brown, B.; Porter, J. Effective Elastic Properties of Additively Manufactured Metallic Lattice Structures: Unit-cell Modeling. In Proceedings of the 2019 Annual International Solid Freeform Fabrication Symposium – An Additive Manufacturing Conference, Austin, Texas, USA.
    148. Alberdi, R.; Dingreville, R.; Robbins, J.; Walsh, T.; White, B.C.; Jared, B.; Boyce, B.L. Multi-morphology Lattices Lead to Improved Plastic Energy Absorption. Materials & Design 2020, 194, 108883.
    149. Al-Ketan, O.; Lee, D.W.; Rowshan, R.; Abu Al-Rub, R.K. Functionally Graded and Multi-morphology Sheet TPMS Lattices: Design, Manufacturing, and Mechanical Properties. Journal of the Mechanical Behavior of Biomedical Materials 2020, 102, 103520.
    150. Maskery, I.; Aremu, A.O.; Parry, L.; Wildman, R.D.; Tuck, C.J.; Ashcroft, I.A. Effective Design and Simulation of Surface-based Lattice Structures Featuring Volume Fraction and Cell Type Grading. Materials & Design 2018, 155, 220-232.
    151. Yoo, D.J.; Kim, K.H. An Advanced Multi-morphology Porous Scaffold Design Method using Volumetric Distance Field and Beta Growth Function. International Journal of Precision Engineering and Manufacturing 2015, 16, 2021-2032.
    152. Zhang, J.; Lu, G.; You, Z. Large Deformation and Energy Absorption of Additively Manufactured Auxetic Materials and Structures: A review. Composites Part B: Engineering 2020, 201, 108340.
    153. Waked, E.; Robbins, S.; McClaran, J. The Effect of Footwear Midsole Hardness and Thickness on Proprioception and Stability in Older Men. Journal of Testing and Evaluation 1997, 25, 143-148.
    154. Chun, S.; Kong, S.; Mun, K.R.; Kim, J. A Foot-Arch Parameter Measurement System Using a RGB-D Camera. Sensors 2017, 17.
    155. López López, D.; Bouza Prego, M.d.L.Á.; Requeijo Constenla, A.; Saleta Canosa, J.L.; Bautista Casasnovas, A.; Tajes, F.A. The Impact of Foot Arch Height on Quality of Life in 6-12 year Olds. Colombia Medica 2014, 45, 168-172.

    無法下載圖示
    全文公開日期 2026/06/29 (校外網路)
    全文公開日期 2026/06/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE