簡易檢索 / 詳目顯示

研究生: 蘇昱銘
Yu-Ming Su
論文名稱: 以常壓電漿噴射束製備奈米陶瓷粉體之微觀特性、化性及電性研究
Microstructure Characterization, Chemical Stability, and Electrical Property of Ceramics Nanopowders Synthesized by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 韋文誠
Wen-Cheng J. Wei
張宏宜
Horng-Yi Chang
楊永欽
Yung-Chin Yang
洪逸明
Hung I-Ming
施劭儒
Shao-Ju Shih
周宏隆
Hung-Lung Chou
江偉宏
Wei-Hung Chiang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 151
中文關鍵詞: 固態氧化物燃料電池氧化釓掺雜氧化鈰密度泛函理論奈米顆粒
外文關鍵詞: Solid Oxide Fuel Cells, Gd2O3-doped CeO2, Density functional theory, Nanoparticles
相關次數: 點閱:368下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常壓噴射束電漿(Atmospheric pressure plasma jet, APPJ)製備氧化釓掺雜氧化鈰(Gd2O3-doped CeO2, GDC)奈米顆粒,並以硝酸鈰與硝酸釓混合溶液作為前驅物製備來源。主要探討不同Gd摻雜濃度對於GDC奈米顆粒其結晶性質、表面型態、微觀結構及電性能之影響。製備後之粉體材料性質分析分別以X光繞射儀(XRD)分析其結晶結構及粉體尺寸,掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察其表面形貌與粉體尺寸,最後以電漿放射光譜分析(OES)進一步研究其氧化物顆粒成型之機制,結果顯示經由常壓電漿噴射束能於短時間內製備出GDC立方相螢石結構之奈米粉體。
    實驗及理論分析於三價金屬離子摻雜氧化鈰基材料之研究已受到許多關注,因其可應用於固態氧化物燃料電池之電解質材料。第一原理密度泛函理論(DFT)研究能提供詳細的原子級結構分析及改善電解質材料之問題,並有助於了解GDC奈米結構之應用。本研究利用密度函數理論模擬CeO2、Ce0.9Gd0.1O2的電荷分佈。藉由CeO2和Ce0.9Gd0.1O2的Bader charge分析之結果,顯示以Gd作為摻雜物有助於增加Ce0.9Gd0.1O2奈米結構之電荷,提升Ce0.9Gd0.1O2之導電性能。


    Gd2O3-doped CeO2 (GDC) nanoparticles were prepared thought a facile one-step fabrication from a precursor solution via atmospheric pressure plasma jet (APPJ). The mixture precursor solution of gadolinium nitrate hexahydrate and cerous nitrate hexahydrate were used as initial precursors for Gd and Ce ions. The microstructure of GDC was found to be an assembly of nanocrystallites with a cubic fluorite structure analyzed by XRD and TEM. Reactive oxygen species (detected by optical mission spectroscopy (OES)) are believed to be the major oxidative agents for the formation of oxide materials in the APPJ process. Based on the materials characterization and OES observations, the proposed formation mechanism of GDC nanoparticles by APPJ was illustrated in this study. The results of the study effectively demonstrated the feasibility of preparing well-crystallized GDC nanoparticles by the APPJ system.
    Theoretical and experimental studies based on trivalent metal ions doped-ceria have received major attention due to its possible applications as the electrolyte material within solid oxide fuel cells (SOFCs). First principles density functional theory (DFT) study of ceria-based materials can provide a detailed understanding of the atomic level properties and contribute towards the hunt for improved electrolyte material. A better understanding of this interaction will facilitate the design of better conjugates for Ce0.9Gd0.1O2 nanocrystals for various applications. The detailed mechanism is not clear until now. In this study, the density function theory (DFT) simulation was employed to demonstrate charge analyses of CeO2 and Ce0.9Gd0.1O2. By comparing the Bader charge of the bare CeO2 and Ce0.9Gd0.1O2 nanocrystals, it was shown that Gd as doped metal help to increase the charge on Ce0.9Gd0.1O2 nanocrystals.

    Table of contents 摘要 ..I Abstract .II Acknowledgements ...V Table of contents IV List of figures VIII List of tables .XII Chapter 1 Introduction 1.1 Motivation 1 1.2 Objective of the research 3 Chapter 2 Literature review 2.1 Introduction of SOFCs 5 2.2 Working principles of SOFCs 8 2.3 Solid Electrolyte for SOFCs 8 2.3.1 Perovskite-Structured Solid State Electrolytes 9 2.3.2 La2Mo2O9 (LAMOX) Electrolyte 13 2.3.3 Apatite-Structured Solid State Electrolytes 14 2.3.4 Fluorite-Structured Solid State Electrolytes 17 2.3.4.1 Bismuth Oxide-based Electrolyte 17 2.3.4.2 Zirconia-Based Electrolytes 18 2.3.4.3 Ceria-Based Electrolytes 20 2.3.5 Fabrication of Ceria-Based Electrolyte Material 25 2.3.5.1 Solid State Reaction Method 25 2.3.5.2 Sol-Gel Method 26 2.3.5.3 Glycine-Nitrate Combustion Process (GNP) 27 2.3.5.4 Spray Pyrolysis 29 2.3.6 Atmospheric Pressure Plasma Fabrication for the production of SOFC components 30 2.3.6.1 Plasmas classification 31 2.3.6.2 Atmospheric Pressure Plasmas: LTE or non-LTE 32 2.3.6.3 Thermal Plasma Spray 37 2.3.6.4 Cold atmospheric plasma sources (Non-equilibrium Plasmas) 39 Chapter 3 Experimental Set-Up 3.1 Experimental Procedures 43 3.2 Materials Characterization of Prepared Samples 44 3.2.1 Measurement of Plasma Temperature 42 3.2.2 Optical Emission Spectroscopy 42 3.2.3 X-Ray Diffraction Analysis & Rietveld Analysis 42 3.2.4 Field Emission Scanning Electron Microscopy 43 3.2.5 High Resolution Transmission Electron Microscopy 43 3.2.6 X-ray Photoelectron Spectroscopy 43 3.2.7 Laser Diffraction for Particle Size Distribution 45 3.2.8 TGA Analysis of Prepared Samples 46 3.2.9 AC Impedance 46 3.3 Computation Details 46 Chapter 4 Material Characterization of Gd2O3-doped CeO2 4.1 Basic Plasma Characterization 48 4.2 Preparation of ZrO2 particle 51 4.3 Preparation of Gd2O3 doped-CeO2particles 66 4.3.1 TGA Analysis of Prepared Samples 66 4.3.2 X-ray Diffraction and Rietveld Refinement Analysis 69 4.3.3 TEM Analysis 72 4.3.4 DFT calculation and Bader charge analyses 73 Chapter 5 Chemical Stability and Electrical Performance of Gd2O3-doped CeO2 5.1 Background ..95 5.2 Thermal Stability of Gd2O3-doped CeO2 ..98 5.3 Electrical Performance of Gd2O3-doped CeO2 107 Chapter 6 Conclusions 115 Reference 116   List of Figures Figure 2.1 Working principle of SOFCs 7 Figure 2.2 Examples of compounds showing (a) order-disorder transitions and (b) their doped counterparts. Data are taken from: Bi2O3 [39], Bi4V2O11 [40], Ba2In2O5 [23], La2Mo2O7 [41], 0.8Bi2O3•0.2Er2O3 [42], Bi4V1.8Cu0.2O10.7 [40], (Ba0.3Sr0.2La0.5)2In2O5 [28], and La1.8Gd0.2Mo1.8W0.2O7 [43] 11 Figure 2.3 Conductivity data for YSZ [44], CGO [45], and LSGM [35] 11 Figure 2.4 Representation of the structure of apatite viewed down the c axis; the XO4 tetrahedra are yellow, the lanthanum and oxygen atoms are gray and red spheres 15 Figure 2.5 Ionic conductivity of ZrO2-Y2O3 solid solutions at 300 °C. Reproduced with permission from ref [45] 18 Figure 2.6 Results for a CGO electrolyte supported (0.8 mm thick) solid oxide fuel cell with 97 vol % H2 + 3 vol%H2O, Ni-CGO anode/CGO electrolyte/PBCO-CGO cathode, air from 500 to 700 °C at 25°Cintervals. The inset is the temperature dependence of the open circuit voltage 21 Figure 2.7 Sol-Gel technologies and their products 24 Figure 2.8 General schematic of a spray pyrolysis deposition process. 26 Figure 2.9 Evolution of the plasma temperature (electrons and heavy particles) with the pressure in a mercury plasma arc 32 Figure 2.10 Principle of a corona discharg 37 Figure 2.11 Principle of dielectric barrier discharge 38 Figure 3.1 APPJ system 41 Figure 4.1 Plasma Temperature at 300, 400, and 500. 48 Figure 4.2 Optical emission spectrum of the CDA plasma with atomized precursors and O2 carrier gas 48 Figure 4.3 FESEM photographs of the prepared zirconia particles: (a) 300 W, (b) 400 W, and (c) 500 W 58 Figure 4.4 Particle size distributions of prepared zirconia particles: (a) 300 W, (b) 400 W, and (c) 500 W. 59 Figure 4.5 XRD spectra of prepared zirconia particles at 300, 400, and 500W 60 Figure 4.6 XPS spectra of (a) Zr 3d, and (b) O 1s core levels for the prepared zirconia particles. 61 Figure 4.7 (a) TEM image, (b) SAED pattern, and (c) TEM-EDS pattern, of prepared zirconia particles for 400 62 Figure 4.8 Proposed mechanism for the formation of prepared zirconia particles from atomized solution droplets in an APPJ process 63 Figure 4.9 The TGA analysis results of (a) weight loss and (b) differential versus temperature for Ce(NO3)3.6H2O precursor 75 Figure 4.10 The TGA analysis results of (c) weight loss and (d) differential versus temperature for Gd(NO3)3.6H2O precursor 76 Figure 4.11 XRD spectra and Rietveld refinement analysis of prepared (a) CeO2, (b) 10GDC, and (c) 20GDC by APPJ 78 Figure 4.12 HR-TEM images, FFT pattern and particle size distribution of prepared (a, c) CeO2 and (b, d) 10GDC nanoparticles by APPJ 79 Figure 4.13 HR-TEM images of prepared 10GDC nanoparticles 80 Figure 4.14 TEM image and elemental mapping images of 10GDC nanoparticles 81 Figure 4.15 HR-TEM images of prepared 20GDC nanoparticles 82 Figure 4.16 TEM image and elemental mapping images of 20GDC nanoparticles 83 Figure 4.17 HR-TEM images of prepared 40GDC nanoparticles 84 Figure 4.18 TEM image and elemental mapping images of 4GDC nanoparticles 85 Figure 4.19 The model of top-view of CeO2 (111) 86 Figure 4.20 The model of alternative-view of CeO2 (111) 87 Figure 4.21 The model of side-view of CeO2 (111) 88 Figure 4.22 The model of side-view of CeO2 (111) 89 Figure 4.23 The model of top-view of Gd (001) 90 Figure 4.24 The model of alternative-view of Gd (001) 91 Figure 4.25 The model of side-view of Gd (001) 92 Figure 4.26 The model of side-view of Gd (001) 93 Figure 4.27 The model of top-view of Ce0.9Gd0.1O2 (111) 94 Figure 4.28 The model of alternative-view of Ce0.9Gd0.1O2 (111) 95 Figure 4.29 The model of side-view of Ce0.9Gd0.1O2 (111) 96 Figure 4.30 The model of side-view of Ce0.9Gd0.1O2 (111) 97 Figure 4.31 The model of top-view of Ce0.8Gd0.2O2 (111) 98 Figure 4.32 The model of alternative-view of Ce0.8Gd0.2O2 (111) 99 Figure 4.33 The model of side-view of Ce0.8Gd0.2O2 (111) 100 Figure 4.34 The model of side-view of Ce0.8Gd0.2O2 (111) 101 Figure 5.1 Isothermal Reduction of (a) CeO2, (b)10GDC, and (c) 20GDC 109 Figure 5.2 Activation Energy of (a) CeO2, (b)10GDC, and (c) 20GDC 110 Figure 5.3 XRD analysis of reduced (a) CeO2, (b)10GDC, and (c) 20GDC 111 Figure 5.4 TEM images of (a) 10GDC and (b) 20GDC by APPJ process, and (c) 10GDC by sol-gel method 112 Figure 5.5 SEM images of (a) 10GDC and (b) 20GDC by APPJ process, sintered at 1300 °C 113 Figure 5.6 SEM images of (a) 10GDC and (b) 20GDC by APPJ process, sintered at 1400 °C 114 Figure 5.7 SEM images of (a) 10GDC and (b) 20GDC by APPJ process, sintered at 1500 °C 115 Figure 5.8 AC impedance of all samples sintered at 1400°C and measured at (a) 800, (b) 700, (c) 600, (d) 500, and (e) 400 °C 118 Figure 5.9 AC impedance of all samples sintered at 1500 °C and measured at (a) 800, (b) 700, (c) 600, (d) 500, and (e) 400 °C 121 Figure 5.9 AC impedance of all samples sintered at 1500 °C and measured at (a) 800, (b) 700, (c) 600, (d) 500, and (e) 400 °C 121 Figure 5.9 AC impedance of all samples sintered at 1500 °C and measured at (a) 800, (b) 700, (c) 600, (d) 500, and (e) 400 °C 121 List of Tables Table 2-1 Conductivity of Some Lanthanum Silicate Apatites (data from ref 54) 15 Table 2-2 Some physical properties of pure stoichiometric CeO2 21

    1. John R. Fanchi, Christopher J. Fanchi, Energy in the 21st century, World Scientific, 2011
    2. Fossil fuel. ScienceDaily
    3. Paul Mann, Lisa Gahagan, and Mark B. Gordon, "Tectonic setting of the world's giant oil and gas fields," in Michel T. Halbouty (ed.) Giant Oil and Gas Fields of the Decade, 1990-1999, Tulsa, Okla.: American Association of Petroleum Geologists, p. 50, accessed 22 June 2009.
    4. United States Environmental Protection Agency, Global Greenhouse Gas Emissions Data, http://www.epa.gov/
    5. Fuel Cell Today (2011). The Industry Review. Fuel Cell Today.RetrievedOctober 5, 2011 from http://www.fuelcelltoday.com/analysis/industry-review
    6. V.D. Belyaev, T.I. Politova, O.A. Mar’ina, V.A. Sobyanin, “Internal steam reforming of methane over Ni-based electrode in solid oxidefuel cells,”Applied CatalysisA: General, 133 (1995) 47-57.
    7. W. Wang, S.P.Jiang, A.I.Y.Tok, L. Luo, “GDC-impregnated Nianodes for direct utilization of methane in solid oxide fuel cells,”Journal ofPower Sources,159 (2006) 68-72.
    8. K. Wang, R. Ran, Z. Shao,“Methane-fueled IT-SOFCs with facilein situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 ascatalytic layer,”Journal of Power Sources, 170 (2007) 251-258.
    9. M. Boaro,V. Modafferi, A. Pappacena, J. Llorca, V. Baglio, F. Frusteri, P. Frontera, A. Trovarelli, P. L. Antonucci, “Comparison betweenNi-Rh/gadolinia doped ceria catalysts in reforming of propane for anodeimplementations in intermediate solid oxide fuel cells,”J. Power Sources, 195 (2010 ) 649-661.
    10. S. Park, J. M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbonsin a solid-oxide fuel cell,”Nature, 404 (2000) 265-267.
    11. O. Costa-Nunes, J.M. Vohs, R.J.Gorte, “A study of directconversionSOFC with n-butane at higher fuel utilization,” Journal of TheElectrochemical Society, 150(7) (2003) A858-A863.
    12. Z. Zhan, S.A. Barnett,“An octane-fueled solid oxide fuel cell,”Science, 308 (2005) 844.
    13. B.C.H.Steele, “Running on natural gas,”Nature, 400 (1999) 619-621.
    14. Z.F. Zhou, C. Gallo,M. B. Pague, H. Scobert, S. N. Lvov, “Direct oxidation of jet fuels and Pennsylvania crude oil in a solid oxide fuelcell,”Journal of Power Sources, 133 (2004) 181-187.
    15. C.-X.Li, C.-J.Li, L.-J.Guo, “Performance of a Ni/Al2O3cermet-supported tubular solid oxide fuel cell operating withbiomass-basedsyngas through supercritical water,”International Journal of HydrogenEnergy, 35 (2010) 2904-2908.
    16. B.C.H.Steele,A. Heinzel, “Materials for fuel-cell technologies,”Nature, 414 (2001) 345-352.
    17. J.J. Baschuk, XianguoLi, “Carbon monoxide poisoning ofproton exchange membrane fuel cells,” International Journal of EnergyResearch, 25 (2001) 695-713.
    18. R.J. Gorte,J.M. Vohs, S. McIntosh, “Recent developments onanodes for direct fuel utilization in SOFC,”Solid State Ionics, 175 (2004) 1-6.
    19. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174 (2004) 135.
    20. D.H. Lee, R.W. Moss, K.D. Vuong, M. Dietrich, R.A. Condrate, X.W. Wang, Transparent-conductive indium tin oxide films fabricated by atmospheric RF plasma deposition technique, Thin Solid Films 290-291 (1996) 6-9.
    21. T. Hanabusa, S. Uemiya, T. Kojima, “Surface modification of particles in a plasma jet fluidized bed reactor,” Surf. Coat. Technol. 88 (1996) 226-231.
    22. H. Hayashia, H. Inaba, M. Matsuyama, N. G. Lan, M. Dokiya, H. Tagawa, Solid State Ionics, 122 (1999) 1-15.
    23. J. B. Goodenough, J. E. Ruiz-Diaz, Y. S. Zhen, “Oxide-ion conduction in barium indium oxide (Ba2In2O5) and (Ba3In2Mo8) (M = cerium, hafnium or zirconium),”Solid State Ionics, 44 (1990) 21-31.
    24. T. R. S. Prasanna, A. Navrotsky, “Energetics of the oxygen vacancy order-disorder transition in barium indium oxide (Ba2In2O5),” J. Mater. Res., 8 (1993) 1484-1486.
    25. J. Cheng, A. Navrotsky, X. -D. Zhou, H. U. Anderson, “Thermochemistry of La1-xSrxFeO3-δ Solid Solutions (0.0 ≤ x ≤ 1.0, 0.0 ≤ δ ≤ 0.5),” Chem.Mater., 17 (2005) 2197-2207.
    26. J. B. Goodenough, A. Manthiram, P. Paranthaman, Y. S. Zhen,“Fast oxide-ion conduction in intergrowth structures,”Solid State Ionics, 52 (1992) 105-109.
    27. A. Manthiram,J. F. Kuo,J. B. Goodenough, “Characterization of oxygen-deficient perovskites as oxide-ion electrolytes,” Solid State Ionics,62 (1993) 225-234.
    28. K. Kakinuma,H. Yamamura, H. Haneda, T. Atake, “Oxide-ion conductivity of the perovskite-type solid-solution system, (Ba1-x-ySrxLay)2In2O5+y,”Solid StateIonics, 154-155 (2002) 571-576.
    29. K. Kakinuma, T. Arisaka, H. Yamamura, T. Atake, “Solid oxide fuel cell using (Ba0.3Sr0.2La0.5)InO2.75 electrolyte,”Solid StateIonics, 175 (2004) 139-143.
    30. T. Ishihara, H. Matsuda,Y. Takita, “Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor,” J. Am. Chem. Soc., 116 (1994) 3801-3803.
    31. T. Ishihara,Y. Hiei,Y. Takita, “Oxidative reforming of methane using solid oxide fuel cell with LaGaO3-based electrolyte,”Solid State Ionics, 79 (1995) 371–375.
    32. M. Feng, J.B. Goodenough, “A superior oxide-ion electrolyte,”Eur. J. Solid State Inorg. Chem., 31 (1994) 663-672.
    33. K. Huang, M. Feng, J.B. Goodenough, “Sol-gel synthesis of a new oxide-ion conductor Sr- and Mg-doped LaGaO3perovskite,”J. Am. Ceram. Soc., 79 (1996) 1100-1104.
    34. K. Huang, R. S. Tichy, J. B. Goodenough, “Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties,”J. Am. Ceram. Soc. 81 (1998) 2565-2575.
    35. P. Huang, A. Petric,“Superior oxygen ion conductivity of lanthanum gallate doped with strontium and magnesium,”J. Electrochem. Soc., 143 (1996) 1644-1648.
    36. A. Matraszeka, L. Singheiser, D. Kobertz,K. Hilpert,M. Miller, O. Schulz, M. Martin, Solid State Ionics, 166 (2004) 343-350.
    37. K. Huang, R.S. Tichy, J.B. Goodenough,“Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: II, a.c. impedance spectroscopy,” J. Am. Ceram. Soc.,81 (1998) 2576-2580.
    38. K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa, “Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere,”Solid State Ionics, 121 (1999) 217-224.
    39. T. Takahashi, H. Iwahara, Y. Nagai, “High oxide ion conduction in sintered bismuth oxide containing strontium oxide, calcium oxide, or lanthanum oxide,” J. Appl. Electrochem., 1972, 2, 97–104.
    40. F. Abraham, J.C. Boivin, G. Mairesse, G. Nowogrocki, “The BIMEVOX series: a new family of high performances oxide ion conductors,” Solid State Ionics, 40-41 (1990) 934-937.
    41. P. Lacorre, F. Goutenoire, O. Bohnke, R. Retoux,Y. Laligant,“Designing fast oxide-ion conductors based on La2Mo2O9,” Nature, 404(6780) (2000) 856-858.
    42. H. Kruidhof, H.J.M. Bouwmeester, K.J. De Vries, P.J. Gellings, A.J. Burggraaf, “Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide,”Solid State Ionics, 50 (1992) 181-186.
    43. S. Georges, F. Goutenoire, O. Bohnke, M.C. Steil, S.J. Skinner, H.-D. Wiemhoefer, P. Lacorre, “Reducibility of fast oxide-ion conductors La2-xRxMo2-yWyO9 (R = Nd, Gd),”J. Mater. Chem., 13 (2003) 2317-2321.
    44. N.Q. Minh, T. Takahashi, Science and Technology of Ceramic Fuel Cells; Elsevier, Amsterdam, 1995.
    45. B.C.H. Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500°C,” Solid State Ionics, 129 (2000) 95-110.
    46. S. Georges, F. Goutenoire, F. Altorfer, D. Sheptyakov, F. Fauth, E. Suard, P. Lacorre, “Thermal, structural and transport properties of the fast oxide-ion conductors La2-xRxMo2O9 (R=Nd, Gd, Y),” Solid State Ionics, 161 (2003) 231-241.
    47. S. Georges, F. Goutenoire, O. Bohnke, M. C. Steil, S. J. Skinner, H.-D. Wiemhoefer, P.Lacorre, “The LAMOX family of fast oxide-ion conductors: Overview and recent results,” J. New Mater. Electrochem. Syst., 7 (2004) 51-57.
    48. G. Corbel, Y. Laligant, F. Goutenoire, E. Suard, P. Lacorre, Chem. Mater., 17 (2005) 4678-4684.
    49. D. Marrero-Lopez, J. Pena-Martinez, J.C. Ruiz-Morales, D. Perez-Coll, M.C. Martin-Sedeno, P. Nunez, “Applicability of La2Mo2-yWyO9 materials as solid electrolyte for SOFCs,” Solid State Ionics, 178 (2007) 1366-1378.
    50. G. Corbel, P. Lacorre, “Compatibility evaluation between La2Mo2O9 fast oxide-ion conductor and Ni-based materials,” J. Solid State Chem., 179 (2006) 1339-1344.
    51. P.R. Slater, J.E.H. Sansom, J.R. Tolchard, “Development of apatite-type oxide ion conductors,” Chem. Rec., 4 (2004) 373-384.
    52. E. Kendrick, M.S. Islam, P.R. Slater, “Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties,” J. Mater. Chem., 17 (2007) 3104-3111.
    53. T. Iwata,E. Bechade, K. Fukuda, O. Masson, I. Julien, E. Champion, P. Thomas, “Lanthanum- and oxygen-deficient crystal structures of oxide-ion conducting apatite-type silicates,” J. Am. Ceram. Soc., 91 (2008) 3714-3720.
    54. S. Nakayama, H. Aono, Y. Sadaokac, Chem. Lett., 1995, 6, 431–432.
    55. S. Nakayama, T. Kageyama, H. Aono, Y. Sadaokac, “Ionic conductivity of lanthanide silicates, Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb) La10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er, Yb),” J. Mater.Chem., 5 (1995) 1801-1805.
    56. S. Nakayama, M. Sakamoto, M. Higuchi, K. Kodaira, M. Sato, S. Kakita, T. Suzuki,K. Itoh,“Oxide ionic conductivity of apatite type Nd9.33(SiO4)6O2 single crystal,” J. Eur. Ceram. Soc., 19 (1999) 507-510.
    57. M.S. Islam, J.R. Tolchard, P.R. Slater, “An apatite for fast oxide ion conduction,” Chem.Commun., 2003 1486-1487.
    58. E. Bechade, O. Masson, T. Iwata, I. Julien, K. Fukuda, P. Thomas, E. Champion, “Diffusion Path and Conduction Mechanism of Oxide Ions in Apatite-Type Lanthanum Silicates,” Chem. Mater., 21 (2009) 2508-2517.
    59. J.R. Tolchard, M.S. Islam, P.R. Slater,“Defect chemistry and oxygen ion migration in the apatite-type materials La9.33Si6O26 and La8Sr2Si6O26,” J. Mater. Chem., 13(2003) 1956-1961.
    60. A. Jones, P.R. Slater, M.S. Islam, “Local Defect Structures and Ion Transport Mechanisms in the Oxygen-Excess Apatite La9.67(SiO4)6O2.5,”Chem. Mater., 20 (2008) 5055-5060.
    61. A.L. Shaula, V.V. Kharton, F.M.B. Marques, “Ionic and electronic conductivities, stability and thermal expansion of La10-x(Si, Al)6O26±δ solid electrolytes,” Solid State Ionics, 2006, 177 (2006) 1725-1728.
    62. T. Takahashi, H. Iwahara, Y. Nagai, “High oxide ion conduction in sintered bismuth oxide containing strontium oxide, calcium oxide, or lanthanum oxide,” J. Appl. Electrochem., 2 (1972) 97-104.
    63. T. Takahashi, H. Iwahara, T. Arao, “High oxide ion conduction in sintered oxides of the system bismuth (III) oxide-yttrium (III) oxide,” J. Appl. Electrochem.,5 (1975) 187-195.
    64. M.J. Verkerk, K. Keizer, A.J. Burggraaf, “High oxygen ion conduction in sintered oxides of the bismuth oxide-erbium oxide system,” J. Appl. Electrochem., 10 (1980) 81-90.
    65. H. Kruidhof, H.J.M. Bouwmeester, K.J. De Vries, P. J. Gellings, A. J. Burggraaf, “Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide,” Solid State Ionics, 50 (1992) 181-186.
    66. K. Z. Fung, H. D. Baek, A. V. Virkar, “Thermodynamic and kinetic considerations for bismuth oxide (Bi2O3)-based electrolytes,” Solid State Ionics,52 (1992) 199-211.
    67. J.-Y. Park, H. Yoon, E.D. Wachsman, “Fabrication and characterization of high-conductivity bilayer electrolytes for intermediate-temperature solid oxide fuel cells,”J. Am. Ceram. Soc.,88 (2005) 2402-2408.
    68. T. H. Etsell, S. N. Flengas,“Electrical properties of solid oxide electrolytes,” Chem. Rev.,70 (1970) 339-336.
    69. S. P. S. Badwal, Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity, Solid State Ionics, 52 (1992) 23-32.
    70. Solid State Energy Conversion Alliancehttp://www.netl.doe.gov/technologies/coalpower/fuelcells/seca/
    71. S.P.S. Badwal,K. Foger, “Solid oxide electrolyte fuel cell review,” Ceram. Int., 22 (1996) 257-265.
    72. S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, “Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation,”Solid State Ionics, 136-137 (2000) 91-99.
    73. Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, “Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system,” Solid State Ionics, 121 (1999) 133–139.
    74. T. I. Politova, J.T.S. Irvine, “Investigation of scandia-yttria-zirconia system as an electrolyte material for intermediate temperature fuel cells-influence of yttria content in system (Y2O3)x(Sc2O3)(11-x)(ZrO2)89,” Solid State Ionics, 168 (2004) 153-165.
    75. S. Kuharuangrong, “Ionic conductivity of Sm, Gd, Dy, and Er-dopedceria, ”Journal of Power Sources, 171 (2007) 506-510.
    76. P. Shuk, M. Greenblatt, “Hydrothermal synthesis and properties ofmixed conductors based on Ce1-xPrxO2-δ,” Solid State Ionics, 116 (1999) 217.
    77. H. Inaba, H. Tagawa,“Ceria-based solid electrolytes,” Solid StateIonics, 83 (1996) 1-16.
    78. B.C.H.Steele, “Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFCoperation at 500 oC,”Solid State Ionics, 129 (2000) 95-110.
    79. S.W. Zha, C. R. Xia, G. Y. Meng, “Effect of Gd(Sm) doping onproperties of ceria electrolyte for solid oxide fuel cells,”Journal of PowerSources, 115(2003) 44-48.
    80. Z. Zhan, S. A. Barnett, “An octane-fueled solid oxide fuel cell,” Science, 308 (2005) 844.
    81. O.A. Marina, M. Mogensen,“High-temperature conversion ofmethane on a composite gadolinia-doped ceria-gold electrode,”AppliedCatalysis :A, 189 (1999) 117-126.
    82. T. Hibino, A. Hashimoto, M. Yano, M.Suzuki, M. Sano, “Ru-catalyzedanode materials for direct hydrocarbon SOFCs,” Electrochimica Acta, 48 (2003) 2531-2537.
    83. E. R. Cabrera, A. Atkinson, D. Chadwick, “The influence of pointdefects on the resistance of ceria to carbon deposition in hydrocarboncatalysis,”Solid State Ionics, 136 (2000) 825-831.
    84. J. M. Ralph, C. Rossignol, R. Kumar, “Cathode materials forreduced-temperature SOFCs,”Journal of The Electrochemical Society,150(11) (2003) A1518-A1522.
    85. Barnighausen, H, & Schiller, G. (1985). The crystal structure of A-Ce2O3.Journal of the Less-Common Metals, 110, 385.
    86. Tuller, H. L., &Nowich, A. S. (1979). Defect structure and electricalproperties of nonstoichiometric CeO2 single crystals. Journal of TheElectrochemical Society, 126, 209-217.
    87. Reiss, I., Janczikowski, H., &Nolting, J. (1987). O2 chemical potential ofnonstoichiometric ceria, CeO2-x, determined by a solid electrochemicalmethod. Journal of Applied Physics, 61, 4931-4933.
    88. Blumenthal, R. N., & Sharma, R. K. (1975). Electronic conductivity innonstoichiometric cerium dioxide. Journal of Solid State Chemistry, 13,360-364.
    89. Tuller, H. L., &Nowick, A. S. (1977). Small polaron electron transport inreduced CeO2 single crystals. Journal of Physics and Chemistry of Solids,38(8), 859-867.
    90. N. V. Skorodumova, S. I. Simak, B. I. Lundqvist, I. A. Abrikosov, B. Johansson, “Quantum origin of the oxygen storage capability of ceria,” Physical Review Letters, 89 (2002) 166601-16604.
    91. J. A. Kilner and R. J. Brook, “A study of oxygen ion conductivity in doped nonstoichiometric oxides”, Solid State Ionics, 6(1982) 237-252.
    92. D. J. Kim, “Lattice parameters, ionic conductivities, and solubility limits in fluoritestructure MO2 oxide [M= Hf4+, Zr4+, Ce4+, Th4+, U4+] solid solutions, Journal of the American Ceramic Society, 72 (1989) 1415-1421.
    93. S. Omar, E. D. Wachsman, J. L. Jones and J. C. Nino, “Crystal structure-ionic conductivity relationships in doped ceria systems,” Journal of the American Ceramic Society, 92 (2009) 2674-2681.
    94. T. Kudo, H. Obayashi, “Oxygen Ion Conduction of the Fluorite-Type Ce1-XLnxO2-x/2 (Ln = Lanthanoid Element)”, Journal of the Electrochemical Society, 122 (1) (1975) 142-147.
    95. R. Gerhardt-Anderson, A.S. Nowick, “Ionic conductivity of CeO2 with trivalent dopants of different ionic radii,” Solid State Ionics, 5 (1981) 547-550.
    96. H. Yahiro, Yoshinobu Baba, Koichi Eguchi and Hiromichi Arai, “High Temperature Fuel Cell with Ceria‐Yttria Solid Electrolyte,” Journal of the Electrochemical Society, 135 (8) (1988) 2077-2080.
    97. H. Conrads, M. Schmidt, “Plasma generation and plasma sources,” Plasma Sources Sci. Technol. 9 (2000) 441–454.
    98. N. S. J. Braithwaite, “Introduction to gas discharges,” Plasma Sources Sci. Technol. 9 (2000) 517-527.
    99. H. R. Griem, “High-density corrections in plasma spectroscopy,” Phys. Rev. 128 (3) (1962) 997-1003.
    100. M. Moisan, M. D. Calzada, A. Gamero, A. Sola, “Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure,” J. Appl. Phys. 80 (1) (1996) 46-55.
    101. M.I. Boulos, P. Fauchais, E. Pfender, “Thermal Plasmas: Fundamental And Applications. Volume I, Plenum Press, New York, ISBN: 0-306- 44607-3, 1994, 452.
    102. H. R. Griem, “Validity of local thermal equilibrium in plasma spectroscopy,” Phys. Rev. 131 (3) (1963) 1170–1176.
    103. M. D. Calzada, A. Rodero, A. Sola, A. Gamero, “Excitation kinetic in an argon plasma column produced by a surface wave at atmospheric pressure,” J. Phys. Soc. Jpn., 65 (4) (1996) 948-954.
    104. R. H. Huddlestone, S. L. Leonard, Plasma Diagnostic Techniques, Academic Press, New York, 1965.
    105. H. R. Griem, Plasma Spectroscopy, McGraw-Hill, New York, 1964.
    106. W. Lochte-Holtgreven, Plasma Diagnostics, North-Holland, Amsterdam, 1968.
    107. M. Mitchner, C.H. Kruger Jr., Partially Ionized Gases, Wiley, New York, 1973.
    108. V. Karanassios, Microplasmas for chemical analysis: analyticla tools or research toys? Spectrochim. Acta Part B 59 (2005) 909-928.
    109. A. Fridman, A. Chirokov, A. Gutsol, “Non-thermal atmospheric pressure discharges,” J. Phys. D: Appl. Phys. 38 (2005) R21-R24.
    110. J. Salge, “Plasma-assisted depositon at atmospheric pressure,” Surf. Coat. Technol. 80 (1996) 1 –7. F. Massines, G. Gouda, A comparison of polypropylene-surface treatment by filamentary, homogeneous and glow discharges in helium at atmospheric pressure, J. Phys. D: Appl. Phys. 31 (1998) 3411 – 3420.
    111. T. Yokoyama, M. Kogoma, T. Moriwaki, S. Okazaki, “The mechanism of the stabilisation of glow plasma at atmospheric pressure,” J. Phys. D: Appl. Phys. 23 (1990) 1125-1128.
    112. J.L. Delacroix, A. Bers, Physique des plasmas. Paris: Inter Editions/CNRS Editions, 1993.
    113. O. Goossens, E. Dekempeneer, D. Vangeneugden, R. Van De Leest, C. Leys, Application of atmospheric pressure dielectric barrier discharge in deposition, cleaning and activation, Surf. Coat. Technol. 142– 144 (2001) 474–481.
    114. S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, Stable glow plasma at atmospheric pressure, J. Phys. D: Appl. Phys. 21 (1988) 838-840.
    115. T. Yokoyama, M. Kogoma, S. Kanazawa, T. Moriwaki, S. Okazaki, “The improvement of the atmospheric-pressure glow plasma method and the deposition of organic films,” J. Phys. D: Appl. Phys. 23 (1990) 374-377.
    116. R. Prat, Y. J. Koh, Y. Babukutty, M. Kogoma, S. Okazaki, M. Kodama, “Polymer deposition using atmospheric pressure plasma glow (APG) discharge,” Polymer, 41 (2000) 7355–7360.
    117. Y.-H. Lee, C.-H. Yi, M.-J. Chung, G.-Y. Yeom, “Characteristics of He/O2 atmospheric pressure glow discharge and its dry etching properties of organic materials,” Surf. Coat. Technol., 146-147 (2001) 474-479.
    118. A. Ohsawa, R. Morrow, A.B. Murphy, “An investigation of a dc dielectric barrier discharge using a disc of glass beads,” J. Phys. D: Appl. Phys. 33 (2000) 1487-1492.
    119. M. Moisan, Z. Zakrzewski, J. C. Rostaing, “Waveguide-based single and multiple nozzle plasma torches: the TIAGO concept,” Plasma Sources Sci. Technol. 10 (2001) 387-394.
    120. M. Jasinski, J. Mizeraczyk, Z. Zakrzewski, T. Ohkubo, J.-S. Chang, “CFC-11 destruction by microwave torch generated atmospheric-pressure nitrogen discharge,” J. Phys. D: Appl. Phys. 35 (2002) 2274– 2280.
    121. C.F. Pau, J.D. Yan, S.R. Wylie, “The Influence of the Gas Flow Rate and Microwave Source Power on the Behavior of a Microwave Generated Argon Plasma Jet, XIII International Conference on Gas Discharges and Their Applications, September 3-8 2000, Glasgow, UK2000, 585-588.
    122. P. P. Woskov, K. Hadidi, “Large electrodeless plasmas at atmospheric pressure sustained by a microwave waveguide,” IEEE Trans. Plasma Sci. 30 (1) (2002) 156-157.
    123. E. A. H. Timmermans, J. Jonkers, I. A. J. Thomas, A. Rodero, M. C. Quintero, A. Sola, A. Gamero, J. A. M. Van Der Mullen, “The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy: 1. Plasmas at atmospheric pressure,” Spectrochim. Acta Part B 53 (11) (1998) 1553-1566.
    124. Q. Jin, C. Zhu, M.W. Borer, G.M. Hieftje, “A microwave plasma torch assembly torch for atomic emission spectroscopy,” Spectrochim. Acta Part B 46 (1991) 417-430.
    125. F. Liang, D. Zhang, Y. Lei, H. Zhang, Q. Jin, “Determination of selected noble metals by MPT-AES using a pneumatic nebulizer,” Microchem. J. 52 (1995) 181-187.
    126. Yong C. Hong, Jeong H. Kim, Han S. UHM, “Simulated experiment for elimination of chemical and biological warfare agents by making use of microwave plasma torch,” Phys. Plasmas 11 (53) (2004) 830-835.
    127. A. Pott, T. Doerk, J. Uhlenbusch, J. Ehlbeck, J. Hoschele, J. Steinwandel, “Polarization-sensitive coherent anti-Stokes Raman scattering applied to the detection of NO in a microwave discharge for reduction of NO,” J. Phys. D: Appl. Phys., 31 (1998) 2485-2498.
    128. K. Sugiyama, K. Tsutsumi, A. Itoh, T. Matsuda, Generation of microwave cold plasma at atmospheric pressure, in: Proceedings ISPC 12, Minnesota, USA, vol. 2, 1995, pp. 765– 770.
    129. A.M. Bilgic, U. Engel, E. Voges, M. Ku‥ckelheim, J.A.C. Broekaert, A new low-power microwave plasma source using microstrip technology for atomic emission spectrometry, Plasma Sources Sci. Technol. 9 (2000) 1–4.
    130. S. Schermer, N.H. Bings, A.M. Bilgic, R. Stonies, E. Voges, J. Broekaert, An improved microstrip plasma for optical emission spectrometry of gaseous species, Spectrochim. Acta Part B 58 (2003) 1585-1596.
    131. P. Fauchais, J.F. Coudert, Mesure de tempe’raturedans les plasmas thermiques, Rev. Ge’n. Therm. 35 (1996) 324–337.
    132. J. Hubert, S. Bordeleau, K.C. Tran, S. Michaud, B. Millette, R. Sing, J. Jalbert, D. Boudreau, M. Moisan, J. Margot, Atomic spectroscopy with surface wave plasmas, Fresenius’ J. Anal. Chem. 355 (1996) 494– 500.
    133. A. Montaser, Inductively Coupled Plasma Mass Spectrometry, Wiley, New York, 1998.
    134. R.K. Marcus, Glow Discharge Spectroscopies, Plenum Press, New York, 1993.
    135. R. Payling, D. Jones, A. Bengston, Glow Discharge Optical Emission Spectrometry, Wiley, Chichester, 1997.
    136. M. Ruimi, Solutions alternatives aux proce’de’s de nettoyageutilisant les solvantschlore’s, Trait. Therm. 286– 287 (1995) 5 – 9.
    137. M. Okumoto, A. Mizuno, Conversion of methane for higher hydrocarbon fuel synthesis using pulsed discharge plasma method, Catal. Today 71 (2001) 211 – 217.
    138. T. Jiang, C.-J. Liu, M.-F. Rao, C.-D. Yao, G.-L. Fan, A novel synthesis of diesel fuel additives from dimethyl ether using dielectric barrier discharges, Fuel Process. Technol. 73 (2001) 143-152.
    139. Y. Sawada, M. Kogoma, “Plasma-polymerized tetrafluoroethylene coatings on silica particles by atmospheric pressure glow discharge,” Powder Technol. 90 (1997) 245-250.

    無法下載圖示 全文公開日期 2019/08/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE