簡易檢索 / 詳目顯示

研究生: 陳葳潔
Wei-Chieh Chen
論文名稱: 理論計算於染料敏化太陽能電池之有機染料的研究:固著配位基及吸附模式之影響
Theoretical Study of Organic Sensitizers for DSSCs: Effects of anchoring groups and adsorption configurations
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 許昭萍
Chao-Ping Hsu
陳良益
Liang-Yih Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 126
中文關鍵詞: 固著配位基吸附模式有機染料染料敏化太陽能電池密度泛函理論
外文關鍵詞: anchoring group, adsorption configuration, organic sensitizer, DSSC, DFT
相關次數: 點閱:281下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著能源需求的增加,太陽能電池因其永續性及環保的優點,而受到人們廣泛的重視,其中染料敏化太陽能電池(Dye Sensitized Solar Cell, DSSC)因相對成本較低、製程簡便及低污染等優點,近年來發展極為迅速,但其光電轉換效率尚不足,要將之商業化乃至規模的擴展仍有許多提升的空間。
    本研究以有機染料為主軸,利用Gaussian09中的密度泛函理論(DFT)及時間相依密度泛函理論(TD-DFT)進行染料光電性質的分析,並透過分子動力學模擬(Molecular Dynamics)探討染料間聚集的行為,藉由改變染料的電子受體及固著配位基(anchoring group),系統性的分析並提出能提升光電轉化率的策略。此外,本研究也將染料本身的光電性質延伸至染料與半導體間的電子性質問題,利用第一原理Vienna Ab-initio Simulation Package(VASP)將染料吸附於二氧化鈦表面上,透過態密度(DOS)分析,探討染料與二氧化鈦的電子耦合及染料電子注入情形,計算結果顯示染料吸附模式不僅改變電子傳遞及開路電壓等,因而影響整體效率,也會影響電池的穩定性。
    透過本研究,吾人更加了解固著配位基在染料中所扮演的角色,有助於未來的染料設計,透過染料吸附模式的計算,期望未來能藉由實驗條件控制較有利的吸附型態,本研究希望除了透過傳統實驗的分析之外,從理論計算的角度出發,提出新的觀點供其他學者參考。


    With the increasing in energy demand, solar cells have been attracted widespread attention because of its sustainability and eco-friendly. Dye sensitized solar cell (DSSC) develops rapidly in recent years due to relatively low cost, simple process and low pollution, etc., but still low photoelectric conversion efficiency as well as to the commercial value, there is still much room for improvement.
    In this study, a new set of D-π-A type organic dye sensitizers was designed with different acceptor and anchoring groups and systematically investigated their optoelectronic properties for the efficient dye sensitized solar cell applications using density functional theory (DFT) and time-dependent density functional theory (TD-DFT) in Gaussian 09. The dye aggregation was studied through molecular dynamics simulation (MD). In addition, the photoelectric properties of the dye was extended to the electronic nature between dye and semiconductor using the first principle Vienna Ab-initio Simulation Package (VASP). From the density of states (DOS) analysis, the electron coupling as well as electron injection from dye to TiO2 anatase (101) surface were investigated. The calculations illustrate that the dye adsorption mode is important. It not only changes the electron transfer ability, but the open circuit voltage thus affect the overall efficiency and the stability of the device.
    In this work, the role of anchoring group is well understood which helps the dye design in future. Through the theoretical calculation in dye adsorption model, we expect that the favorable adsorption mode can be controlled by experimental conditions. Furthermore, we hope not only the traditional experimental analysis, but the calculation from a theoretical point of view in this work can give new ideas for improving DSSC devices.

    ABSTRACT 摘要 致謝 CONTENTS INDEX OF FIGURES INDEX OF TABLES INDEX OF SCHEMES Chapter 1 Introduction 1.1 Dye Sensitized Solar Cells (DSSCs) 1.2 The Working Principle of DSSCs 1.2.1 Mechanism 1.2.2 Dye Selection Criteria 1.3 Categories of Dyes 1.4 Overview of the Metal-free Organic Dyes 1.5 Present Study Chapter 2 Isolated Dyes 2.1 Introduction 2.2 Computational Details 2.3 Optical Properties 2.4 Frontier Molecular Orbitals 2.5 Deprotonated Dyes 2.6 Dye Aggregation 2.7 Conclusion Chapter 3 Adsorption Configurations on TiO2 Anatase (101) Surface 3.1 Introduction 3.2 Computational Details 3.3 Model Dyes 3.3.1 Optimized Geometries 3.3.2 Electron Density Difference 3.3.3 Density of States 3.4 Designed Full Dyes 3.4.1 Optimized Geometries 3.4.2 Density of States 3.5 Dye Loading 3.6 Conclusion Chapter 4 Summary References Appendices

    1. O’regan, B.; Grfitzeli, M., A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized. Nature 1991, 353, 737-740.
    2. Gratzel, M., Photoelectrochemical Cells. Nature 2001, 414, 338-344.
    3. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; CurchodBasile, F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; NazeeruddinMd, K.; Grätzel, M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat Chem 2014, 6, 242-247.
    4. Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z., Recent Advances in Dye-Sensitized Solar Cells: From Photoanodes, Sensitizers and Electrolytes to Counter Electrodes. Mater. Today 2015, 18, 155-162.
    5. Martin-Gomis, L.; Fernandez-Lazaro, F.; Sastre-Santos, A., Advances in Phthalocyanine-Sensitized Solar Cells (Pcsscs). Journal of Materials Chemistry A 2014, 2, 15672-15682.
    6. Mishra, A.; Fischer, M. K.; Bäuerle, P., Metal‐Free Organic Dyes for Dye‐Sensitized Solar Cells: From Structure: Property Relationships to Design Rules. Angew. Chem. Int. Ed. 2009, 48, 2474-2499.
    7. Grätzel, M., Conversion of Sunlight to Electric Power by Nanocrystalline Dye-Sensitized Solar Cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 3-14.
    8. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M., Conversion of Light to Electricity by Cis-X2bis(2,2'-Bipyridyl-4,4'-Dicarboxylate)Ruthenium(Ii) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, Cn-, and Scn-) on Nanocrystalline Titanium Dioxide Electrodes. J. Am. Chem. Soc. 1993, 115, 6382-6390.
    9. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined Experimental and Dft-Tddft Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127, 16835-16847.
    10. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Gratzel, M., A Swift Dye Uptake Procedure for Dye Sensitized Solar Cells. Chem. Commun. 2003, 1456-1457.
    11. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Gratzel, M., A Stable Quasi-Solid-State Dye-Sensitized Solar Cell with an Amphiphilic Ruthenium Sensitizer and Polymer Gel Electrolyte. Nat. Mater. 2003, 2, 402-407.
    12. Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Gratzel, M., High Efficiency Dye-Sensitized Nanocrystalline Solar Cells Based on Ionic Liquid Polymer Gel Electrolyte. Chem. Commun. 2002, 2972-2973.
    13. Wang, P.; Wenger, B.; Humphry-Baker, R.; Moser, J.-E.; Teuscher, J.; Kantlehner, W.; Mezger, J.; Stoyanov, E. V.; Zakeeruddin, S. M.; Grätzel, M., Charge Separation and Efficient Light Energy Conversion in Sensitized Mesoscopic Solar Cells Based on Binary Ionic Liquids. J. Am. Chem. Soc. 2005, 127, 6850-6856.
    14. Yasuo, C.; Ashraful, I.; Yuki, W.; Ryoichi, K.; Naoki, K.; Liyuan, H., Dye-Sensitized Solar Cells with Conversion Efficiency of 11.1%. Jpn. J. Appl. Phys. 2006, 45, L638.
    15. Nazeeruddin, M. K., et al., Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline Tio2-Based Solar Cells. J. Am. Chem. Soc. 2001, 123, 1613-1624.
    16. K. Nazeeruddin, M.; Pechy, P.; Gratzel, M., Efficient Panchromatic Sensitization of Nanocrystalline Tio2 Films by a Black Dye Based on a Trithiocyanato-Ruthenium Complex. Chem. Commun. 1997, 1705-1706.
    17. Wang, Z.-S.; Kawauchi, H.; Kashima, T.; Arakawa, H., Significant Influence of Tio2 Photoelectrode Morphology on the Energy Conversion Efficiency of N719 Dye-Sensitized Solar Cell. Coord. Chem. Rev. 2004, 248, 1381-1389.
    18. Yu, Q.; Wang, Y.; Yi, Z.; Zu, N.; Zhang, J.; Zhang, M.; Wang, P., High-Efficiency Dye-Sensitized Solar Cells: The Influence of Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States. ACS Nano 2010, 4, 6032-6038.
    19. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Gratzel, M., Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nature Chemistry 2014, 6, 242-247.
    20. Tseng, C.-Y.; Taufany, F.; Nachimuthu, S.; Jiang, J.-C.; Liaw, D.-J., Design Strategies of Metal Free-Organic Sensitizers for Dye Sensitized Solar Cells: Role of Donor and Acceptor Monomers. Org. Electron. 2014, 15, 1205-1214.
    21. Santhanamoorthi, N.; Kuan-Hwa, L.; Taufany, F.; Jiang, J.-C., Theoretical Study on Molecular Design and Optical Properties of Organic Sensitizers. Phys. Chem. Chem. Phys. 2014, 16, 15389-15399.
    22. Imahori, H.; Matsubara, Y.; Iijima, H.; Umeyama, T.; Matano, Y.; Ito, S.; Niemi, M.; Tkachenko, N. V.; Lemmetyinen, H., Effects of Meso-Diarylamino Group of Porphyrins as Sensitizers in Dye-Sensitized Solar Cells on Optical, Electrochemical, and Photovoltaic Properties. J. Phys. Chem. C 2010, 114, 10656-10665.
    23. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of New Coumarin Dyes Having Thiophene Moieties for Highly Efficient Organic-Dye-Sensitized Solar Cells. New J. Chem. 2003, 27, 783-785.
    24. Hara, K.; Tachibana, Y.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Dye-Sensitized Nanocrystalline Tio2 Solar Cells Based on Novel Coumarin Dyes. Sol. Energy Mater. Sol. Cells 2003, 77, 89-103.
    25. Horiuchi, T.; Miura, H.; Sumioka, K.; Uchida, S., High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. J. Am. Chem. Soc. 2004, 126, 12218-9.
    26. Koumura, N.; Wang, Z.-S.; Mori, S.; Miyashita, M.; Suzuki, E.; Hara, K., Alkyl-Functionalized Organic Dyes for Efficient Molecular Photovoltaics. J. Am. Chem. Soc. 2006, 128, 14256-14257.
    27. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Gratzel, M., High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye. Chem. Commun. 2008, 5194-5196.
    28. Ito, S., et al., High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-Tio2 Electrode Thickness. Adv. Mater. 2006, 18, 1202-1205.
    29. Zeng, W.; Cao, Y.; Bai, Y.; Wang, Y.; Shi, Y.; Zhang, M.; Wang, F.; Pan, C.; Wang, P., Efficient Dye-Sensitized Solar Cells with an Organic Photosensitizer Featuring Orderly Conjugated Ethylenedioxythiophene and Dithienosilole Blocks. Chem. Mater. 2010, 22, 1915-1925.
    30. Xu, M.; Wenger, S.; Bala, H.; Shi, D.; Li, R.; Zhou, Y.; Zakeeruddin, S. M.; Grätzel, M.; Wang, P., Tuning the Energy Level of Organic Sensitizers for High-Performance Dye-Sensitized Solar Cells. J. Phys. Chem. C 2009, 113, 2966-2973.
    31. Yella, A., et al., Molecular Engineering of a Fluorene Donor for Dye-Sensitized Solar Cells. Chem. Mater. 2013, 25, 2733-2739.
    32. Yao, Z.; Zhang, M.; Wu, H.; Yang, L.; Li, R.; Wang, P., Donor/Acceptor Indenoperylene Dye for Highly Efficient Organic Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2015, 137, 3799-3802.
    33. Sakuragi, Y.; Wang, X. F.; Miura, H.; Matsui, M.; Yoshida, T., Aggregation of Indoline Dyes as Sensitizers for Zno Solar Cells. J. Photoch. Photobio. A 2010, 216, 1-7.
    34. Tian, H. N.; Yang, X. C.; Chen, R. K.; Zhang, R.; Hagfeldt, A.; Sunt, L. C., Effect of Different Dye Baths and Dye-Structures on the Performance of Dye-Sensitized Solar Cells Based on Triphenylamine Dyes. J. Phys. Chem. C 2008, 112, 11023-11033.
    35. Snaith, H. J.; Karthikeyan, C. S.; Petrozza, A.; Teuscher, J.; Moser, J. E.; Nazeeruddin, M. K.; Thelakkat, M.; Gratzel, M., High Extinction Coefficient "Antenna" Dye in Solid-State Dye-Sensitized Solar Cells: A Photophysical and Electronic Study. J. Phys. Chem. C 2008, 112, 7562-7566.
    36. Tatay, S.; Haque, S. A.; O'Regan, B.; Durrant, J. R.; Verhees, W. J. H.; Kroon, J. M.; Vidal-Ferran, A.; Gavina, P.; Palomares, E., Kinetic Competition in Liquid Electrolyte and Solid-State Cyanine Dye Sensitized Solar Cells. J. Mater. Chem. 2007, 17, 3037-3044.
    37. Ehret, A.; Stuhl, L.; Spitler, M. T., Spectral Sensitization of Tio2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes. J. Phys. Chem. B 2001, 105, 9960-9965.
    38. Heredia, D.; Natera, J.; Gervaldo, M.; Otero, L.; Fungo, F.; Lin, C. Y.; Wong, K. T., Spirobifluorene-Bridged Donor/Acceptor Dye for Organic Dye-Sensitized Solar Cells. Org. Lett. 2010, 12, 12-15.
    39. Cho, N.; Choi, H.; Kim, D.; Song, K.; Kang, M. S.; Kang, S. O.; Ko, J., Novel Organic Sensitizers Containing a Bulky Spirobifluorene Unit for Solar Cell. Tetrahedron 2009, 65, 6236-6243.
    40. Ning, Z. J.; Zhang, Q.; Wu, W. J.; Pei, H. C.; Liu, B.; Tian, H., Starburst Triarylamine Based Dyes for Efficient Dye-Sensitized Solar Cells. J. Org. Chem. 2008, 73, 3791-3797.
    41. Sakaguchi, S.; Pandey, S. S.; Okada, K.; Yamaguchi, Y.; Hayase, S., Probing Tio2/Dye Interface in Dye Sensitized Solar Cells Using Surface Potential Measurement. Appl. Phys. Express 2008, 1, 105001.
    42. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Pechy, P.; Graetzel, M., High-Conversion-Efficiency Organic Dye-Sensitized Solar Cells with a Novel Indoline Dye. Chem. Commun. 2008, 5194-5196.
    43. Neale, N. R.; Kopidakis, N.; van de Lagemaat, J.; Gratzel, M.; Frank, A. J., Effect of a Coadsorbent on the Performance of Dye-Sensitized Tio2 Solar Cells: Shielding Versus Band-Edge Movement. J. Phys. Chem. B 2005, 109, 23183-23189.
    44. Santhanamoorthi, N.; Lai, K.-H.; Taufany, F.; Jiang, J.-C., Theoretical Investigations of Metal-Free Dyes for Solar Cells: Effects of Electron Donor and Acceptor Groups on Sensitizers. J. Power Sources 2013, 242, 464-471.
    45. Feng, S.; Li, Q. S.; Yang, L. N.; Sun, Z. Z.; Niehaus, T. A.; Li, Z. S., Insights into Aggregation Effects on Optical Property and Electronic Coupling of Organic Dyes in Dye Sensitized Solar Cells. J. Power Sources 2015, 273, 282-289.
    46. Kusama, H.; Sayama, K., Theoretical Study on the Intermolecular Interactions of Black Dye Dimers and Black Dye–Deoxycholic Acid Complexes in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116, 23906-23914.
    47. Becke, A. D., Density-Functional Thermochemistry. Iii. The Role of Exact Exchange,. J. Chem. Phys. 1993, 98, 5648-5652.
    48. Chai, J. D.; Head-Gordon, M., Long-Range Corrected Hybrid Density Functionals with Damped Atom-Atom Dispersion Corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.
    49. Chai, J. D.; Head-Gordon, M., Systematic Optimization of Long-Range Corrected Hybrid Density Functionals. J. Chem. Phys. 2008, 128.
    50. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A., 6‐31g* Basis Set for Third‐Row Atoms. J. Comput. Chem. 2001, 22, 976-984.
    51. Becke, A. D., A New Mixing of Hartree–Fock and Local Density‐Functional Theories. J. Chem. Phys. 1993, 98, 1372-1377.
    52. Yanai, T.; Tew, D. P.; Handy, N. C., A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (Cam-B3lyp). Chem. Phys. Lett. 2004, 393, 51-57.
    53. Zhao, Y.; Truhlar, D. G., The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215-241.
    54. Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L., Tuning the Homo and Lumo Energy Levels of Organic Chromophores for Dye Sensitized Solar Cells. The Journal of organic chemistry 2007, 72, 9550-9556.
    55. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-Pcm Solvation Model. J. Comput. Chem. 2003, 24, 669-681.
    56. Barone, V.; Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model. J. Phys. Chem. A 1998, 102, 1995-2001.
    57. Turecek, F., Benchmarking Electronic Excitation Energies and Transitions in Peptide Radicals. J. Phys. Chem. A 2015, 119, 10101-10111.
    58. Li, H.; Nieman, R.; Aquino, A. J. A.; Lischka, H.; Tretiak, S., Comparison of Lc-Tddft and Adc(2) Methods in Computations of Bright and Charge Transfer States in Stacked Oligothiophenes. J. Chem. Theory Comput. 2014, 10, 3280-3289.
    59. Gorelsky, S. I. Swizard Program, http://www.sg-chem.net/, University of Ottawa, Ottawa, Canada, 2013.
    60. Gorelsky, S. I.; Lever, A. B. P., Electronic Structure and Spectra of Ruthenium Diimine Complexes by Density Functional Theory and Indo/S. Comparison of the Two Methods. J. Organomet. Chem. 2001, 635, 187-196.
    61. Frisch, M. J., et al. Gaussian 09, Revision A.1; , Gaussian, Inc.: Wallingford, CT,, 2009.
    62. Accelrys Software Inc. Materials Studio Release Notes, Release 7.0,; Accelrys Software Inc., : San Diego, 2013.
    63. Bunte, S. W.; Sun, H., Molecular Modeling of Energetic Materials: The Parameterization and Validation of Nitrate Esters in the Compass Force Field. J. Phys. Chem. B 2000, 104, 2477-2489.
    64. Sun, H., Ab-Initio Calculations and Force-Field Development for Computer-Simulation of Polysilanes. Macromolecules 1995, 28, 701-712.
    65. Sun, H.; Ren, P.; Fried, J. R., The Compass Force Field: Parameterization and Validation for Phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229-246.
    66. Santhanamoorthi, N.; Lo, C. M.; Jiang, J. C., Molecular Design of Porphyrins for Dye-Sensitized Solar Cells: A Dft/Tddft Study. J. Phys. Chem. Lett. 2013, 4, 524-530.
    67. Campbell, W. M., et al., Highly Efficient Porphyrin Sensitizers for Dye-Sensitized Solar Cells. J. Phys. Chem. C 2007, 111, 11760-11762.
    68. Ma, R. M.; Guo, P.; Cui, H. J.; Zhang, X. X.; Nazeeruddin, M. K.; Gratzel, M., Substituent Effect on the Meso-Substituted Porphyrins: Theoretical Screening of Sensitizer Candidates for Dye-Sensitized Solar Cells. J. Phys. Chem. A 2009, 113, 10119-10124.
    69. Feng, S.; Li, Q. S.; Sun, P. P.; Niehaus, T. A.; Li, Z. S., Dynamic Characteristics of Aggregation Effects of Organic Dyes in Dye-Sensitized Solar Cells. Acs Appl Mater Inter 2015, 7, 22504-22514.
    70. Pastore, M.; De Angelis, F., Aggregation of Organic Dyes on Tio2 in Dye-Sensitized Solar Cells Models: An Ab Initio Investigation. ACS Nano 2010, 4, 556-562.
    71. Wurthner, F.; Kaiser, T. E.; Saha-Moller, C. R., J-Aggregates: From Serendipitous Discovery to Supramolecular Engineering of Functional Dye Materials. Angew. Chem. Int. Ed. 2011, 50, 3376-3410.
    72. Karunakaran, V.; Prabhu, D. D.; Das, S., Optical Investigation of Self-Aggregation of a Tetrazole-Substituted Diphenylacetylene Derivative: Steady and Excited State Dynamics in Solid and Solution State. J. Phys. Chem. C 2013, 117, 9404-9415.
    73. Jelley, E. E., Molecular, Nematic and Crystal States of I: I-Diethyl--Cyanine Chloride. Nature 1937, 139, 631.
    74. Jelley, E. E., Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 1936, 138, 1009-1010.
    75. Simon, S.; Duran, M.; Dannenberg, J. J., How Does Basis Set Superposition Error Change the Potential Surfaces for Hydrogen Bonded Dimers? J. Chem. Phys. 1996, 105, 11024-11031.
    76. Boys, S. F.; Bernardi, F., The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors (Reprinted from Molecular Physics, Vol 19, Pg 553-566, 1970). Mol. Phys. 2002, 100, 65-73.
    77. Malenov, D. P.; Ninkovic, D. B.; Sredojevic, D. N.; Zaric, S. D., Stacking of Benzene with Metal Chelates: Calculated Ccsd(T)/Cbs Interaction Energies and Potential-Energy Curves. ChemPhysChem 2014, 15, 2458-2461.
    78. Malenov, D. P.; Ninkovic, D. B.; Zaric, S. D., Stacking of Metal Chelates with Benzene: Can Dispersion-Corrected Dft Be Used to Calculate Organic-Inorganic Stacking? ChemPhysChem 2015, 16, 761-768.
    79. Buytendyk, A. M.; Graham, J. D.; Collins, K. D.; Bowen, K. H.; Wu, C. H.; Wu, J. I., The Hydrogen Bond Strength of the Phenol-Phenolate Anionic Complex: A Computational and Photoelectron Spectroscopic Study. Phys. Chem. Chem. Phys. 2015, 17, 25109-25113.
    80. Wenger, B.; Gratzel, M.; Moser, J. E., Rationale for Kinetic Heterogeneity of Ultrafast Light-Induced Electron Transfer from Ru(Ii) Complex Sensitizers to Nanocrystalline Tio2. J. Am. Chem. Soc. 2005, 127, 12150-12151.
    81. Dell'Orto, E.; Raimondo, L.; Sassella, A.; Abbotto, A., Dye-Sensitized Solar Cells: Spectroscopic Evaluation of Dye Loading on Tio2. J. Mater. Chem. 2012, 22, 11364-11369.
    82. Bondi, A., Van Der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441-451.
    83. Meng, S.; Ren, J.; Kaxiras, E., Natural Dyes Adsorbed on Tio2 Nanowire for Photovoltaic Applications: Enhanced Light Absorption and Ultrafast Electron Injection. Nano Lett. 2008, 8, 3266-3272.
    84. Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A., Interfacial Electron-Transfer Dynamics in Ru(Tcterpy)(Ncs)3-Sensitized Tio2 Nanocrystalline Solar Cells. The Journal of Physical Chemistry B 2002, 106, 12693-12704.
    85. Duncan, W. R.; Stier, W. M.; Prezhdo, O. V., Ab Initio Nonadiabatic Molecular Dynamics of the Ultrafast Electron Injection across the Alizarin−Tio2 Interface. J. Am. Chem. Soc. 2005, 127, 7941-7951.
    86. Sodeyama, K.; Sumita, M.; O’Rourke, C.; Terranova, U.; Islam, A.; Han, L.; Bowler, D. R.; Tateyama, Y., Protonated Carboxyl Anchor for Stable Adsorption of Ru N749 Dye (Black Dye) on a Tio2 Anatase (101) Surface. The Journal of Physical Chemistry Letters 2012, 3, 472-477.
    87. Liu, S.-H.; Fu, H.; Cheng, Y.-M.; Wu, K.-L.; Ho, S.-T.; Chi, Y.; Chou, P.-T., Theoretical Study of N749 Dyes Anchoring on the (Tio2)28 Surface in Dsscs and Their Electronic Absorption Properties. J. Phys. Chem. C 2012, 116, 16338-16345.
    88. Schiffmann, F.; VandeVondele, J.; Hutter, J.; Wirz, R.; Urakawa, A.; Baiker, A., Protonation-Dependent Binding of Ruthenium Bipyridyl Complexes to the Anatase(101) Surface. J. Phys. Chem. C 2010, 114, 8398-8404.
    89. Lee, K. E.; Gomez, M. A.; Elouatik, S.; Demopoulos, G. P., Further Understanding of the Adsorption Mechanism of N719 Sensitizer on Anatase Tio2 Films for Dssc Applications Using Vibrational Spectroscopy and Confocal Raman Imaging. Langmuir 2010, 26, 9575-9583.
    90. Pérez León, C.; Kador, L.; Peng, B.; Thelakkat, M., Characterization of the Adsorption of Ru-Bpy Dyes on Mesoporous Tio2 Films with Uv−Vis, Raman, and Ftir Spectroscopies. The Journal of Physical Chemistry B 2006, 110, 8723-8730.
    91. Zhang, F.; Shi, F.; Ma, W.; Gao, F.; Jiao, Y.; Li, H.; Wang, J.; Shan, X.; Lu, X.; Meng, S., Controlling Adsorption Structure of Eosin Y Dye on Nanocrystalline Tio2 Films for Improved Photovoltaic Performances. J. Phys. Chem. C 2013, 117, 14659-14666.
    92. Galoppini, E., Linkers for Anchoring Sensitizers to Semiconductor Nanoparticles. Coord. Chem. Rev. 2004, 248, 1283-1297.
    93. Monti, S.; Pastore, M.; Li, C.; De Angelis, F.; Carravetta, V., Theoretical Investigation of Adsorption, Dynamics, Self-Aggregation, and Spectroscopic Properties of the D102 Indoline Dye on an Anatase (101) Substrate. J. Phys. Chem. C 2016, 120, 2787-2796.
    94. Srinivas, K.; Yesudas, K.; Bhanuprakash, K.; Rao, V. J.; Giribabu, L., A Combined Experimental and Computational Investigation of Anthracene Based Sensitizers for Dssc: Comparison of Cyanoacrylic and Malonic Acid Electron Withdrawing Groups Binding onto the Tio2 Anatase (101) Surface. J. Phys. Chem. C 2009, 113, 20117-20126.
    95. Zhang, F.; Ma, W.; Jiao, Y.; Wang, J.; Shan, X.; Li, H.; Lu, X.; Meng, S., Precise Identification and Manipulation of Adsorption Geometry of Donor−Π–Acceptor Dye on Nanocrystalline Tio2 Films for Improved Photovoltaics. Acs Appl Mater Inter 2014, 6, 22359-22369.
    96. Jiao, Y.; Zhang, F.; Grätzel, M.; Meng, S., Structure–Property Relations in All-Organic Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2013, 23, 424-429.
    97. Feng, J.; Jiao, Y.; Ma, W.; Nazeeruddin, M. K.; Grätzel, M.; Meng, S., First Principles Design of Dye Molecules with Ullazine Donor for Dye Sensitized Solar Cells. J. Phys. Chem. C 2013, 117, 3772-3778.
    98. Chen, P.; Yum, J. H.; Angelis, F. D.; Mosconi, E.; Fantacci, S.; Moon, S.-J.; Baker, R. H.; Ko, J.; Nazeeruddin, M. K.; Grätzel, M., High Open-Circuit Voltage Solid-State Dye-Sensitized Solar Cells with Organic Dye. Nano Lett. 2009, 9, 2487-2492.
    99. Jiří, K.; David, R. B.; Angelos, M., Chemical Accuracy for the Van Der Waals Density Functional. J. Phys.: Condens. Matter 2010, 22, 022201.
    100. Román-Pérez, G.; Soler, J. M., Efficient Implementation of a Van Der Waals Density Functional: Application to Double-Wall Carbon Nanotubes. Phys. Rev. Lett. 2009, 103, 096102.
    101. Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I., Van Der Waals Density Functional for General Geometries. Phys. Rev. Lett. 2004, 92, 246401.
    102. Anselmi, C.; Mosconi, E.; Pastore, M.; Ronca, E.; De Angelis, F., Adsorption of Organic Dyes on Tio2 Surfaces in Dye-Sensitized Solar Cells: Interplay of Theory and Experiment. Phys. Chem. Chem. Phys. 2012, 14, 15963-15974.
    103. Hara, K., et al., Novel Conjugated Organic Dyes for Efficient Dye-Sensitized Solar Cells. Adv. Funct. Mater. 2005, 15, 246-252.
    104. Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M., Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline Tio2 Solar Cell. The Journal of Physical Chemistry B 2003, 107, 8981-8987.
    105. Vittadini, A.; Selloni, A.; Rotzinger, F. P.; Grätzel, M., Formic Acid Adsorption on Dry and Hydrated Tio2 Anatase (101) Surfaces by Dft Calculations. The Journal of Physical Chemistry B 2000, 104, 1300-1306.
    106. Lewis, N. S., Toward Cost-Effective Solar Energy Use. Science 2007, 315, 798-801.
    107. Kim, Y. J., et al., Formation of Efficient Dye-Sensitized Solar Cells by Introducing an Interfacial Layer of Long-Range Ordered Mesoporous Tio2 Thin Film. Langmuir 2008, 24, 13225-13230.
    108. Bisquert, J., Physical Electrochemistry of Nanostructured Devices. Phys. Chem. Chem. Phys. 2008, 10, 49-72.
    109. Bisquert, J.; Fabregat-Santiago, F.; Mora-Seró, I.; Garcia-Belmonte, G.; Barea, E. M.; Palomares, E., A Review of Recent Results on Electrochemical Determination of the Density of Electronic States of Nanostructured Metal-Oxide Semiconductors and Organic Hole Conductors. Inorg. Chim. Acta 2008, 361, 684-698.
    110. Yang, K.; Dai, Y.; Huang, B. Review of the Structural Stability, Electronic and Magnetic Properties of Nonmetal-Doped Tio2 from First-Principles Calculations ArXiv e-prints2012.

    QR CODE