簡易檢索 / 詳目顯示

研究生: 黃士璿
Shih-Hsuan Huang
論文名稱: 多型態金奈米結構光陰極於鈷系統之染料敏化太陽能電池應用與探討
Application and Discussion of Multi-type Gold Nanostructures Photocathodes in Cobalt-Based Electrolyte for Dye-Sensitized Solar Cells
指導教授: 陳良益
Liang-Yih Chen
戴龑
Yian Tai
口試委員: 陳良益
Liang-Yih Chen
周宏隆
Hung-Lung Chou
戴龑
Yian Tai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 113
中文關鍵詞: 金奈米結構熱電子效應催化活性太陽能捕獲
外文關鍵詞: Gold nanostructures, hot electron effect, catalytic activity, solar energy harvesting
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在染料敏化太陽能電池中,有效的使用光吸收材料並增加整體光譜的吸收量,其為當今再生能源的材料應用中主要挑戰之一。在本實驗中,多型態的金奈米結構成功地被合成於FTO基板上,並作為染料敏化太陽能電池光陰極使用。論文中所提的製備光陰極方法與現有技術相比,其為更容易、快速且低成本。在元件測試上,多型態金奈米結構其光電轉換率比標準的鉑對電極高出16%,且與鈷電解液之間具有較高的催化能力。此效率的提升,主要是受到金奈米結構較佳的電性能力,與局域表面電漿共振退干涉所造成的非輻射性熱電子效應。此外,吾人經由X光繞射實驗得知不同條件下之多型態金奈米結構其(111)/(200)比例有所差異,進一步藉由模擬計算的方式,探討了多型態金奈米結構中,金(111)晶面與(100)晶面和鈷錯合物的吸附能力不同,而最終計算與實驗結果符合預期。在未來的應用上,電化學沉積合成方式不需要高溫,這使得該奈米結構可應用於大面積規模化的生產和製備於可撓式基板上並將其應用於各種柔性光電元件中。


    The engineering of broadband absorbers to harvest white light in dye sensitized solar cells (DSSCs) is a major challenge in developing renewable materials for energy harvesting. In this study, multi-type gold (Au) nanostructures are successfully attached to the FTO substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating photocathode is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with standard platinum (Pt) counter electrode which prepared by sputtering method, the multi-type Au nanostructures photocathode demonstrates significant increase of the power conversion efficiency (PCE) of a photoelectrochemical solar cell of 16% and higher catalytic activity with a cobalt-complex electrolyte. The increased efficiency is attributed to excellent electrical properties and the non-radiative hot electron effect due to the Landau damping upon decoherence of the localized surface plasmon resonances (LSPRs) in the visible light region. Besides we use scaled computational Au (111) or (100) planes with the cobalt II/III redox mediators ([Co(bpy)3]2+/3+) adsorption ability at level of theory show this computation result is consistent with the experimental values. Furthermore, the advantage of the electrochemical deposition process which does not require an elevation of temperature that enables scaled-up production of this nanostructures for large-scale and flexible energy-harvesting applications.

    目錄 中文摘要 i Abstract ii 誌謝 iii 圖目錄 ix 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2 太陽能電池 3 1-3 染料敏化太陽能電池 6 1-4 金奈米結構於鈷電解液系統染敏太陽能電池應用 7 第二章 文獻回顧與相關理論 9 2-1 太陽能電池相關係數 9 2-1-1 太陽能電池參數 10 2-1-2 太陽能電池之等效電路圖 13 2-1-3 太陽光光譜分析 15 2-2 染料敏化太陽能電池系統 17 2-2-1 染料敏化太陽能電池工作原理 18 2-2-2 染料敏化太陽能電池之電解液 20 2-2-3 染料敏化太陽能電池之對電極 25 2-3 金奈米結構 31 2-3-1 多型態金奈米材料製備 31 2-3-2 金屬表面電漿 35 2-3-3 元件光響應 40 第三章 實驗方法與步驟 46 3-1 實驗材料及藥品 46 3-2 實驗器材及設備 48 3-3 實驗步驟 49 3-3-1 對電極金奈米結構合成 49 3-3-2 染料敏化太陽能電池元件製備與組裝 50 3-4 分析儀器及簡介 52 3-4-1 分析儀器 52 3-4-2 儀器簡介 53 第四章 實驗結果與討論 62 4-1 金奈米結構特性分析 62 4-1-1 金奈米結構形貌分析 62 4-1-2 金奈米結構晶體面向分析 63 4-2 金奈米結構於太陽能電池效率分析 67 4-2-1 元件太陽光電轉換效率分析 67 4-2-2 元件外部量子效率分析 69 4-3 金奈米結構電性分析 70 4-3-1 薄膜導電性質分析 70 4-3-2 金奈米結構反應活化面積分析 71 4-3-3 金奈米結構與電解液穩定性與催化特性分析 72 4-3-4 金奈米結構與電解液電子傳導與反應速率分析 74 4-4 金奈米結構光學分析 77 4-4-1 薄膜可見光譜分析 77 4-4-2 金奈米結構於元件可見光譜分析 78 4-4-3 金奈米結構光致發光分析 80 4-5 金奈米結構濕潤性分析 82 4-6 金奈米結構與電解液吸附性質模擬分析 84 第五章 結論與未來展望 89 參考文獻 91

    (1) Smil, V.Energy Transitions: Global and National Perspectives. & BP Statistical Review of World Energy https://www.design-hu.com/web-news/domain.html.
    (2) Hodges, J.Green Energy Producers Just Installed Their First Trillion Watts https://about.bnef.com/blog/world-reaches-1000gw-wind-solar-keeps-going/.
    (3) Becquerel, E.Mémoire Sur Les Effets Électriques Produits Sous l’influence Des Rayons Solaires. Comptes Rendus 1839, 9, 561–567.
    (4) Fritts, C. E.On a New Form of Selenium Cell, and Some Electrical Discoveries Made by Its Use. Am J Sci 1883, 26, 465–472.
    (5) D. M. Chapin, C. S. Fuller, and G. L. P.A New Silicon P‐n Junction Photocell for Converting Solar Radiation into Electrical Power. J. Appl. Phys. 1954, 25, 676.
    (6) Cusano, D. A.CdTe Solar Cells and Photovoltaic Heterojunctions in II–VI Compounds. Solid. State. Electron. 1963, 6 (3), 217–232.
    (7) O’Regan, B.; Grätzel, M.A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature 1991, 353 (6346), 737–740.
    (8) Swanson, R. M.A Vision for Crystalline Silicon Photovoltaics. Prog. Photovoltaics Res. Appl. 2006, 14 (5), 443–453.
    (9) Alta, F.; Asu, E. S.NREL Efficiency Chart. Www.Nrel.Gov 2019, 2020.
    (10) Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y.Counter Electrodes in Dye-Sensitized Solar Cells. Chem. Soc. Rev. 2017, 46 (19), 5975–6023.
    (11) Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J. I.; Hanaya, M.Highly-Efficient Dye-Sensitized Solar Cells with Collaborative Sensitization by Silyl-Anchor and Carboxy-Anchor Dyes. Chem. Commun. 2015, 51 (88), 15894–15897.
    (12) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F. E.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M.Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers. Nat. Chem. 2014, 6 (3), 242–247.
    (13) Keysight Technologies.I-V curve character http://literature.cdn.keysight.com/litweb/pdf/5990-4428EN.pdf.
    (14) Titan Electro-optics.Quantum Efficiency spectrum https://en.wikipedia.org/wiki/Quantum_efficiency.
    (15) Byrd-McDevitt, D.Digital Content Specilalist https://en.wikipedia.org/wiki/Sunlight.
    (16) Enlitech.Definiation of solar light intensity https://www.slideshare.net/enlitechnology/ss-112377765.
    (17) Reena Kushwaha; Srivastava, P.; Lal Bahadur.Natural Pigments from Plants Used as Sensitizers for TiO2 Based Dye-Sensitized Solar Cells. J. Energy 2013, 2013, 1–8.
    (18) Sharma, K.; Sharma, V.; Sharma, S. S.Dye-Sensitized Solar Cells: Fundamentals and Current Status. Nanoscale Res. Lett. 2018, 13, 381–427.
    (19) Gonçalves, L. M.; deZea Bermudez, V.; Ribeiro, H. A.; Mendes, A. M.Dye-Sensitized Solar Cells: A Safe Bet for the Future. Energy Environ. Sci. 2008, 1 (6), 655–667.
    (20) Feldt, S. M.; Wang, G.; Boschloo, G.; Hagfeldt, A.Effects of Driving Forces for Recombination and Regeneration on the Photovoltaic Performance of Dye-Sensitized Solar Cells Using Cobalt Polypyridine Redox Couples. J. Phys. Chem. C 2011, 115 (43), 21500–21507.
    (21) Zhang, L.; Sanchun, H.; Pingjiang, L.; Jianming, L.; Miaoliang, H.; Leqing, F.; Yunfang, H.Progress on the Electrolytes for Dye-Sensitized Solar Cells. Pure Appl. Chem. 2008, 80, 2241–2258.
    (22) Ardo, S.; Meyer, G. J.Photodriven Heterogeneous Charge Transfer with Transition-Metal Compounds Anchored to TiO2 Semiconductor Surfaces. Chem. Soc. Rev. 2009, 38 (1), 115–164.
    (23) Nogueira, A. F.; Longo, C.; DePaoli, M. A.Polymers in Dye Sensitized Solar Cells: Overview and Perspectives. Coord. Chem. Rev. 2004, 248 (13–14), 1455–1468.
    (24) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H.Dye-Sensitized Solar Cells. 2010, 110, 6595–6663.
    (25) Yu, Z.; Vlachopoulos, N.; Gorlov, M.; Kloo, L.Liquid Electrolytes for Dye-Sensitized Solar Cells. Dalt. Trans. 2011, 40 (40), 10289–10303.
    (26) Xu, K.Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chem. Rev. 2004, 104 (10), 4303–4418.
    (27) Kambe, S.; Nakade, S.; Kitamura, T.; Wada, Y.; Yanagida, S.Influence of the Electrolytes on Electron Transport in Mesoporous TiO2−Electrolyte Systems. J. Phys. Chem. B 2002, 106 (11), 2967–2972.
    (28) Boschloo, G.; Häggman, L.; Hagfeldt, A.Quantification of the Effect of 4-Tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells. J. Phys. Chem. B 2006, 110 (26), 13144–13150.
    (29) Liu, Y.; Hagfeldt, A.; Xiao, X. R.; Lindquist, S. E.Investigation of Influence of Redox Species on the Interfacial Energetics of a Dye-Sensitized Nanoporous TiO2 Solar Cell. Sol. Energy Mater. Sol. Cells 1998, 55 (3), 267–281.
    (30) Boschloo, G.; Hagfeldt, A.Characteristics of the Iodide/Triiodide Redox Mediator in Dye-Sensitized Solar Cells. Acc. Chem. Res. 2009, 42 (11), 1819–1826.
    (31) Mosconi, E.; Yum, J. H.; Kessler, F.; Gómez García, C. J.; Zuccaccia, C.; Cinti, A.; Nazeeruddin, M. K.; Grätzel, M.; DeAngelis, F.Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study. J. Am. Chem. Soc. 2012, 134 (47), 19438–19453.
    (32) Bella, F.; Galliano, S.; Gerbaldi, C.; Viscardi, G.Cobalt-Based Electrolytes for Dye-Sensitized Solar Cells: Recent Advances towards Stable Devices. Energies 2016, 9 (5), 1–22.
    (33) Salvatori, P.; Marotta, G.; Cinti, A.; Anselmi, C.; Mosconi, E.; DeAngelis, F.Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. J. Phys. Chem. C 2013, 117 (8), 3874–3887.
    (34) Wu, J.; Li, Y.; Tang, Q.; Yue, G.; Lin, J.; Huang, M.; Meng, L.Bifacial Dye-Sensitized Solar Cells: A Strategy to Enhance Overall Efficiency Based on Transparent Polyaniline Electrode. Sci. Rep. 2014, 4, 1–7.
    (35) Murakami, T. N.; Grätzel, M.Counter Electrodes for DSC: Application of Functional Materials as Catalysts. Inorganica Chim. Acta 2008, 361 (3), 572–580.
    (36) XM, F.; TL, M.; GQ, G.; Akiyama, M.; Kida, T.; Abe, E.Effect of the Thickness of the Pt Film Coated on a Counter Electrode on the Performance of a Dye-Sensitized Solar Cell. J. Electroanal. Chem. 2004, 570 (2), 257–263.
    (37) Cho, C.-P.; Wu, H.-Y.; Lin, C.-C.Impacts of Sputter-Deposited Platinum Thickness on the Performance of Dye-Sensitized Solar Cells. Electrochim. Acta 2013, 107, 488–493. https://doi.org/10.1016/j.electacta.2013.06.023.
    (38) Liu, H.; Lou, Y.; Yuan, S.; Liu, M.; Zhou, H.Depositing Pt Nanoparticles by Pulse Electrodeposition for DSSCs Counter Electrode with High Electrocatalytic Activity. Res. Chem. Intermed. 2017, 43. https://doi.org/10.1007/s11164-017-2918-3.
    (39) Mohanty, S. P.; More, V.; Bhargava, P.Effect of Aging Conditions on the Performance of Dip Coated Platinum Counter Electrode Based Dye Sensitized Solar Cells. RSC Adv. 2015, 5 (24), 18647–18654. https://doi.org/10.1039/C4RA16929H.
    (40) Nam, J. G.; Park, Y. J.; Kim, B. S.; Lee, J. S.Enhancement of the Efficiency of Dye-Sensitized Solar Cell by Utilizing Carbon Nanotube Counter Electrode. Scr. Mater. 2010, 62 (3), 148–150.
    (41) Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A.Functionalized Graphene as a Catalytic Counter Electrode in Dye-Sensitized Solar Cells. ACS Nano 2010, 4 (10), 6203–6211.
    (42) Saranya, K.; Rameez, M.; Subramania, A.Developments in Conducting Polymer Based Counter Electrodes for Dye-Sensitized Solar Cells – An Overview. Eur. Polym. J. 2015, 66, 207–227.
    (43) Zhang, J.; Hreid, T.; XX, L.; Guo, W.; LP, W.; XT, S.; HQ, S.; ZB, Y.Nanostructured polyaniline counter electrode for dye-sensitised solar cells: Fabrication and investigation of its electrochemical formation mechanism. Electrochim. Acta 2010, 55 (11), 3664–3668.
    (44) Lee, K.-M.; Chiu, W.-H.; Wei, H.-Y.; Hu, C.-W.; Suryanarayanan, V.; Hsieh, W.-F.; Ho, K.-C.Effects of Mesoscopic Poly(3,4-Ethylenedioxythiophene) Films as Counter Electrodes for Dye-Sensitized Solar Cells. Thin Solid Films 2010, 518 (6), 1716–1721.
    (45) Lee, K.-M.; Chen, P.-Y.; Hsu, C.-Y.; Huang, J.-H.; Ho, W.-H.; Chen, H.-C.; Ho, K.-C.A High-Performance Counter Electrode Based on Poly(3,4-Alkylenedioxythiophene) for Dye-Sensitized Solar Cells. J. Power Sources 2009, 188 (1), 313–318.
    (46) Jiang, Q. W.; Li, G. R.; Gao, X. P.Highly Ordered TiN Nanotube Arrays as Counter Electrodes for Dye-Sensitized Solar Cells. Chem. Commun. 2009, No. 44, 6720–6722.
    (47) Shimada, K.; Toyoda, T.Gold Leaf Counter Electrodes for Dye-Sensitized Solar Cells. Jpn. J. Appl. Phys. 2018, 57, 1–4.
    (48) Faraday, M.The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philos. Trans. R. Soc. Lond. 1857, 147, 145–181.
    (49) FRENS, G.Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241 (105), 20–22.
    (50) Wilcoxon, J. P.; Williamson, R. L.; Baughman, R.Optical Properties of Gold Colloids Formed in Inverse Micelles. J. Chem. Phys. 1993, 98 (12), 9933–9950.
    (51) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R.Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid–Liquid System. J. Chem. Soc. Chem. Commun. 1994, No. 7, 801–802.
    (52) Kuo, C.-H.; Chiang, T.-F.; Chen, L.-J.; Huang, M. H.Synthesis of Highly Faceted Pentagonal- and Hexagonal-Shaped Gold Nanoparticles with Controlled Sizes by Sodium Dodecyl Sulfate. Langmuir 2004, 20 (18), 7820–7824.
    (53) Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P.Gold Nanorods: Synthesis, Characterization and Applications. Coord. Chem. Rev. 2005, 249 (17), 1870–1901.
    (54) Jana, N. R.; Gearheart, L.; Murphy, C. J.Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater. 2001, 13 (18), 1389–1393.
    (55) Busbee, B. D.; Obare, S. O.; Murphy, C. J.An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater. 2003, 15 (5), 414–416.
    (56) Raj, C. R.; Jena, B. K.Efficient Electrocatalytic Oxidation of NADH at Gold Nanoparticles Self-Assembled on Three-Dimensional Sol-Gel Network. Chem. Commun. 2005, No. 15, 2005–2007.
    (57) Chen, S.; Wang, Z. L.; Ballato, J.; Foulger, S. H.; Carroll, D. L.Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. J. Am. Chem. Soc. 2003, 125 (52), 16186–16187.
    (58) Tang, X.-L.; Jiang, P.; Ge, G.-L.; Tsuji, M.; Xie, S.-S.; Guo, Y.-J.Poly(N-Vinyl-2-Pyrrolidone) (PVP)-Capped Dendritic Gold Nanoparticles by a One-Step Hydrothermal Route and Their High SERS Effect. Langmuir 2008, 24 (5), 1763–1768.
    (59) Huang, T.; Meng, F.; Qi, L.Controlled Synthesis of Dendritic Gold Nanostructures Assisted by Supramolecular Complexes of Surfactant with Cyclodextrin. Langmuir 2010, 26 (10), 7582–7589.
    (60) Ye, W.; Yan, J.; Ye, Q.; Zhou, F.Template-Free and Direct Electrochemical Deposition of Hierarchical Dendritic Gold Microstructures: Growth and Their Multiple Applications. J. Phys. Chem. C 2010, 114 (37), 15617–15624.
    (61) Huan, T. N.; Ganesh, T.; Kim, K. S.; Kim, S.; Han, S.-H.; Chung, H.A Three-Dimensional Gold Nanodendrite Network Porous Structure and Its Application for an Electrochemical Sensing. Biosens. Bioelectron. 2011, 27 (1), 183–186.
    (62) Wood, R. W.On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum. Philos. Mag. Ser. 1902, 4, 396–402.
    (63) Fano, U.The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 1941, 31 (3), 213–222.
    (64) Hessel, A.; Oliner, A. A.A New Theory of Wood’s Anomalies on Optical Gratings. Appl. Opt. 1965, 4 (10), 1275–1297.
    (65) Thilsted, A.Schematic representation of an electron density wave propagating along a metal–dielectric interface. https://en.wikipedia.org/wiki/Surface_plasmon.
    (66) HERRES, D.Basics of TEM, TE, and TM propagation https://www.testandmeasurementtips.com/basics-of-tem-te-and-tm-propagation/.
    (67) Kontio, J.Fabrication of Sub-Wavelength Photonic Structures by Nanoimprint Lithography, 2013.
    (68) Hammond, J. L.; Bhalla, N.; Rafiee, S.; Estrela, P.Localized Surface Plasmon Resonance as a Biosensing Platform for Developing Countries. Biosensors 2014, 4, 172–188.
    (69) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C.The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107 (3), 668–677.
    (70) Halas, N. J.; Lal, S.; Chang, W.-S.; Link, S.; Nordlander, P.Plasmons in Strongly Coupled Metallic Nanostructures. Chem. Rev. 2011, 111 (6), 3913–3961.
    (71) Erwin, W. R.; Zarick, H. F.; Talbert, E. M.; Bardhan, R.Light Trapping in Mesoporous Solar Cells with Plasmonic Nanostructures. Energy Environ. Sci. 2016, 9 (5), 1577–1601.
    (72) Chang, W.-S.; Willingham, B. A.; Slaughter, L. S.; Khanal, B. P.; Vigderman, L.; Zubarev, E. R.; Link, S.Low Absorption Losses of Strongly Coupled Surface Plasmons in Nanoparticle Assemblies. Proc. Natl. Acad. Sci. 2011, 108 (50), 19879 LP – 19884.
    (73) Lee, K.-S.; El-Sayed, M. A.Gold and Silver Nanoparticles in Sensing and Imaging: Sensitivity of Plasmon Response to Size, Shape, and Metal Composition. J. Phys. Chem. B 2006, 110 (39), 19220–19225.
    (74) Bardhan, R.; Mukherjee, S.; Mirin, N. A.; Levit, S. D.; Nordlander, P.; Halas, N. J.Nanosphere-in-a-Nanoshell: A Simple Nanomatryushka. J. Phys. Chem. C 2010, 114 (16), 7378–7383.
    (75) Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L.Plasmonics for Extreme Light Concentration and Manipulation. Nat. Mater. 2010, 9, 193.
    (76) Zarick, H. F.; Hurd, O.; Webb, J. A.; Hungerford, C.; Erwin, W. R.; Bardhan, R.Enhanced Efficiency in Dye-Sensitized Solar Cells with Shape-Controlled Plasmonic Nanostructures. ACS Photonics 2014, 1 (9), 806–811.
    (77) Haggui, M.; Dridi, M.; Plain, J.; Marguet, S.; Perez, H.; Schatz, G. C.; Wiederrecht, G. P.; Gray, S. K.; Bachelot, R.Spatial Confinement of Electromagnetic Hot and Cold Spots in Gold Nanocubes. ACS Nano 2012, 6 (2), 1299–1307.
    (78) Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A.The `lightning’ Gold Nanorods: Fluorescence Enhancement of over a Million Compared to the Gold Metal. Chem. Phys. Lett. 2000, 317 (6), 517–523.
    (79) Li, X.; Xiao, D.; Zhang, Z.Landau Damping of Quantum Plasmons in Metal Nanostructures. New J. Phys. 2013, 15, 023011.
    (80) Clavero, C.Plasmon-Induced Hot-Electron Generation at Nanoparticle/Metal-Oxide Interfaces for Photovoltaic and Photocatalytic Devices. Nat. Photonics 2014, 8, 95–103.
    (81) Maier, S. A.Plasmonics: Fundamentals and Applications; Springer, 2007.
    (82) Bardhan, R.; Chen, W.; Bartels, M.; Perez-Torres, C.; Botero, M. F.; McAninch, R. W.; Contreras, A.; Schiff, R.; Pautler, R. G.; Halas, N. J.; et al.Tracking of Multimodal Therapeutic Nanocomplexes Targeting Breast Cancer in Vivo. Nano Lett. 2010, 10 (12), 4920–4928.
    (83) Wu, K.; Chen, J.; McBride, J. R.; Lian, T.Efficient Hot-Electron Transfer by a Plasmon-Induced Interfacial Charge-Transfer Transition. Science (80-. ). 2015, 349 (6248), 632 LP – 635.
    (84) Mukherjee, S.; Sobhani, H.; Lassiter, J. B.; Bardhan, R.; Nordlander, P.; Halas, N. J.Fanoshells: Nanoparticles with Built-in Fano Resonances. Nano Lett. 2010, 10 (7), 2694–2701.
    (85) Fang, Z.; Cai, J.; Yan, Z.; Nordlander, P.; Halas, N. J.; Zhu, X.Removing a Wedge from a Metallic Nanodisk Reveals a Fano Resonance. Nano Lett. 2011, 11 (10), 4475–4479.
    (86) Li, J.; Cushing, S. K.; Meng, F.; Senty, T. R.; Bristow, A. D.; Wu, N.Plasmon-Induced Resonance Energy Transfer for Solar Energy Conversion. Nat. Photonics 2015, 9, 601–607.
    (87) Lin, T. H.; Lin, C. W.; Liu, H. H.; Sheu, J. T.; Hung, W. H.Potential-Controlled Electrodeposition of Gold Dendrites in the Presence of Cysteine. Chem. Commun. 2011, 47 (7), 2044–2046.
    (88) Feng, J. J.; Li, A. Q.; Lei, Z.; Wang, A. J.Low-Potential Synthesis of Clean Au Nanodendrites and Their High Performance toward Ethanol Oxidation. ACS Appl. Mater. Interfaces 2012, 4 (5), 2570–2576.
    (89) Zhang, B.; Wang, D.; Hou, Y.; Yang, S.; Yang, X. H.; Zhong, J. H.; Liu, J.; Wang, H. F.; Hu, P.; Zhao, H. J.; et al.Facet-Dependent Catalytic Activity of Platinum Nanocrystals for Triiodide Reduction in Dye-Sensitized Solar Cells. Sci. Rep. 2013, 3, 1–7.
    (90) Lee, S. W.; Ahn, K. S.; Zhu, K.; Neale, N. R.; Frank, A. J.Effects of TiCl 4 Treatment of Nanoporous TiO 2 Films on Morphology, Light Harvesting, and Charge-Carrier Dynamics in Dye-Sensitized Solar Cells. J. Phys. Chem. C 2012, 116 (40), 21285–21290.
    (91) Son, Y. J.; Kang, J. S.; Yoon, J.; Kim, J.; Jeong, J.; Kang, J.; Lee, M. J.; Park, H. S.; Sung, Y. E.Influence of TiO2 Particle Size on Dye-Sensitized Solar Cells Employing an Organic Sensitizer and a Cobalt(III/II) Redox Electrolyte. J. Phys. Chem. C 2018, 122 (13), 7051–7060.
    (92) Tsao, H. N.; Comte, P.; Yi, C.; Grätzel, M.Avoiding Diffusion Limitations in Cobalt(III/II)-Tris(2,2′- Bipyridine)-Based Dye-Sensitized Solar Cells by Tuning the Mesoporous TiO 2 Film Properties. ChemPhysChem 2012, 13 (12), 2976–2981.
    (93) Salvatori, P.; Marotta, G.; Cinti, A.; Anselmi, C.; Mosconi, E.; DeAngelis, F.Supramolecular Interactions of Chenodeoxycholic Acid Increase the Efficiency of Dye-Sensitized Solar Cells Based on a Cobalt Electrolyte. J. Phys. Chem. C 2013, 117 (8), 3874–3887.
    (94) Labelle, A. J.; Bonifazi, M.; Tian, Y.; Wong, C.; Hoogland, S.; Favraud, G.; Walters, G.; Sutherland, B.; Liu, M.; Li, J.; et al.Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths. ACS Appl. Mater. Interfaces 2017, 9 (6), 5536–5565.
    (95) Seo, S. H.; Kim, M. H.; Jeong, E. J.; Yoon, S. H.; Kang, H. C.; Cha, S. I.; Lee, D. Y.High Electrocatalytic Activity of Low-Loaded Transparent Carbon Nanotube Assemblies for CoII/III-Mediated Dye-Sensitized Solar Cells. J. Mater. Chem. A 2014, 2 (8), 2592–2598.
    (96) Seo, S. H.; Jeong, E. J.; Han, J. T.; Kang, H. C.; Cha, S. I.; Lee, D. Y.; Lee, G.-W.Efficient Low-Temperature Transparent Electrocatalytic Layers Based on Graphene Oxide Nanosheets for Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2015, 7 (20), 10863–10871.
    (97) Vanderbilt, D.Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism. Phys. Rev. B 1990, 41 (11), 7892–7895.
    (98) Blöchl, P. E.Projector Augmented-Wave Method. Phys. Rev. B 1994, 50 (24), 17953–17979.
    (99) Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T. A.; Joannopoulos, J. D.Iterative Minimization Techniques for Ab Initio Total-Energy Calculations: Molecular Dynamics and Conjugate Gradients. Rev. Mod. Phys. 1992, 64 (4), 1045–1097.
    (100) Kresse, G.; Joubert, D.From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775.
    (101) Hu, P.; King, D. A.; Crampin, S.; Lee, M.-H.; Payne, M. C.Gradient Corrections in Density Functional Theory Calculations for Surfaces: Co on Pd{110}. Chem. Phys. Lett. 1994, 230 (6), 501–506.
    (102) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C.Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992, 46 (11), 6671–6687.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE