簡易檢索 / 詳目顯示

研究生: 林哲瑀
Zhe-Yu Lin
論文名稱: 使用多節段胸腰椎模型探討不同手術策略對腰椎退化問題之生物力學研究
Biomechanical Investigation of Different Surgical Strategies for Lumbar Spine Degeneration Using Multilevel Thoracolumbar Spine Models
指導教授: 徐慶琪
Ching-Chi Hsu
口試委員: 趙振綱
Ching-Kong Chao
林鼎勝
Ting-Sheng Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 106
中文關鍵詞: 脊椎融合術動態穩定椎間盤切除術有限元素分析
外文關鍵詞: Spinal fusion, Dynamic stabilization, Discectomy, Finite element analysis
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臨床上有多種治療腰椎退化性椎間盤疾病的手術策略。以前的研究已經運用電腦輔助工程技術開發了有限元素模型來研究各種手術策略(例如剛性和動態穩定裝置)對於脊椎生物力學的影響。然而,以前的有限元素脊椎模型大多被部分建模或將椎間盤考慮為線彈性材料,此外,穩定裝置的結構經常被簡化。因此本研究的目的是開發多節段脊椎有限元模型(T10-S1),並將椎間盤以超彈性材料進行模擬,以研究手術策略如何影響脊椎生物力學。
    在本研究中,SolidWorks 2019用於創建T10-S1多節段脊椎和腰椎植入物裝置的三維實體模型,包括剛性固定系統、DSS®動態穩定系統以及椎籠。開發了七種3D有限元素模型,一種完整模型和六種單節段(L5-S1)治療模型。對於治療模型的部分,包括經皮椎間孔鏡椎間盤切除術、顯微椎間盤切除術、剛性固定系統、DSS®動態穩定系統、經椎間孔椎間融合術、經皮內視鏡經椎間孔腰椎椎間融合術。使用ANSYS Workbench 2021 R1分析有限元素模型,並假設所有椎體元件及植入物都是線彈性及均質等向性,除了椎間盤,將其使用雙參數Mooney-Rivlin(MR)公式來定義為不可壓縮的超彈性材料。假設椎體和植入物之間的界面條件是結合的,小面關節處被設定為係數為0.385摩擦接觸。在邊界及負載條件方面,施加500 N的隨附力來代表人體上半身重量,通過在T10節段上施加位移來進行屈曲、伸展、側向彎曲和軸向旋轉的運動,而薦椎的底面被完全約束。
    結果顯示,與非融合脊椎手術和椎間盤切除術相比,脊椎融合術往往會增加鄰近椎節的椎間旋轉角度以及小面關節壓力,然而其因為治療節段的剛性提升,在應力遮蔽效應作用下於大多數運動時鄰近節段椎間盤的應力較非融合脊椎手術來的低,另外,TLIF以及PE-TLIF之生物力學性能並無明顯的差異。DSS®動態穩定系統能夠提供節段穩定性,並同時保留治療節段部分活動性,可以防止因代償現象導致鄰近椎節退化以及小面關節磨損,且與剛性固定系統相比能有效降低椎弓根螺絲失效風險,然而其開槽耦合器可能因超量的運動導致結構失效。綜觀椎間盤切除術之模擬結果,其生物力學性能最接近於完整模型,然而節段的不穩定性增加可能造成椎間盤突出復發以及治療節段小面關節磨損。這項研究能夠協助臨床醫師進行術前評估,並且可被應用於幫助開發其他臨床術式以及植入物之結構設計。


    There are several surgical options to treat lumbar degenerative disc disease. Previous studies have developed the finite element (FE) models to investigate the influence of various surgical strategies, such as rigid and dynamic stabilization devices, on spinal biomechanics. However, the previous FE spinal models were partially modelled or not considered the incompressible disc. In addition, the structures of stabilization devices were often simplified. Thus, the purpose of this study was to develop the multilevel FE model (T10-S1) with the incompressible disc to investigate how the surgical strategies influence spinal biomechanics.
    In this study, SolidWorks 2019 was used to create the three-dimensional (3D) solid models of a T10–S1 multilevel spine and three stabilization devices, including a rigid fixation system, DSS® dynamic stabilization system, and TLIF cage. Seven types of 3D FE models, one intact model and six 1-level (L5/S1) treated models, were developed. For the treated models, the T10–S1 multilevel spine models with percutaneous transforaminal endoscopic discectomy, microdiscectomy, rigid fixation system, DSS® dynamic stabilization system, transforaminal lumbar interbody fusion, percutaneous endoscopic transforaminal lumbar interbody fusion were constructed. All the FE models were analyzed using ANSYS Workbench 2021 R1. All the components were assumed to be linear elastic isotropic material, except for the disc, that is defined as a hyperelastic material (Mooney-Rivlin). The interface between the vertebrae and the implants were assumed to be bonded. The frictional contact was considered with a coefficient of friction of 0.385 at the facet joints. In terms of the loading condition, a follower load of 500 N was applied to simulate the upper body weight. The spinal movements of flexion, extension, lateral bending, and axial rotation were performed by applying the displacement on the T10 segment. The bottom surface of the sacrum was fully constrained.
    The results showed that spinal fusion tended to increase the intersegmental rotation and facet joint pressure at adjacent level as compared with non-fused spine surgery and discectomy. The DSS® dynamic stabilization system provides segmental stability while preserving partial mobility of the treated segment, preventing degeneration of adjacent vertebral segments and wear of facet joints due to compensatory phenomena. Compared with rigid fixation system, it can effectively reduce the risk of pedicle screw failure, but its slotted coupler may cause structural failure due to excessive movement. Looking at the simulated results of discectomy, its biomechanical outcomes were closest to the intact model. However, the increased instability at index level may lead to recurrence of disc herniation and wear of the facet joints of the treated segment.

    中文摘要 ABSTRACT 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究背景、動機與目的 1.2 人體脊椎介紹 1.3 退化性椎間盤疾病 1.3.1 椎間盤突出 1.3.2 椎管狹窄 1.3.3 椎間滑脫 1.4 臨床常見之術式 1.4.1 脊椎融合手術 1.4.2 動態穩定手術 1.4.2.1 椎弓根螺絲穩定系統 1.4.2.2 棘突間撐開器 1.4.3 椎間盤切除術 1.5 文獻回顧 1.5.1 鄰近節段退化問題 1.5.2 動態穩定系統發展與臨床結果 1.5.3 椎間盤切除術發展與臨床結果 1.5.4 動態穩定系統之有限元素分析回顧 1.5.5 椎間盤切除術之有限元素分析回顧 1.6 本文架構 第二章 材料與方法 2.1 研究方法與流程 2.2 有限元素法簡介 2.3 完整腰椎之有限元素模型 2.4 手術策略之有限元素模型 2.4.1 植入物結構 2.4.2 椎間盤切除術模型 2.4.3非融合脊椎手術模型 2.4.4 脊椎融合術模型 2.5 有限元素分析 2.5.1 材料參數 2.5.2 界面接觸條件設定 2.5.3 網格設定 2.5.4 邊界與負載條件 2.5.5 收斂性分析 2.6 生物力學分析 第三章 結果 3.1 收斂性分析 3.2 多節段脊椎模型驗證 3.3 不同手術治療策略之脊椎生物力學分析 3.3.1 椎間旋轉角度 3.3.2 椎間盤之應力 3.3.3 小面關節之壓力 3.4 腰椎植入物之應力 3.4.1 椎弓根螺絲 3.4.2 剛性連桿與開槽耦合器 3.4.3 椎籠 第四章 討論 4.1 鄰近節段退化評估 4.2 椎間盤應力 4.3 小面關節磨損問題 4.4 植入物失效風險 4.5 研究限制 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻

    [1] F. Balagué, A.F. Mannion, F. Pellisé, C. Cedraschi, Non-specific low back pain, The Lancet 379(9814) (2012) 482-491.
    [2] A. Prescher, Anatomy and pathology of the aging spine, European Journal of Radiology 27(3) (1998) 181-195.
    [3] J.P. Urban, S. Roberts, Degeneration of the intervertebral disc, Arthritis Research & Therapy 5(3) (2003) 120-30.
    [4] M.N.T. A. G. Hadjipavlou, N. Bogduk, M. R. Zindrick, The pathophysiology of disc degeneration: A critical review, The Journal of Bone and Joint Surgery 90-B(10) (2008) 1261-1270.
    [5] L. C.K., Accelerated degeneration of the segment adjacent to a lumbar fusion, Spine 13 (1988) 375-377.
    [6] K.K. Aota Y., Hirabayashi S., Postfusion instability at the adjacent segments after rigid pedicle screw fixation for degenerative lumbar spinal disorders, Journal of Spinal Disorders, 8 (1995) 464-473.
    [7] A. Marsol-Puig, R. Huguet-Comelles, J. Escala-Arnau, J. Giné-Gomà, Incidence and risk factors of adjacent disc degeneration after lumbar fusion, Revista Española de Cirugía Ortopédica y Traumatología (English Edition) 55(3) (2011) 170-174.
    [8] W.M.S. Charles Malveaux, A.D. Sharan, Adjacent segment disease after lumbar spinal fusion: A systematic review of the current literature, Seminars in Spine Surgery 23(4) (2011) 266-274.
    [9] T.M. Stoll, G. Dubois, O. Schwarzenbach, The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system, European Spine Journal 11 Suppl 2 (2002) S170-8.
    [10] D. Sengupta, R.C. Mulholland, L. Pimenta, P132. Prospective clinical study of dynamic stabilization with the DSS system in isolated activity related mechanical low back pain: With outcome at minimum 2-years follow-up, The Spine Journal 6(5) (2006).
    [11] R. Greiner-Perth, N. Sellhast, G. Perler, D. Dietrich, L.P. Staub, C. Roder, Dynamic posterior stabilization for degenerative lumbar spine disease: a large consecutive case series with long-term follow-up by additional postal survey, European Spine Journal 25(8) (2016) 2563-70.
    [12] T. Verla, E. Goethe, V.M. Srinivasan, L. Winnegan, I. Omeis, The minimally invasive paramedian approach for foraminal disc herniation, Journal of Clinical Neuroscience 75 (2020) 62-65.
    [13] J. Tang, Z. Liang, J. He, Q. Shang, J. Zhang, Z. Wu, X. Jiang, Liang, H. Ren, J. Cui, Z. Zhou, Z. Yao, Percutaneous endoscopic lumbar discectomy for lumbar disc herniation using an endoscopic staining: A technical note, Orthopaedic Surgery 13(4) (2021) 1430-1436.
    [14] H. Schmidt, F. Galbusera, A. Rohlmann, T. Zander, H.J. Wilke, Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis, European Spine Journal 21 Suppl 5 (2012) S663-74.
    [15] M. Frank H. Netter, Atlas of human anatomy, 5th Edition, (2011).
    [16] V. Mahadevan, Anatomy of the vertebral column, Surgery (Oxford) 36(7) (2018) 327-332.
    [17] M.V.R. Irving M. Shapiro, The intervertebral disc, (2014).
    [18] N.A. Ebraheim, A. Hassan, M. Lee, R. Xu, Functional anatomy of the lumbar spine, Seminars in Pain Medicine 2(3) (2004) 131-137.
    [19] S. Ratish, Z.-X. Gao, H.M. Prasad, Z. Pei, D. Bijendra, Percutaneous endoscopic lumbar spine surgery for lumbar disc herniation and lumbar spine stenosis: Emphasizing on clinical outcomes of transforaminal technique, Surgical Science 09(02) (2018) 63-84.
    [20] DiscGenics, Degenerative disc disease,
    https://www.discgenics.com/patients-and-families.
    [21] 台灣脊椎中心, http://taiwanspinecenter.com.tw/.
    [22] Mayo Clinic, https://www.mayoclinic.org/.
    [23] iSpineCare, https://www.ispinecare.com/index.html.
    [24] R.J. Mobbs, K. Phan, G. Malham, K. Seex, P.J. Rao, Lumbar interbody fusion: techniques, indications and comparison of interbody fusion options including PLIF, TLIF, MI-TLIF, OLIF/ATP, LLIF and ALIF, Journal of Spine Surgery 1(1) (2015) 2-18.
    [25] R.W.M. Christian P. DiPaola, Posterior lumbar interbody fusion, Journal of the American Academy of Orthopaedic Surgeons 16 (2008) 130-139.
    [26] Astura Medical, El Capitan ALIF System,
    https://asturamedical.com/product/el-capitan-alif-system/.
    [27] L. He, Q. Xiang, Y. Yang, T.Y. Tsai, Y. Yu, L. Cheng, The anterior and traverse cage can provide optimal biomechanical performance for both traditional and percutaneous endoscopic transforaminal lumbar interbody fusion, Computers in Biology and Medicine 131 (2021) 104291.
    [28] M. Michael J. Lee, Joshua D. Lindsey, MD., Richard J. Bransford, MD., Pedicle screw–based posterior dynamic stabilization in the lumbar spine, Journal of the American Academy of Orthopaedic Surgeons 18 (2010) 581-588.
    [29] H. Serhan, D. Mhatre, H. Defossez, C.M. Bono, Motion-preserving technologies for degenerative lumbar spine: The past, present, and future horizons, SAS Journal 5(3) (2011) 75-89.
    [30] A. Kiapour, D. Ambati, R.W. Hoy, V.K. Goel, Effect of graded facetectomy on biomechanics of Dynesys dynamic stabilization system, Spine (Phila Pa 1976) 37(10) (2012) E581-9.
    [31] D.S. Shin, K. Lee, D. Kim, Biomechanical study of lumbar spine with dynamic stabilization device using finite element method, Computer-Aided Design 39(7) (2007) 559-567.
    [32] T.A. Jahng, Y.E. Kim, K.Y. Moon, Comparison of the biomechanical effect of pedicle-based dynamic stabilization: a study using finite element analysis, The Spine Journal 13(1) (2013) 85-94.
    [33] Zimmer, Dynesys® dynamic stabilization system, https://www.zimmer.tw/medical-professionals/products/spine/dynesys-dynamic-stabilization-system-ous.html.
    [34] M.D. Ho Yeol Zhang, Ph.D, Jeong Yoon Park, M.D., Bo Young Cho, M.D., The BioFlex System as a Dynamic Stabilization Device : Does It Preserve Lumbar Motion?, Journal of Korean Neurosurgical Society 46(5) (2009) 431-436.
    [35] Surgalign, https://www.surgalign.com/.
    [36] W. Fan, L.X. Guo, The effect of non-fusion dynamic stabilization on biomechanical responses of the implanted lumbar spine during whole-body vibration, Comput Methods Programs Biomed 192 (2020) 105441.
    [37] F.L. Acosta, Jr., F.B. Christensen, J.D. Coe, T.A. Jahng, S.H. Kitchel, H.J. Meisel, M. Schnoring, C.H. Wingo, C.P. Ames, Early clinical & radiographic results of NFix II posterior dynamic stabilization system, SAS Journal 2(2) (2008) 69-75.
    [38] BIOMECH, http://www.paonan.com.tw/index.php.
    [39] P. Hans-Joachim Wilke, Frank Heuer, PhD, and Hendrik Schmidt, PhD, Prospective design delineation and subsequent in vitro evaluation of a new posterior dynamic stabilization system, Spine (Phila Pa 1976) 34 (2009) 255-261.
    [40] W. Ruan, F. Feng, Z. Liu, J. Xie, L. Cai, A. Ping, Comparison of percutaneous endoscopic lumbar discectomy versus open lumbar microdiscectomy for lumbar disc herniation: A meta-analysis, International Journal of Surgery 31 (2016) 86-92.
    [41] R. Qin, B. Liu, J. Hao, P. Zhou, Y. Yao, F. Zhang, X. Chen, Percutaneous endoscopic lumbar discectomy versus posterior open lumbar microdiscectomy for the treatment of symptomatic lumbar disc herniation: A systemic review and meta-analysis, World Neurosurg 120 (2018) 352-362.
    [42] M. Jarebi, A. Awaf, M. Lefranc, J. Peltier, A matched comparison of outcomes between percutaneous endoscopic lumbar discectomy and open lumbar microdiscectomy for the treatment of lumbar disc herniation: a 2-year retrospective cohort study, The Spine Journal 21(1) (2021) 114-121.
    [43] G.H. R. Eberlein, C. Schulze-Bauer, Assessment of a spinal implant by means of advanced FE modeling of intact human intervertebral discs, (2002).
    [44] A. Rohlmann, N.K. Burra, T. Zander, G. Bergmann, Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis, European Spine Journal 16(8) (2007) 1223-31.
    [45] S. Tang, B.J. Rebholz, Does lumbar microdiscectomy affect adjacent segmental disc degeneration? A finite element study, Journal of Surgical Research 182(1) (2013) 62-7.
    [46] J. Li, W. Xu, X. Zhang, Z. Xi, L. Xie, Biomechanical role of osteoporosis affects the incidence of adjacent segment disease after percutaneous transforaminal endoscopic discectomy, Journal of Orthopaedic Surgery and Research 14(1) (2019) 131.
    [47] J. Li, H. Li, Y. He, X. Zhang, Z. Xi, G. Wang, N. Wang, L. Xie, The protection of superior articular process in percutaneous transforaminal endoscopic discectomy should decreases the risk of adjacent segment diseases biomechanically, Journal of Clinical Neuroscience 79 (2020) 54-59.
    [48] V.K. Goel, B.T. Monroe, L.G. Gilbertson, P.J.S. Brinckmann, Interlaminar shear stresses and laminae separation in a disc: Finite element analysis of the L3‐L4 motion segment subjected to axial compressive loads, Spine (Phila Pa 1976) 20 (1995) 689.
    [49] Colorado Comprehensive Spine Institute, https://www.coloradospineinstitute.com/.
    [50] W.R. Sears, I.G. Sergides, N. Kazemi, M. Smith, G.J. White, B. Osburg, Incidence and prevalence of surgery at segments adjacent to a previous posterior lumbar arthrodesis, The Spine Journal 11(1) (2011) 11-20.
    [51] R. Cao, Y. He, C. Qian, L. Ma, J. Li, Z. Xi, C. Chen, Negative biomechanical effects of large grade nuclectomy in the transforaminal endoscopic discectomy increased the risk of adjacent segment diseases: A finite element study, Journal of Clinical Neuroscience 93 (2021) 141-146.
    [52] 吳錫玠,靜力平衡,https://webapps.tcfsh.tc.edu.tw/whc1118/FILE/p2_03.pdf.
    [53] P.I. Tsai, C.C. Hsu, S.Y. Chen, T.H. Wu, C.C. Huang, Biomechanical investigation into the structural design of porous additive manufactured cages using numerical and experimental approaches, Computers in Biology and Medicine 76 (2016) 14-23.
    [54] T.-K. Chang, C.-C. Hsu, M.-A. Yang, D. Sutaji, Effects of fusion device designs on spine biomechanics: Computational simulation for smart health care, IEEE Consumer Electronics Magazine 8(2) (2019) 84-89.
    [55] S.-C.L. Shih-Hao Chen, Wen-Chi Tsai, Chih-Wei Wang, Shih-Heng Chao, Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery – a finite element analysis, BMC Musculoskeletal Disorders 13 (2012).
    [56] S.N. A Rohlmann, L Claes, G Bergmann, H J Wilke, Influence of a follower load on intradiscal pressure and intersegmental rotation of the lumbar spine, Spine (Phila Pa 1976) 26 (2001) E557-E561.
    [57] W.M. Park, K. Kim, Y.H. Kim, Effects of degenerated intervertebral discs on intersegmental rotations, intradiscal pressures, and facet joint forces of the whole lumbar spine, Computers in Biology and Medicine 43(9) (2013) 1234-40.
    [58] H. Zhu, W. Zhong, P. Zhang, X. Liu, J. Huang, F. Liu, J. Li, Biomechanical evaluation of autologous bone-cage in posterior lumbar interbody fusion: a finite element analysis, BMC Musculoskelet Disord 21(1) (2020) 379.
    [59] M. Prado, C. Mascoli, H. Giambini, Discectomy decreases facet joint distance and increases the instability of the spine: A finite element study, Computers in Biology and Medicine 143 (2022) 105278.

    無法下載圖示 全文公開日期 2025/07/26 (校內網路)
    全文公開日期 2032/07/26 (校外網路)
    全文公開日期 2032/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE