簡易檢索 / 詳目顯示

研究生: 鄒俊彥
Chun-Yen Tsou
論文名稱: 結合可注射水膠及阿魏酸奈米粒子應用於治療苯扎氯銨損傷之角膜上皮細胞
Injectable hydrogels containing ferulic acid-loaded nanoparticles for treatment of benzalkonium chloride-induced damage in corneal epithelial cells
指導教授: 鄭詠馨
Yung-Hsin Cheng
口試委員: 楊銘乾
Ming-Chien Yang
楊凱強
Kai-Chiang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 84
中文關鍵詞: 乾眼症阿魏酸奈米粒子角膜上皮細胞幾丁聚醣
外文關鍵詞: Dry eye disease, Ferulic acid nanoparticles, Cornea epithelial cells, Chitosan
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 乾眼症 (Dry eye disease, DED) 是眼表的多因素疾病,其特徵在於淚膜穩定
    狀態失衡,並伴隨著眼部症狀。其中,淚膜過滲和不穩定性、眼表的發炎和損傷
    以及神經感覺異常是致病的因素。近年來,由於 3C 產品的進步以及高依賴性,
    乾眼症成為了高度普及的疾病。除此之外,治療眼科疾病 (如:青光眼及眼內炎
    等等) 的眼藥水中,常添加苯扎氯銨 (Benzalkonium chloride, BAK) 作為防腐劑,
    此成分也會導致乾眼及發炎情況的產生。阿魏酸 (Ferulic acid, FA) 具有良好的
    抗氧化能力及抑制發炎的作用,然而使用傳統的眼藥水滴劑停留於眼表的時間短
    暫且生物可利用低。在本研究中,將阿魏酸接枝於幾丁聚醣 (Chitosan, Cs) 上並
    製備出奈米粒子,再進一步結合羧甲基纖維素 (Sodium carboxymethyl cellulose,
    CMC) 發展出可注射式水膠,期望能延長藥物於眼表停留的時間並降低給藥頻率,
    以達到更好的治療效果。研究中結果顯示未載藥的奈米粒子大小平均為 157.1 ±
    8.19 nm,粒徑分布 PDI 為 0.409 ± 0.014,表面電位為 31.4 ± 0.81 mV。而搭載
    阿魏酸的載藥奈米粒子大小平均為 183.6 ± 2.91 nm,粒徑分布 PDI 為 0.311 ±
    0.005,表面電位為 28.1 ± 0.87 mV ,另以苯扎氯銨誘發角膜上皮細胞的損傷來
    模擬乾眼症的發炎情況,後續定量即時聚合酶連鎖反應及細胞存活率來評估阿魏
    酸接枝幾丁聚醣奈米粒子對受損細胞的可能療效。根據上列實驗結果,阿魏酸接
    枝幾丁聚醣奈米粒子結合可注射水膠有應用於乾眼症治療的潛力。


    Dry eye disease (DED) is a multifactorial disease of the ocular surface, which is
    characterized by an imbalance in the stable state of the tear film, accompanied by ocular
    symptoms. Among them, tear film hyperosmosis and instability, ocular surface
    inflammation and damage, and neurosensory abnormalities are the pathogenic factors.
    In recent years, due to the progress and the high dependence of electronic products, dry
    eye disease has become a prevalent disease. Besides, the eye drops for the treatment of
    ocular diseases (such as glaucoma and endophthalmitis) often added benzalkonium
    chloride (BAK) as a preservative. This ingredient can also cause dry eye and the
    inflammation of ocular surface. Ferulic acid (FA) has good anti-oxidation and anti-
    inflammatory effects. However, traditional eye drops have a short ocular residence time
    and low bioavailability. In this study, ferulic acid was grafted on chitosan (Cs) to
    prepare nanoparticles and combined with carboxymethyl cellulose (CMC) to develop
    an injectable hydrogel expected to prolong the short ocular residence time and reduce
    the frequency of administration, hoping to improve therapeutic effects. The mean
    particle size of blank nanoparticles and FA-loaded nanoparticles was 157.1 ± 8.19 and
    183.6 ± 2.91 nm with positive zeta potential 31.4 ± 0.81 and 28.1 ± 0.87 mV. In addition,
    BAK-induced damage to corneal epithelial cells was used to simulate the inflammation
    of DED. The quantitative real-time polymerase chain reaction and cell viability assay
    were used to evaluate the effects of FA grafted Cs nanoparticles on damaged cells.
    According to the experimental results, FA grafted Cs nanoparticles combined with
    injectable hydrogel has the potential to be used in the treatment of DED.

    IV 目錄 誌謝................................................................................................................................ I 摘要............................................................................................................................... II Abstract ........................................................................................................................ III 目錄.............................................................................................................................. IV 圖目錄........................................................................................................................ VII 表目錄........................................................................................................................... X 第一章 緒論............................................................................................................ 1 1.1 研究背景........................................................................................................ 1 1.2 研究動機與目的............................................................................................ 2 第二章 理論基礎.................................................................................................... 3 2.1 眼睛結構........................................................................................................ 3 2.1.1 結膜之基本構造........................................................................................ 3 2.1.2 角膜之基本構造........................................................................................ 4 2.2 乾眼症............................................................................................................ 5 2.2.1 致病成因.................................................................................................... 8 2.2.2 乾眼症臨床表現和診斷.......................................................................... 10 2.2.3 乾眼症之發炎機轉.................................................................................. 16 2.2.4 乾眼症的治療.......................................................................................... 18 2.3 現行治療方式.............................................................................................. 21 2.3.1 藥物緩釋系統.......................................................................................... 21 V 2.3.2 奈米載體.................................................................................................. 22 2.3.3 抗氧化藥物.............................................................................................. 28 第三章 實驗材料與方法...................................................................................... 30 3.1 實驗藥品...................................................................................................... 30 3.2 實驗儀器...................................................................................................... 31 3.3 實驗流程圖.................................................................................................. 32 3.4 奈米粒子製作.............................................................................................. 32 3.5 阿魏酸奈米粒子製備.................................................................................. 33 3.6 奈米粒子特性分析...................................................................................... 33 3.6.1 粒徑大小以及界面電位測量.................................................................. 33 3.6.2 奈米粒子型態分析.................................................................................. 34 3.7 阿魏酸的藥物濃度標準曲線...................................................................... 35 3.8 傅里葉轉換紅外線光譜測定...................................................................... 35 3.9 細胞存活率.................................................................................................. 35 3.9.1 角膜上皮細胞培養.................................................................................. 36 3.9.2 苯扎氯銨對角膜上皮細胞毒性測試...................................................... 37 3.9.3 阿魏酸對角膜上皮細胞之安全濃度...................................................... 38 3.9.4 阿魏酸奈米粒子對角膜上皮細胞之安全濃度...................................... 38 3.10 阿魏酸奈米粒子對遭受苯扎氯銨損傷之角膜上皮細胞的影響.............. 39 3.10.1 基因表現.................................................................................................. 39 3.10.2 細胞存活率.............................................................................................. 40 3.11 注射性測試.................................................................................................. 40 VI 3.12 統計分析方法.............................................................................................. 40 第四章 結果與討論.............................................................................................. 41 4.1 奈米粒子之特性分析.................................................................................. 41 4.1.1 粒徑大小以及表面電位測量.................................................................. 41 4.1.2 粒子型態分析(TEM) ......................................................................... 44 4.2 阿魏酸的藥物濃度標準曲線...................................................................... 45 4.3 傅里葉轉換紅外線光譜測定分析.............................................................. 47 4.4 細胞活性測試.............................................................................................. 47 4.4.1 乾眼症環境模擬...................................................................................... 47 4.4.2 阿魏酸對角膜上皮細胞之安全濃度...................................................... 51 4.4.3 阿魏酸奈米粒子對角膜上皮細胞之安全濃度...................................... 55 4.5 阿魏酸奈米粒子對遭受苯扎氯銨損傷之角膜上皮細胞的影響.............. 59 4.5.1 基因表現.................................................................................................. 59 4.5.2 細胞存活率.............................................................................................. 60 4.6 注射性測試.................................................................................................. 62 第五章 結論.......................................................................................................... 64 第六章 參考文獻.................................................................................................. 65

    65

    第六章 參考文獻
    [1] F. Yu, M. Zheng, A.Y. Zhang, Z. Han, A cerium oxide loaded glycol chitosan nano-
    system for the treatment of dry eye disease, J Control Release 315 (2019) 40-54.
    [2] A.F. Clark, T. Yorio, Ophthalmic drug discovery, Nat Rev Drug Discov 2(6) (2003)
    448-59.
    [3] P. Asbell, M. Lemp, Dry eye disease, (2007).
    [4] S. Liu, C.N. Chang, M.S. Verma, D. Hileeto, A. Muntz, U. Stahl, J. Woods, L.W.
    Jones, F.X. Gu, Phenylboronic acid modified mucoadhesive nanoparticle drug carriers
    facilitate weekly treatment of experimentallyinduced dry eye syndrome, Nano Research
    8(2) (2014) 621-635.
    [5] S. Zhu, L. Gong, Y. Li, H. Xu, Z. Gu, Y. Zhao, Safety Assessment of Nanomaterials
    to Eyes: An Important but Neglected Issue, Adv Sci (Weinh) 6(16) (2019) 1802289.
    [6] J. Bai, H. Fu, L. Bazinet, A.E. Birsner, R.J. D'Amato, A Method for Developing
    Novel 3D Cornea-on-a-Chip Using Primary Murine Corneal Epithelial and Endothelial
    Cells, Front Pharmacol 11 (2020) 453.
    [7] G. Foulks, M. Lemp, J. Jester, J. Sutphin, J. Murube, G.J.O.S. Novack, Report of
    the international dry eye workshop (DEWS), 5(2) (2007) 65-204.
    [8] J.P. Craig, K.K. Nichols, E.K. Akpek, B. Caffery, H.S. Dua, C.K. Joo, Z. Liu, J.D.
    Nelson, J.J. Nichols, K. Tsubota, F. Stapleton, TFOS DEWS II Definition and
    Classification Report, Ocul Surf 15(3) (2017) 276-283.
    [9] J.P. McCulley, W.E. Shine, Meibomian Gland Function and the Tear Lipid Layer,
    The Ocular Surface 1(3) (2003) 97-106.
    [10] J. Shimazaki, E. Goto, M. Ono, S. Shimmura, K. Tsubota, Meibomian gland
    dysfunction in patients with Sjögren syndrome11No author has any proprietary interest
    in the marketing of this material, Ophthalmology 105(8) (1998) 1485-1488.
    [11] D.A. Sullivan, Tearful Relationships? Sex, Hormones, the Lacrimal Gland, and
    Aqueous-Deficient Dry Eye, The Ocular Surface 2(2) (2004) 92-123.
    [12] M.E. Stern, S.C. Pflugfelder, Inflammation in Dry Eye, The Ocular Surface 2(2)
    (2004) 124-130.
    [13] M.A. Lemp, Report of the National Eye Institute/Industry workshop on clinical
    trials in dry eyes, 21(4) (1995) 221-232.
    66

    [14] G.J. Mastman, E.J. Baldes, J.W.J.A.o.O. Henderson, The total osmotic pressure of
    tears in normal and various pathologic conditions, 65(4) (1961) 509-513.
    [15] J.B. Anthony, N. Yokoi, M.S. Gouveia, Using osmolarity to diagnose dry eye: a
    compartmental hypothesis and review of our assumptions, Lacrimal Gland, Tear Film,
    and Dry Eye Syndromes 3, Springer2002, pp. 1087-1095.
    [16] H. Brewitt, F. Sistani, Dry eye disease: the scale of the problem, 45 (2001) S199-
    S202.
    [17] W.D. Mathers, J.A. Lane, M.B.J.C. Zimmerman, Tear film changes associated with
    normal aging, 15(3) (1996) 229-234.
    [18] C. Yazdani, T. McLaughlin, J.E. Smeeding, J.J.C.t. Walt, Prevalence of treated dry
    eye disease in a managed care population, 23(10) (2001) 1672-1682.
    [19] C. McCarty, The epidemiology of dry eye in Melbourne, Australia, Historical
    image, Ophthalmology 105(6) (1998) 1114-1119.
    [20] M.J. Doughty, D. Fonn, D. Richter, T. Simpson, B. Caffery, K.J.O. Gordon, A
    patient questionnaire approach to estimating the prevalence of dry eye symptoms in
    patients presenting to optometric practices across Canada, 74(8) (1997) 624-631.
    [21] T. Hikichi, A. Yoshida, Y. Fukui, T. Hamano, M. Ri, K. Araki, K. Horimoto, E.
    Takamura, K. Kitagawa, M.J.G.s.a.f.c. Oyama, e. ophthalmology, Prevalence of dry eye
    in Japanese eye centers, 233(9) (1995) 555-558.
    [22] D.A. Schaumberg, D.A. Sullivan, M.R. Dana, Epidemiology of dry eye syndrome,
    Lacrimal Gland, Tear Film, and Dry Eye Syndromes 3, Springer2002, pp. 989-998.
    [23] D.A. Schaumberg, D.A. Sullivan, J.E. Buring, M.R. Dana, Prevalence of dry eye
    syndrome among US women, American Journal of Ophthalmology 136(2) (2003) 318-
    326.
    [24] G.N. Foulks, A.J. Bron, Meibomian Gland Dysfunction: A Clinical Scheme for
    Description, Diagnosis, Classification, and Grading, The Ocular Surface 1(3) (2003)
    107-126.
    [25] W.D. Mathers, W.J. Shields, M.S. Sachdev, W.M. Petroll, J.V.J.C. Jester,
    Meibomian gland dysfunction in chronic blepharitis, 10(4) (1991) 277-285.
    [26] V.J. Gutgesell, G.A. Stern, C.I. Hood, Histopathology of Meibomian Gland
    Dysfunction, American Journal of Ophthalmology 94(3) (1982) 383-387.
    67

    [27] J. Ram, A. Sharma, S.S. Pandav, A. Gupta, P. Bambery, Cataract surgery in patients
    with dry eyes, Journal of Cataract & Refractive Surgery 24(8) (1998) 1119-1124.
    [28] M.S. Insler, G. Boutros, D.W. Boulware, Corneal ulceration following cataract
    surgery in patients with rheumatoid arthritis, American Intra-Ocular Implant Society
    Journal 11(6) (1985) 594-597.
    [29] I. Toda, N. Asano-Kato, Y. Komai-Hori, K. Tsubota, Dry eye after laser in situ
    keratomileusis, American Journal of Ophthalmology 132(1) (2001) 1-7.
    [30] S.E. Moss, R. Klein, B.E.J.A.o.o. Klein, Prevalence of and risk factors for dry eye
    syndrome, 118(9) (2000) 1264-1268.
    [31] D. El-Fayoumi, M.M. Youssef, M.M. Khafagy, N. Badr El Dine, W. Gaber,
    Assessment of Corneal and Tear Film Parameters in Rheumatoid Arthritis Patients
    Using Anterior Segment Spectral Domain Optical Coherence Tomography, Ocul
    Immunol Inflamm 26(4) (2018) 632-638.
    [32] X. Zhang, L. Zhao, S. Deng, X. Sun, N. Wang, Dry Eye Syndrome in Patients with
    Diabetes Mellitus: Prevalence, Etiology, and Clinical Characteristics, J Ophthalmol
    2016 (2016) 8201053.
    [33] M. Guillon, C. Maissa, Contact lens wear affects tear film evaporation, Eye
    Contact Lens 34(6) (2008) 326-30.
    [34] L.E. Downie, J.P. Craig, Tear film evaluation and management in soft contact lens
    wear: a systematic approach, Clin Exp Optom 100(5) (2017) 438-458.
    [35] K.-C. Yoon, B.-Y. Song, M.-S.J.K.J.o.O. Seo, Effects of smoking on tear film and
    ocular surface, 19(1) (2005) 18-22.
    [36] S. Aboud, H.E. Khalil, M. Azzab, Comparative study between smokers and
    nonsmokers regarding dry eye, Delta Journal of Ophthalmology 19(1) (2018).
    [37] K.A.B. Mark S. Milner, and Jodi I. Luchs, Dysfunctional Tear Syndrome: Dry Eye
    Disease and Associated Tear Film Disorders - New Strategies for Diagnosis and
    Treatment, Current Opinion in Ophthalmology 28(SUPPLEMENT 1) (2017) 1-2.
    [38] R.P. Feenstra, S.C.J.A.o.o. Tseng, What is actually stained by rose bengal?, 110(7)
    (1992) 984-993.
    [39] O.D. Schein, J.M. Tielsch, B. Muñoz, K. Bandeen-Roche, S. West, Relation
    between Signs and Symptoms of Dry Eye in the Elderly, Ophthalmology 104(9) (1997)
    1395-1401.
    68

    [40] M.S. Zeev, D.D. Miller, R. Latkany, Diagnosis of dry eye disease and emerging
    technologies, Clin Ophthalmol 8 (2014) 581-90.
    [41] L.M. Machado, R.S. Castro, B.M.J.C. Fontes, Staining patterns in dry eye
    syndrome: rose bengal versus lissamine green, 28(7) (2009) 732-734.
    [42] A.J. Bron, V.E. Evans, J.A.J.C. Smith, Grading of corneal and conjunctival staining
    in the context of other dry eye tests, 22(7) (2003) 640-650.
    [43] E. Brabcová, L. Kolesár, E. Thorburn, I.J.F.b. Striz, Chemokines induced in human
    respiratory epithelial cells by IL-1 family of cytokines, 60(4) (2014) 180.
    [44] S. Barabino, Y. Chen, S. Chauhan, R. Dana, Ocular surface immunity: homeostatic
    mechanisms and their disruption in dry eye disease, Prog Retin Eye Res 31(3) (2012)
    271-85.
    [45] Y. Park, J.S. Song, C.Y. Choi, K.C. Yoon, H.K. Lee, H.S. Kim, A Randomized
    Multicenter Study Comparing 0.1%, 0.15%, and 0.3% Sodium Hyaluronate with 0.05%
    Cyclosporine in the Treatment of Dry Eye, J Ocul Pharmacol Ther 33(2) (2017) 66-72.
    [46] C. Baudouin, M.S. de la Maza, M. Amrane, J.S. Garrigue, D. Ismail, F.C.
    Figueiredo, A. Leonardi, One-Year Efficacy and Safety of 0.1% Cyclosporine a
    Cationic Emulsion in the Treatment of Severe Dry Eye Disease, Eur J Ophthalmol 27(6)
    (2017) 678-685.
    [47] A. Behrens, J.J. Doyle, L. Stern, R.S. Chuck, P.J. McDonnell, D.T. Azar, H.S. Dua,
    M. Hom, P.M. Karpecki, P.R.J.C. Laibson, Dysfunctional tear syndrome: a Delphi
    approach to treatment recommendations, 25(8) (2006) 900-907.
    [48] Y. She, J. Li, B. Xiao, H. Lu, H. Liu, P.A. Simmons, J.G. Vehige, W. Chen,
    Evaluation of a Novel Artificial Tear in the Prevention and Treatment of Dry Eye in an
    Animal Model, J Ocul Pharmacol Ther 31(9) (2015) 525-30.
    [49] L. Tong, A. Petznick, S. Lee, J.J.C. Tan, Choice of artificial tear formulation for
    patients with dry eye: where do we start?, 31 (2012) S32-S36.
    [50] A.M. Ervin, A. Law, A.D. Pucker, Punctal occlusion for dry eye syndrome:
    summary of a Cochrane systematic review, Br J Ophthalmol 103(3) (2019) 301-306.
    [51] O.H. Ababneh, M.M. Msallam, Bilateral simultaneous pyogenic granuloma after
    perforated punctal plug insertion, Ophthalmic Plast Reconstr Surg 30(5) (2014) e113-
    5.
    69

    [52] E. Villani, E. Garoli, V. Canton, F. Pichi, P. Nucci, R. Ratiglia, Evaluation of a
    novel eyelid-warming device in meibomian gland dysfunction unresponsive to
    traditional warm compress treatment: an in vivo confocal study, Int Ophthalmol 35(3)
    (2015) 319-23.
    [53] M.C. Olson, D.R. Korb, J.V. Greiner, Increase in tear film lipid layer thickness
    following treatment with warm compresses in patients with meibomian gland
    dysfunction, Eye Contact Lens 29(2) (2003) 96-9.
    [54] R. Arita, N. Morishige, I. Sakamoto, N. Imai, Y. Shimada, M. Igaki, A. Suzuki, K.
    Itoh, K. Tsubota, Effects of a warm compress containing menthol on the tear film in
    healthy subjects and dry eye patients, Sci Rep 7 (2017) 45848.
    [55] R.J. Truscott, X. Zhu, Presbyopia and cataract: a question of heat and time, Prog
    Retin Eye Res 29(6) (2010) 487-99.
    [56] D. Borchman, The optimum temperature for the heat therapy for meibomian gland
    dysfunction, Ocul Surf 17(2) (2019) 360-364.
    [57] Y. Danjo, H. Watanabe, A.S. Tisdale, M. George, T. Tsumura, M.B. Abelson,
    I.K.J.I.o. Gipson, v. science, Alteration of mucin in human conjunctival epithelia in dry
    eye, 39(13) (1998) 2602-2609.
    [58] D.A. Gamache, Z.-Y. Wei, L.K. Weimer, S.T. Miller, J.M. Spellman, J.M.J.J.o.o.p.
    Yanni, therapeutics, Corneal protection by the ocular mucin secretagogue 15 (S)-HETE
    in a rabbit model of desiccation-induced corneal defect, 18(4) (2002) 349-361.
    [59] T. Arakawa, K. Higuchi, Y. Fujiwara, T. Watanabe, K. Tominaga, E. Sasaki, N.
    Oshitani, T. Yoshikawa, A.S. Tarnawski, 15th anniversary of rebamipide: looking ahead
    to the new mechanisms and new applications, Dig Dis Sci 50 Suppl 1 (2005) S3-S11.
    [60] T. Kashima, H. Itakura, H. Akiyama, S. Kishi, Rebamipide ophthalmic suspension
    for the treatment of dry eye syndrome: a critical appraisal, Clin Ophthalmol 8 (2014)
    1003-10.
    [61] K. Ueda, W. Matsumiya, K. Otsuka, Y. Maeda, T. Nagai, M. Nakamura,
    Effectiveness and relevant factors of 2% rebamipide ophthalmic suspension treatment
    in dry eye, BMC Ophthalmol 15 (2015) 58.
    [62] A. Yagci, C. Gurdal, The role and treatment of inflammation in dry eye disease, Int
    Ophthalmol 34(6) (2014) 1291-301.
    70

    [63] M.K. Rhee, F.S. Mah, Clinical utility of cyclosporine (CsA) ophthalmic emulsion
    0.05% for symptomatic relief in people with chronic dry eye: a review of the literature,
    Clin Ophthalmol 11 (2017) 1157-1166.
    [64] C. Schultz, Safety and efficacy of cyclosporine in the treatment of chronic dry eye,
    Ophthalmol Eye Dis 6 (2014) 37-42.
    [65] M. Straub, A.M. Bron, A. Muselier-Mathieu, C. Creuzot-Garcher, Long-term
    outcome after topical ciclosporin in severe dry eye disease with a 10-year follow-up,
    Br J Ophthalmol 100(11) (2016) 1547-1550.
    [66] S.C. Pflugfelder, C.S. De Paiva, A.L. Villarreal, M.E.J.C. Stern, Effects of
    sequential artificial tear and cyclosporine emulsion therapy on conjunctival goblet cell
    density and transforming growth factor-β2 production, 27(1) (2008) 64-69.
    [67] P. Prabhasawat, N. Tesavibul, W.J.C. Mahawong, A randomized double-masked
    study of 0.05% cyclosporine ophthalmic emulsion in the treatment of meibomian gland
    dysfunction, 31(12) (2012) 1386-1393.
    [68] J. Araujo, E. Gonzalez, M.A. Egea, M.L. Garcia, E.B. Souto, Nanomedicines for
    ocular NSAIDs: safety on drug delivery, Nanomedicine 5(4) (2009) 394-401.
    [69] A. Patel, K. Cholkar, V. Agrahari, A.K. Mitra, Ocular drug delivery systems: An
    overview, World J Pharmacol 2(2) (2013) 47-64.
    [70] J. Ali, M. Fazil, M. Qumbar, N. Khan, A. Ali, Colloidal drug delivery system:
    amplify the ocular delivery, Drug Deliv 23(3) (2016) 710-26.
    [71] K. Cholkar, A. Patel, A.D. Vadlapudi, A.K. Mitra, Novel Nanomicellar
    Formulation Approaches for Anterior and Posterior Segment Ocular Drug Delivery,
    Recent Pat Nanomed 2(2) (2012) 82-95.
    [72] Y. Javadzadeh, F. Ahadi, S. Davaran, G. Mohammadi, A. Sabzevari, K. Adibkia,
    Preparation and physicochemical characterization of naproxen-PLGA nanoparticles,
    Colloids Surf B Biointerfaces 81(2) (2010) 498-502.
    [73] H. Gupta, M. Aqil, R.K. Khar, A. Ali, A. Bhatnagar, G. Mittal, Biodegradable
    levofloxacin nanoparticles for sustained ocular drug delivery, J Drug Target 19(6) (2011)
    409-17.
    [74] D.R. Janagam, L. Wu, T.L. Lowe, Nanoparticles for drug delivery to the anterior
    segment of the eye, Adv Drug Deliv Rev 122 (2017) 31-64.
    71

    [75] R.S. Bhatta, H. Chandasana, Y.S. Chhonker, C. Rathi, D. Kumar, K. Mitra, P.K.
    Shukla, Mucoadhesive nanoparticles for prolonged ocular delivery of natamycin: In
    vitro and pharmacokinetics studies, Int J Pharm 432(1-2) (2012) 105-12.
    [76] T. Musumeci, C. Bucolo, C. Carbone, R. Pignatello, F. Drago, G. Puglisi,
    Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits,
    Int J Pharm 440(2) (2013) 135-40.
    [77] Y.K. Kuo, I.C. Lin, L.N. Chien, T.Y. Lin, Y.T. How, K.H. Chen, G.J. Dusting, C.L.
    Tseng, Dry Eye Disease: A Review of Epidemiology in Taiwan, and its Clinical
    Treatment and Merits, J Clin Med 8(8) (2019).
    [78] S.C. Chi, H.I. Tuan, Y.N. Kang, Effects of Polyunsaturated Fatty Acids on
    Nonspecific Typical Dry Eye Disease: A Systematic Review and Meta-Analysis of
    Randomized Clinical Trials, Nutrients 11(5) (2019).
    [79] H.Y. Huang, M.C. Wang, Z.Y. Chen, W.Y. Chiu, K.H. Chen, I.C. Lin, W.V. Yang,
    C.C. Wu, C.L. Tseng, Gelatin-epigallocatechin gallate nanoparticles with hyaluronic
    acid decoration as eye drops can treat rabbit dry-eye syndrome effectively via
    inflammatory relief, Int J Nanomedicine 13 (2018) 7251-7273.
    [80] L.J. Luo, J.Y. Lai, Epigallocatechin Gallate-Loaded Gelatin-g-Poly(N-
    Isopropylacrylamide) as a New Ophthalmic Pharmaceutical Formulation for Topical
    Use in the Treatment of Dry Eye Syndrome, Sci Rep 7(1) (2017) 9380.
    [81] D.-H. Wang, X.-Q. Liu, X.-J. Hao, Y.-J. Zhang, H.-Y. Zhu, Z.-G.J.C. Dong, Effect
    of the meibomian gland squeezer for treatment of meibomian gland dysfunction, 37(10)
    (2018) 1270-1278.
    [82] V.D. Wagh, D.U. Apar, Cyclosporine A Loaded PLGA Nanoparticles for Dry Eye
    Disease:In VitroCharacterization Studies, Journal of Nanotechnology 2014 (2014) 1-
    10.
    [83] Y. Yu, D. Chen, Y. Li, W. Yang, J. Tu, Y. Shen, Improving the topical ocular
    pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro
    and in vivo studies, Drug Deliv 25(1) (2018) 888-899.
    [84] C. Di Tommaso, F. Valamanesh, F. Miller, P. Furrer, M. Rodriguez-Aller, F. Behar-
    Cohen, R. Gurny, M. Moller, A novel cyclosporin a aqueous formulation for dry eye
    treatment: in vitro and in vivo evaluation, Invest Ophthalmol Vis Sci 53(4) (2012) 2292-
    9.
    72

    [85] Y. Liu, W.R. Kam, D.A.J.C. Sullivan, Influence of omega 3 and 6 fatty acids on
    human meibomian gland epithelial cells, 35(8) (2016) 1122.
    [86] D. Acar, I.T. Molina-Martinez, M. Gomez-Ballesteros, M. Guzman-Navarro, J.M.
    Benitez-Del-Castillo, R. Herrero-Vanrell, Novel liposome-based and in situ gelling
    artificial tear formulation for dry eye disease treatment, Cont Lens Anterior Eye 41(1)
    (2018) 93-96.
    [87] A. Bangham, M.M. Standish, J.C.J.J.o.m.b. Watkins, Diffusion of univalent ions
    across the lamellae of swollen phospholipids, 13(1) (1965) 238-IN27.
    [88] M. Honda, T. Asai, N. Oku, Y. Araki, M. Tanaka, N. Ebihara, Liposomes and
    nanotechnology in drug development: focus on ocular targets, Int J Nanomedicine 8
    (2013) 495-503.
    [89] R.M. Hathout, S. Mansour, N.D. Mortada, A.S.J.V. Guinedi, I.V.S.A.P. SciTech,
    Liposomes as an ocular delivery system for acetazolamide, 8(1) (2007) E1-12.
    [90] R. Agarwal, I. Iezhitsa, P. Agarwal, N.A. Abdul Nasir, N. Razali, R. Alyautdin,
    N.M. Ismail, Liposomes in topical ophthalmic drug delivery: an update, Drug Deliv
    23(4) (2016) 1075-91.
    [91] K.B. Knudsen, H. Northeved, P.E. Kumar, A. Permin, T. Gjetting, T.L. Andresen,
    S. Larsen, K.M. Wegener, J. Lykkesfeldt, K. Jantzen, S. Loft, P. Moller, M. Roursgaard,
    In vivo toxicity of cationic micelles and liposomes, Nanomedicine 11(2) (2015) 467-
    77.
    [92] D. Pentak, In vitro spectroscopic study of piperine-encapsulated nanosize
    liposomes, Eur Biophys J 45(2) (2016) 175-86.
    [93] E. Heldman, C. Linder, S. Grinberg, V. Kolot, E. Shaubi, Amphiphilic compounds
    and vesicles liposomes for organ-specified drug targeting, Google Patents, 2011.
    [94] N. Kumar, V. Pruthi, Potential applications of ferulic acid from natural sources,
    Biotechnol Rep (Amst) 4 (2014) 86-93.
    [95] H.C. Chen, Z.Y. Chen, T.J. Wang, V.J. Drew, C.L. Tseng, H.W. Fang, F.H. Lin,
    Herbal Supplement in a Buffer for Dry Eye Syndrome Treatment, Int J Mol Sci 18(8)
    (2017).
    [96] A. Maxia, C. Sanna, M.A. Frau, A. Piras, M.S. Karchuli, V.J.N.P.C. Kasture, Anti-
    inflammatory activity of Pistacia lentiscus essential oil: involvement of IL-6 and Tnf-
    α, 6(10) (2011) 1934578X1100601033.
    73

    [97] X. Xiao, P. Luo, H. Zhao, J. Chen, H. He, Y. Xu, Z. Lin, Y. Zhou, J. Xu, Z. Liu,
    Amniotic membrane extract ameliorates benzalkonium chloride-induced dry eye in a
    murine model, Exp Eye Res 115 (2013) 31-40.
    [98] Z. Zhang, W.Z. Yang, Z.Z. Zhu, Q.Q. Hu, Y.F. Chen, H. He, Y.X. Chen, Z.G. Liu,
    Therapeutic effects of topical doxycycline in a benzalkonium chloride-induced mouse
    dry eye model, Invest Ophthalmol Vis Sci 55(5) (2014) 2963-74.

    無法下載圖示 全文公開日期 2025/08/28 (校內網路)
    全文公開日期 2025/08/28 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE