簡易檢索 / 詳目顯示

研究生: Muley
Mulugeta Tesema Efa
論文名稱: 合成與表徵氧化鋅@碳點奈米複合材料於染料敏化太陽能電池之應用
Synthesis and Characterization of ZnO@Carbon Dot Nanocomposites for Dye Sensitized Solar Cell Application
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 何國川
Kuo-Chuan HO 
陳志銘
 Ching-Ming Chen  
蘇威年
Wei-Nien Su  
氏原真樹
Masaki Ujihara 
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 118
中文關鍵詞: 碳點氧化鋅奈米粒子比表面積能隙染料敏化太陽能電池光伏測量光伏轉換效率螢光共振能量轉移光捕獲增強
外文關鍵詞: Carbon dot, Zinc oxide nanoparticle, Specific surface area, Band gap, dye-sensitized solar cell, photovoltaic measurement, photovoltaic conversion efficiency, light harvesting enhancement., Fluorescence resonance energy transfer
相關次數: 點閱:313下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們需要不同種類的再生能源,如地熱,風力發電,潮汐能和太陽能發電,因為世界不同地區有不同的能源,其中太陽是一種不間斷的能源,太陽能發電利用太陽能並將其轉化為電力,有不同類型的太陽能發電可以為世界人口提供能源永續的方式。
    本論文研究了染料敏化太陽能電池,提升光收集系統和基於納米複合材料的電荷分離,太陽能到可再生能源的有效轉換是一個不斷發展的研究領域,我們在這裡,通過使用不同氮含量的ZnO(100)和ZnO(20)納米顆粒(ZnONPs)和碳點(Cdots)設計了納米複合材料,樣品的特徵在於使用透射電子顯微鏡,X射線衍射,X射線光電子能譜,傅里葉變換紅外光譜,紫外(UV)可見吸收光譜和光電流 - 電壓曲線,Cdots在納米複合材料中提供優異的電荷收集,使整個器件能夠在室溫下製造,該界面有助於改善電荷分離和減少電荷複合,從而提高光伏性能,光伏性能增強程度強烈地取決於摻雜ZnO的Cdots的wt%,其中具有10wt%Cdots(2)的納米複合材料顯示出最高的光伏性能,這些太陽能電池顯示出顯著的光伏性能,在納米複合材料上的原始ZnO的功率轉換效率為0.8%,為5.9%,約為7.375倍,太陽能轉換效率的提高仍然是各種太陽能電池設備的重要研究領域。

    在本論文的最後部分,我們設計了基於新染料系統的級聯熒光共振能量轉移(級聯FRET),與增感染料相比,擴展了吸收光譜,我們發現,增加吸收光譜 增加吸收光譜必然會使太陽能電池的功率轉換效率提高10.7%的ZnO @ Cdot2)和11.3的NiO @ Cdot(2)(論文3),因此可以得出結論,向氧化鋅中添加足夠量的碳點有可能對低成本光伏太陽能電池的開發作出重大貢獻


    There is a need for different kinds of renewable energy sources such as geothermal, wind power, wave power and photovoltaics since different parts of the world have different potentials. The sun is a nonstop energy source. Photovoltaics use the energy of the sun and converts it into electricity. There are different types of photovoltaics that could provide world population with energy in a sustainable way. In this thesis dye-sensitized solar cells are studied. The improvement of light harvesting systems and charge separation based on nanocomposites for efficient conversion of solar energy to renewable energy is an evolving area of study. Here, we have designed nanocomposites by using ZnO(100) and ZnO(20) nanoparticles (ZnONPs) and carbon dots (Cdots) with different nitrogen content. The samples are characterized by using transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infra-red spectroscopy, ultraviolet (UV)–visible absorption spectra and photocurrent–voltage curves. The Cdots provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at room temperatures. This interface contributes to both the improvement of charge separation and the reduction of charge recombination, and thereby enhances the photovoltaic performance. The degree photovoltaic performance enhancement strongly depends on the wt % of Cdots doped of ZnO. The nanocomposite with 10 wt % Cdots (2) shows the highest photovoltaic performance. These solar cells show remarkable photovoltaic performance with a power conversion efficiency 0.8 % up pristine ZnO to 5.9% at nanocomposite which is about 7.375 times. The enhancement of solar energy conversion efficiency has continued to be an important research area for various solar cell devices. In the last part of this thesis, we have designed, new dye system based cascade fluorescence resonance energy transfer (cascade FRET) to extended absorption spectra compared to the sensitizer dye. We found that increasing the absorption spectrum does necessarily increase the power conversion efficiency of the solar cell 10.7 % of ZnO@Cdot2) and 11.3 at NiO@Cdot (2) (paper 3). It can be thus concluded that, addition of adequate amount of Cdots to Zinc oxide have the potential to contribute significantly toward the development of low-cost photovoltaic solar cells.

    Acknowledgement……………………………………………………………………………….iii Abstract iv Table of content vi List of figures viii List of tables xii Acronym……………………………………………………………………………………......xiii 1.Chapter 1 Solar Energy Scenario 1 1.1. Introduction 1 1.2. Nanosized Materials in Different Filed of Studies 2 1.3. Photovoltaic Cell 3 1.4 .Dye Ssensitized Ssolar Cell (DSSC) 4 1.4.1. Nanostructured Metal Oxide for DSSC 5 1.4.2. Nanocomposite Photoanode in DSSC. 7 1.4.3 .Components of Dye Sensitized Solar Cell 10 1.4.3.1. The Working Electrode and Coulter Electrode 10 1.4.3.2. Dye Sensitizer 11 1.4.3.3. The Redox Electrolyte 13 1.5. Research Innovation 14 2. Chapter 2. Literature Survey 15 2.1. Types of Pphotovoltaics Solar Cell 15 2.1.1. Crystalline Silicon photovoltaic cell 15 2.1. 2. Thin Film Photovoltaic Cell 16 2.1.4. Quantum Dot solar Cells 16 2.1.4. Perovskite Solar Cells 16 2. 1.5. Organic Photovoltaic Cell 17 2.1.5.1. General Overview of Dye Sensitized Solar Cell 17 2.1.5.2. Assessment of DSSC 18 2.1.5.3. Current-Voltage characteristics 20 2.1.5.4. Relation Between Semiconductor and Sensitizer 21 2.1.5.5. Photoanode in DSSC 23 2.2. General Idea on Zinc Oxide (ZnO) 24 3.Chapter 3 Hybridization of Carbon Dot with ZnO nanoparticles of Different Sizes 27 3.1. Introduction 27 3. 2. Materials 28 3. 3. Results and Discussion 29 3. 4. conclusion 41 4.Chapter 4 Effects of Carbon Dot on ZnO nanoparticle Based Dye Sensitized Solar Cells 42 4. 1. Introduction 42 4. 2. Experimental Section 43 4. 3. Results and Discussion 46 4. 3.1 Electrochemical Characterization 46 4. 3.2 Efficiencies of Size of ZnO and Addition of Cdots on DSSC Performance 53 4. 4. Conclusions 61 5.Chapter 5 Cascade Fluorescence Resonance Energy Transfer Studies for the Enhancement of Light Harvesting in Dye Sensitized Solar Cells. 62 5. 1. Introductions 62 5. 2. Experimental Procedures 64 5. 2.1 Materials 64 5. 2.2 Fabrication of DSSC 64 5. 3. Results and discussion 65 5. 3.1 Cascade FRET 65 5. 3.2 Excitation (absorption) and Emission Spectra 65 5. 3.3 The Spectral Overlap of Emission and UV-visible Absorption 67 5. 3.4 The Spectral Analysis on Emission of the Mixed Fluoresce Materials 70 5. 3.5 Measurement Performance. 76 5. 4. Conclusion 87 6.Chapter 6 Summary 88 7.Refences 91

    1. Grätzel, M., Recent advances in sensitized mesoscopic solar cells. Accounts of chemical research, 2009. 42(11): p. 1788-1798.
    2. Lewis, N.S. and D.G. Nocera, Powering the planet: Chemical challenges in solar energy utilization. Proceedings of the National Academy of Sciences, 2006. 103(43): p. 15729-15735.
    3. Lewis, N.S., Toward cost-effective solar energy use. science, 2007. 315(5813): p. 798-801.
    4. Ong, H., T. Mahlia, and H. Masjuki, A review on energy scenario and sustainable energy in Malaysia. Renewable and Sustainable Energy Reviews, 2011. 15(1): p. 639-647.
    5. Belyakov, V., et al., Silicon nanocrystals: fundamental theory and implications for stimulated emission. Advances in Optical Technologies, . 2008: ID 279502.
    6. Ali, J., et al., Enhancement of Field Emission Properties of Carbon Nanotubes by ECR-Plasma Treatment. Journal of Nanoscience, 2014. 2014 :ID 437895
    7. Zhang, Q., et al., ZnO nanostructures for dye‐sensitized solar cells. Advanced Materials, 2009. 21(41): p. 4087-4108.
    8. Ngo, C., et al., An investigation of growth temperature on the surface morphology and optical properties of 1.3 µm InAs/InGaAs/GaAs quantum dot structures. Nanotechnology, 2007. 18(36): p. 365708.
    9. Wang, Z., et al., Piezoelectric nanowires in energy harvesting applications. Advances in Materials Science and Engineering, 2015. 2015: ID 165631
    10. Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003. 4(2): p. 145-153.
    11. De La Tour, A. and M. Glachant, How do solar photovoltaic feed-in tariffs interact with solar panel and silicon prices. An empirical study. 2013.DOI: 10.1016/j.enpol.2012.06.024
    12. Olivier, C., et al., Fine‐Tuning of Triarylamine‐Based Photosensitizers for Dye‐Sensitized Solar Cells. ChemSusChem, 2011. 4(6): p. 731-736.
    13. Memming, R., Electron transfer processs with excited molecules at semiconductor electrodes. Progress in surface science, 1984. 17(1): p. 7-73.
    14. Kyokane, J. and M. Ohmukai, Dye-sensitized solar cell with fluorinated gel electrolyte: Effect of tio2 particle size on performance. Advances in Nanoparticles, 2013. 2(04): p. 318.
    15. Grätzel, M., Molecular photovoltaics that mimic photosynthesis. Pure and Applied Chemistry, 2001. 73(3): p. 459-467.
    16. Bach, U., et al., Solid-state dye-sensitized mesoporous TiO 2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998. 395(6702): p. 583.
    17. Kamat, P.V., Boosting the efficiency of quantum dot sensitized solar cells through modulation of interfacial charge transfer. Accounts of chemical research, 2012. 45(11): p. 1906-1915.
    18. Yang, Z., et al., Colloidal quantum dot photovoltaics enhanced by perovskite shelling. Nano letters, 2015. 15(11): p. 7539-7543.
    19. Zhang, X.L., et al., Enhanced open-circuit voltage of p-type DSC with highly crystalline NiO nanoparticles. Chemical Communications, 2011. 47(16): p. 4808-4810.
    20. Kojima, A., et al., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
    21. Lee, M.M., et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 2012: p. 1228604.
    22. Kim, H.-S., et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Scientific reports, 2012. 2: p. 591.
    23. Zhao, Y., et al., Perovskite seeding growth of formamidinium-lead-iodide-based perovskites for efficient and stable solar cells. Nature communications, 2018. 9(1): p. 1607.
    24. Ito, S., et al., Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin solid films, 2008. 516(14): p. 4613-4619.
    25. Usha, K., et al., Fabrication of Dye Sensitized Solar Cell Using Nanocrystalline TiO 2 and Optical Characterization of Photo-Anode. Nanoscience and Nanoengineering, 2014. 2(2): p. 29-35.
    26. Sengupta, D., et al., Morphology induced light scattering by zinc oxide polydisperse particles: promising for dye sensitized solar cell application. Journal of Renewable and Sustainable Energy, 2014. 6(6): p. 063114.
    27. Al-Obaidy, A., R. Al-Anbari, and E. Mohammed, Solar Photocatalytic of Reactive Blue Dye in Aqueous Suspension of V2O5. Engineering and Technology Journal, 2017. 35(1 Part (A) Engineering): p. 1-8.
    28. Ueno, S. and S. Fujihara, Effective sol-gel nanocoatings on ZnO electrodes for suppressing recombination in dye-sensitized solar cells. International Journal of Photoenergy, 2012. 2012: ID 268173

    29. Snaith, H.J. and C. Ducati, SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency. Nano letters, 2010. 10(4): p. 1259-1265.
    30. Saito, M. and S. Fujihara, Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environmental Science, 2008. 1(2): p. 280-283.
    31. Chai, S., et al., Development in photoanode materials for high efficiency dye sensitized solar cells. Int. J. Renew. Energy Res, 2014. 4(3): p.665-674 ·
    32. Wang, X., J. Song, and Z.L. Wang, Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices. Journal of Materials Chemistry, 2007. 17(8): p. 711-720.
    33. Schmidt-Mende, L. and J.L. MacManus-Driscoll, ZnO–nanostructures, defects, and devices. Materials today, 2007. 10(5): p. 40-48.
    34. Guo, Y.G., J.S. Hu, and L.J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices. Advanced Materials, 2008. 20(15): p. 2878-2887.
    35. Xia, Y., et al., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 2003. 15(5): p. 353-389.
    36. Guillén, E., et al., ZnO solar cells with an indoline sensitizer: a comparison between nanoparticulate films and electrodeposited nanowire arrays. Energy & Environmental Science, 2011. 4(9): p. 3400-3407.
    37. Greene, L.E., et al., ZnO− TiO2 core− shell nanorod/P3HT solar cells. The Journal of Physical Chemistry C, 2007. 111(50): p. 18451-18456.
    38. Chen, L.-C., et al., Preparation of vertically aligned ZnO/TiO2 core-shell composites for dye-sensitized solar cells. International Journal of Photoenergy, 2013. (49):p. 1-9 .
    39. Chen, S.-M., et al., Recent advancements in electrode materials for the high-performance electrochemical supercapacitors: a review. Int. J. Electrochem. Sci, 2014. 9(8): p. 4072-4085.
    40. Xu, X., et al., Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. Journal of the American Chemical Society, 2004. 126(40): p. 12736-12737.
    41. Sun, Y.-P., et al., Quantum-sized carbon dots for bright and colorful photoluminescence. Journal of the American Chemical Society, 2006. 128(24): p. 7756-7757.
    42. Ding, C., A. Zhu, and Y. Tian, Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging. Accounts of chemical research, 2013. 47(1): p. 20-30.
    43. Li, H., et al., Carbon nanodots: synthesis, properties and applications. Journal of materials chemistry, 2012. 22(46): p. 24230-24253.
    44. Ding, H., et al., Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS nano, 2015. 10(1): p. 484-491.
    45. Wang, Y. and A. Hu, Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C, 2014. 2(34): p. 6921-6939.
    46. Van Pham, C., et al., Graphene-quantum dot hybrid materials on the road to optoelectronic applications. Synthetic Metals, 2016. 219: p. 33-43.
    47. Hauffe, K., et al., New experiments on the sensitization of zinc oxide by means of the electrochemical cell technique. Journal of the Electrochemical Society, 1970. 117(8): p. 993-999.
    48. Soni, S.S., J.V. Vaghasiya, and B.G. Solanki, Single Component Organic Hole Transport Material for Solid State Dye Sensitized Solar Cell: An Electrochemical Study. ICONEST Special Issue, 1940. 36: p. 261.
    49. Desilvestro, J., et al., Highly efficient sensitization of titanium dioxide. Journal of the American Chemical Society, 1985. 107(10): p. 2988-2990.
    50. Hagfeldt, A., et al., Dye-sensitized solar cells. Chemical reviews, 2010. 110(11): p. 6595-6663.
    51. Harris, J.A., K. Trotter, and B.S. Brunschwig, Interfacial electron transfer in metal cyanide-sensitized TiO2 nanoparticles. The Journal of Physical Chemistry B, 2007. 111(24): p. 6695-6702.
    52. Mathew, S., et al., Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry, 2014. 6(3): p. 242.
    53. Liu, Y., et al., Cobalt redox mediators for ruthenium-based dye-sensitized solar cells: a combined impedance spectroscopy and near-IR transmittance study. The Journal of Physical Chemistry C, 2011. 115(38): p. 18847-18855.
    54. Boschloo, G., E.A. Gibson, and A. Hagfeldt, Photomodulated voltammetry of iodide/triiodide redox electrolytes and its relevance to dye-sensitized solar cells. The Journal of Physical Chemistry Letters, 2011. 2(24): p. 3016-3020.
    55. Wu, J., et al., Progress on the electrolytes for dye-sensitized solar cells. Pure and Applied Chemistry, 2008. 80(11): p. 2241-2258.
    56. McGehee, M., Emerging high-efficiency low-cost solar cell technologies. NREL Google Scholar, 2014.
    57. Lopes, F., et al., Thickness measurement of V2O5 nanometric thin films using a portable XRF. Journal of Spectroscopy, 2016. 2016 :ID 9509043
    58. Noel, N.K., et al., Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy & Environmental Science, 2014. 7(9): p. 3061-3068.
    59. Nazeeruddin, M.K., E. Baranoff, and M. Grätzel, Dye-sensitized solar cells: a brief overview. Solar energy, 2011. 85(6): p. 1172-1178.
    60. Isoard, S. and A. Soria, Technical change dynamics: evidence from the emerging renewable energy technologies. Energy Economics, 2001. 23(6): p. 619-636.
    61. Parkinson, B., On the efficiency and stability of photoelectrochemical devices. Accounts of Chemical Research, 1984. 17(12): p. 431-437.
    62. O'regan, B. and M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. nature, 1991. 353(6346): p. 737.
    63. Bessho, T., et al., Highly efficient mesoscopic dye‐sensitized solar cells based on donor–acceptor‐substituted porphyrins. Angewandte Chemie International Edition, 2010. 49(37): p. 6646-6649.
    64. Yella, A., et al., Porphyrin-sensitized solar cells with cobalt (II/III)–based redox electrolyte exceed 12 percent efficiency. science, 2011. 334(6056): p. 629-634.
    65. Green, M.A., et al., Solar cell efficiency tables (version 37). Progress in photovoltaics: research and applications, 2011. 19(1): p. 84-92.
    66. Shockley, W. and H.J. Queisser, Detailed balance limit of efficiency of p‐n junction solar cells. Journal of applied physics, 1961. 32(3): p. 510-519.
    67. Green, M.A., et al., Solar cell efficiency tables (version 46). Progress in Photovoltaics: Research and Applications, 2015. 23(7): p. 805-812.
    68. O'regan, B., et al., The effect of Al2O3 barrier layers in TiO2/dye/CuSCN photovoltaic cells explored by recombination and DOS characterization using transient photovoltage measurements. The Journal of Physical Chemistry B, 2005. 109(10): p. 4616-4623.
    69. Eldin, A.H., M. Refaey, and A. Farghly, A Review on Photovoltaic Solar Energy Technology and its Efficiency. 2012.2012: ID 307287,

    70. Jose, R., V. Thavasi, and S. Ramakrishna, Metal oxides for dye‐sensitized solar cells. Journal of the American Ceramic Society, 2009. 92(2): p. 289-301.
    71. DeVries, M.J., M.J. Pellin, and J.T. Hupp, Dye-sensitized solar cells: driving-force effects on electron recombination dynamics with cobalt-based shuttles. Langmuir, 2010. 26(11): p. 9082-9087.
    72. Yue, G., et al., A highly efficient flexible dye-sensitized solar cell based on nickel sulfide/platinum/titanium counter electrode. Nanoscale research letters, 2015. 10(1): p. 1.
    73. Grätzel, M., Photoelectrochemical cells. nature, 2001. 414(6861): p. 338.
    74. Luque, A. and S. Hegedus, Handbook of photovoltaic science and engineering. 2011: John Wiley & Sons: ISBN: 978-0-470-72169-8.
    75. Tang, H., et al., Electrical and optical properties of TiO2 anatase thin films. Journal of applied physics, 1994. 75(4): p. 2042-2047.
    76. Dai, S., et al., Preparation of highly crystalline TiO 2 nanostructures by acid-assisted hydrothermal treatment of hexagonal-structured nanocrystalline titania/cetyltrimethyammonium bromide nanoskeleton. Nanoscale research letters, 2010. 5(11): p. 1829.
    77. Nupearachchi, C. and V. Perera, Analysis of the behaviour of SnO2 composites of ZnO and TiO2 using impedance spectroscopy. Journal of the National Science Foundation of Sri Lanka, 2014. 42(1)P 17-22.
    78. Hara, K., et al., Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells, 2000. 64(2): p. 115-134.
    79. Fang, Y., et al., Effect of the defect on photoluminescence property of Al-coated ZnO nanostructures. Optics express, 2013. 21(3): p. 3492-3500.
    80. Keis, K., et al., Nanostructured ZnO electrodes for dye-sensitized solar cell applications. Journal of Photochemistry and photobiology A: Chemistry, 2002. 148(1-3): p. 57-64.
    81. Klingshirn, C., ZnO: material, physics and applications. ChemPhysChem, 2007. 8(6): p. 782-803.
    82. Djurišić, A.B. and Y.H. Leung, Optical properties of ZnO nanostructures. small, 2006. 2(8‐9): p. 944-961.
    83. Hahm, J.-I., Zinc oxide nanomaterials for biomedical fluorescence detection. Journal of nanoscience and nanotechnology, 2014. 14(1): p. 475-486.
    84. Dong, Y., et al., Zn-and O-face polarity effects at ZnO surfaces and metal interfaces. Applied physics letters, 2008. 93(7): p. 072111.
    85. Brillson, L., et al., Dominant effect of near-interface native point defects on ZnO Schottky barriers. Applied Physics Letters, 2007. 90(10): p. 102116.
    86. Raut, S.B., P. Thorat, and M.G. Zamre, Preparation, Characterization And Application Of Zinc Oxide (ZnO) Nanoparticles By Green Synthesis Method-A Review. ID: SUB154428
    87. Djurišić, A., et al., Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Applied Physics Letters, 2006. 88(10): p. 103107.
    88. Thomas, M. and J. Cui, Electrochemical route to p-type doping of ZnO nanowires. The Journal of Physical Chemistry Letters, 2010. 1(7): p. 1090-1094.
    89. Liu, X., et al., Effect of ZnO nanostructures on 2-dimensional random lasing properties. Chemistry of materials, 2004. 16(25): p. 5414-5419.
    90. Sun, Y.-P., et al., Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. Journal of the American Chemical Society, 2006. 128(24): p. 7756-7757.
    91. Krysmann, M.J., et al., Formation Mechanism of Carbogenic Nanoparticles with Dual Photoluminescence Emission. Journal of the American Chemical Society, 2012. 134(2): p. 747-750.
    92. Li, Y., et al., An Electrochemical Avenue to Green-Luminescent Graphene Quantum Dots as Potential Electron-Acceptors for Photovoltaics. Advanced Materials, 2011. 23(6): p. 776-780.
    93. Hsu, P.-C., et al., Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chemistry, 2012. 14(4): p. 917-920.
    94. Prasannan, A. and T. Imae, One-pot synthesis of fluorescent carbon dots from orange waste peels. Industrial & Engineering Chemistry Research, 2013. 52(44): p. 15673-15678.
    95. Wang, J., et al., High Performance Photoluminescent Carbon Dots for In Vitro and In Vivo Bioimaging: Effect of Nitrogen Doping Ratios. Langmuir, 2015. 31(29): p. 8063-8073.
    96. Hsu, Y.-H., et al., Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. Journal of Nanoparticle Research, 2017. 19(11): p. 359.
    97. Devadas, B. and T. Imae, Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustainable Chemistry & Engineering, 2018. 6(1): p. 127-134.
    98. Justh, N., et al., Photocatalytic hollow TiO(2) and ZnO nanospheres prepared by atomic layer deposition. Scientific reports, 2017. 7(1): p. 4337-4337.
    99. Mrowetz, M., et al., Oxidative power of nitrogen-doped TiO2 photocatalysts under visible illumination. The Journal of Physical Chemistry B, 2004. 108(45): p. 17269-17273.
    100. Dutta, V., Spray deposited ZnO nanostructured layers for dye sensitized solar cells. Energy Procedia, 2011. 3: p. 58-62.
    101. Kumar, V., et al., Doped zinc oxide window layers for dye sensitized solar cells. Journal of Applied Physics, 2013. 114(13): p. 134506.
    102. Krishnakumar, B., et al., Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites. Separation and Purification Technology, 2014. 132: p. 281-288.
    103. Krishnakumar, B. and T. Imae, Chemically modified novel PAMAM-ZnO nanocomposite: synthesis, characterization and photocatalytic activity. Applied Catalysis A: General, 2014. 486: p. 170-175.
    104. Krysmann, M.J., et al., Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. Journal of the American Chemical Society, 2011. 134(2): p. 747-750.
    105. Hsu, Y.-H., et al., Multifunctional carbon-coated magnetic sensing graphene oxide-cyclodextrin nanohybrid for potential cancer theranosis. Journal of Nanoparticle Research, 2017. 19(11): p. 359.
    106. Devadas, B. and T. Imae, Effect of Carbon Dots on Conducting Polymers for Energy Storage Applications. ACS Sustainable Chemistry & Engineering, 2017. 6(1): p. 127-134.
    107. Adhikari, P.D., T. Imae, and S. Motojima, Selective immobilization of carbon micro coils on patterned substrates and their electrochemical behavior on ITO substrate. Chemical Engineering Journal, 2011. 174(2-3): p. 693-698.
    108. György, E., et al., Effect of nitrogen doping on wetting and photoactive properties of laser processed zinc oxide-graphene oxide nanocomposite layers. Journal of Applied Physics, 2014. 116(2): p. 024906.
    109. Segets, D., et al., Determination of the quantum dot band gap dependence on particle size from optical absorbance and transmission electron microscopy measurements. Acs Nano, 2012. 6(10): p. 9021-9032.
    110. Rauwel, P., et al., A review of the synthesis and photoluminescence properties of hybrid ZnO and carbon nanomaterials. Journal of Nanomaterials, 2016. 2016: p. 19.
    111. Elumalai, N.K., et al., Metal oxide semiconducting interfacial layers for photovoltaic and photocatalytic applications. Materials for Renewable and Sustainable Energy, 2015. 4(3): p. 11.
    112. Ye, M., et al., Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Materials Today, 2015. 18(3): p. 155-162.
    113. Li, Y., et al., An electrochemical avenue to green‐luminescent graphene quantum dots as potential electron‐acceptors for photovoltaics. Advanced materials, 2011. 23(6): p. 776-780.
    114. Johar, M.A., et al., Photocatalysis and bandgap engineering using ZnO nanocomposites. Advances in Materials Science and Engineering, 2015. 2015.
    115. Zhang, Y., et al., Carbon nanotube–ZnO nanocomposite electrodes for supercapacitors. Solid State Ionics, 2009. 180(32-35): p. 1525-1528.
    116. Chang, W.-C., et al., Enhancing performance of ZnO dye-sensitized solar cells by incorporation of multiwalled carbon nanotubes. Nanoscale research letters, 2012. 7(1): p. 166.
    117. Aravinda, L., et al., ZnO/carbon nanotube nanocomposite for high energy density supercapacitors. Electrochimica Acta, 2013. 95: p. 119-124.
    118. Efa, M.T. and T. Imae, Hybridization of carbon-dots with ZnO nanoparticles of different sizes. Journal of the Taiwan Institute of Chemical Engineers, 2018.
    119. Robinson, K., et al., SnO2/ZnO composite dye-sensitized solar cells with graphene-based counter electrodes. Organic Electronics, 2018. 56: p. 159-162.
    120. Rahman, M.Y.A., et al., Effect of organic dye, the concentration and dipping time of the organic dye N719 on the photovoltaic performance of dye-sensitized ZnO solar cell prepared by ammonia-assisted hydrolysis technique. Electrochimica Acta, 2013. 88: p. 639-643.
    121. Kwon, W., et al., High color-purity green, orange, and red light-emitting diodes based on chemically functionalized graphene quantum dots. Scientific reports, 2016. 6: p. 24205.
    122. Al-Kahlout, A., Thermal treatment optimization of ZnO nanoparticles-photoelectrodes for high photovoltaic performance of dye-sensitized solar cells. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2015. 17(1): p. 66-72.
    123. Yamada, Y., Y. Yamaji, and M. Imada, Exciton lifetime paradoxically enhanced by dissipation and decoherence: Toward efficient energy conversion of a solar cell. Physical review letters, 2015. 115(19): p. 197701.
    124. Cammi, D., et al., Enhancement of the Sub-Band-Gap Photoconductivity in ZnO Nanowires through Surface Functionalization with Carbon Nanodots. The Journal of Physical Chemistry C, 2018. 122(3): p. 1852-1859.
    125. Vittal, R. and K.-C. Ho, Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable energy reviews, 2017. 70: p. 920-935.
    126. Omar, A., et al., Characterization of zinc oxide dye-sensitized solar cell incorporation with single-walled carbon nanotubes. Journal of Materials Research, 2013. 28(13): p. 1753-1760.
    127. Xu, F., et al., Graphene scaffolds enhanced photogenerated electron transport in ZnO photoanodes for high-efficiency dye-sensitized solar cells. The Journal of Physical Chemistry C, 2013. 117(17): p. 8619-8627.
    128. Hsu, C.-H., et al., Enhanced performance of dye-sensitized solar cells with graphene/ZnO nanoparticles bilayer structure. Journal of Nanomaterials, 2014. 2014: p. 4.
    129. Gregg, B.A., J. Sprague, and M.W. Peterson, Long-range singlet energy transfer in perylene bis (phenethylimide) films. The Journal of Physical Chemistry B, 1997. 101(27): p. 5362-5369.
    130. Howe, B. and A.L. Diaz, Characterization of host-lattice emission and energy transfer in BaMgAl10O17: Eu2+. Journal of luminescence, 2004. 109(1): p. 51-59.
    131. Fujii, K., et al., Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. Journal of Photochemistry and Photobiology A: Chemistry, 2011. 225(1): p. 125-134.
    132. Boens, N., et al., Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Analytical chemistry, 2007. 79(5): p. 2137-2149.
    133. Sun, X.-Y., et al., Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass. Physica B: Condensed Matter, 2009. 404(1): p. 111-114.
    134. Valeur, B., Effects of intermolecular photophysical processes on fluorescence emission. Chap, 2001. 4: p. 72-124.
    135. Cheon, J.H., et al., Enhancement of light harvesting in dye-sensitized solar cells by using Först-type resonance energy transfer. Metals and Materials International, 2013. 19(6): p. 1365-1368.
    136. Lohse, M.J., et al., Monitoring receptor signaling by intramolecular FRET. Current opinion in pharmacology, 2007. 7(5): p. 547-553.
    137. Sahare, P., et al., Energy transfer studies in binary dye solution mixtures: Acriflavine+ Rhodamine 6G and Acriflavine+ Rhodamine B. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008. 69(4): p. 1257-1264.
    138. Yang, J.-S., C.-S. Lin, and C.-Y. Hwang, Cu2+-induced blue shift of the pyrene excimer emission: a new signal transduction mode of pyrene probes. Organic Letters, 2001. 3(6): p. 889-892.
    139. Jones, G. and V.I. Vullev, Contribution of a pyrene fluorescence probe to the aggregation propensity of polypeptides. Organic letters, 2001. 3(16): p. 2457-2460.
    140. Yamanaka, T., et al., Time-resolved fluorescence spectra of pyrene doped in amorphous silica glasses. Chemical Physics Letters, 1990. 172(1): p. 29-32.
    141. Ikkda, S. and T. Imae, Induced optical activity of acridine orange bound to poly‐S‐carboxymethyl‐L‐cysteine. Biopolymers: Original Research on Biomolecules, 1971. 10(10): p. 1743-1757.
    142. Moore, T.A., M.L. Harter, and P.-S. Song, Ultraviolet spectra of coumarins and psoralens. Journal of Molecular Spectroscopy, 1971. 40(1): p. 144-157.
    143. Zhang, H., et al., Crystal structure and photoluminescence of 7-(N, N′-diethylamino)-coumarin-3-carboxylic acid. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2008. 69(4): p. 1136-1139.
    144. Merzlyak, M. and P. Kashulin, Pyrene Fluorescence Probing of Unsaturated Lipids. Gen. Physiol. Biophys, 1991. 10: p. 561-568.
    145. Franzl, T., et al., Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Applied Physics Letters, 2004. 84(15): p. 2904-2906.
    146. Lin, W., et al., Through‐Bond Energy Transfer Cassettes with Minimal Spectral Overlap between the Donor Emission and Acceptor Absorption: Coumarin–Rhodamine Dyads with Large Pseudo‐Stokes Shifts and Emission Shifts. Angewandte Chemie, 2010. 122(2): p. 385-389.
    147. Berlman, I., Energy transfer parameters of aromatic compounds. 2012: Elsevier.
    148. Valanne, A., et al., A dual-step fluorescence resonance energy transfer-based quenching assay for screening of caspase-3 inhibitors. Analytical biochemistry, 2008. 375(1): p. 71-81.
    149. Hossain, M.A., H. Mihara, and A. Ueno, Novel peptides bearing pyrene and coumarin units with or without β-cyclodextrin in their side chains exhibit intramolecular fluorescence resonance energy transfer. Journal of the American Chemical Society, 2003. 125(37): p. 11178-11179.
    150. Hossain, M.A., H. Mihara, and A. Ueno, Fluorescence resonance energy transfer in a novel cyclodextrin–peptide conjugate for detecting steroid molecules. Bioorganic & medicinal chemistry letters, 2003. 13(24): p. 4305-4308.
    151. Ogunsolu, O.O., et al., Energy and Electron Transfer Cascade in Self-Assembled Bilayer Dye-Sensitized Solar Cells. ACS applied materials & interfaces, 2016. 8(42): p. 28633-28640.
    152. Lin, Y.-J., et al., Efficiency improvement of dye-sensitized solar cells by in situ fluorescence resonance energy transfer. Journal of Materials Chemistry A, 2017. 5(19): p. 9081-9089.
    153. Freys, J.C., et al., Ru-based donor–acceptor photosensitizer that retards charge recombination in a p-type dye-sensitized solar cell. Dalton Transactions, 2012. 41(42): p. 13105-13111.
    154. Gibson, E.A., et al., A p-Type NiO-Based Dye-Sensitized Solar Cell with an Open-Circuit Voltage of 0.35 V. Angewandte Chemie International Edition, 2009. 48(24): p. 4402-4405.

    無法下載圖示 全文公開日期 2024/01/15 (校內網路)
    全文公開日期 2029/01/15 (校外網路)
    全文公開日期 2029/01/15 (國家圖書館:臺灣博碩士論文系統)
    QR CODE