簡易檢索 / 詳目顯示

研究生: 王炫富
Hsuan-Fu Wang
論文名稱: 高效率染料敏化太陽能電池之研製與特性鑑定
Fabrication and Characterization of High Efficiency Dye-sensitized Solar Cells
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 萬其超
Chi-Chao WAN
何國川
Kuo-Chuan Ho
李玉郎
Yuh-Lang Lee
陳良益
Liang-Yih Chen
戴 龑
Yian Tai
鍾人傑
Jen-Chieh Chung
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 二氧化鈦拉曼光譜聚四氟乙烯緻密層有機染料染料敏化太陽能電池
外文關鍵詞: Dye-Sensitized Solar Cells (DSSC), Titanium Diox, Polytetrafluoroethylene (PTFE), Raman spectroscopy, Compact layer, Organic dye
相關次數: 點閱:407下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要在研製染料敏化太陽能電池,並鑑定其特性,希望可以發展低成本及高效率的電池,以其能實現染料敏化太陽能電池商業化的目標。
    首先,從合成二氧化鈦奈米粒子開始,導入了理論計算方法與X-ray繞射光譜分析來驗證所合成的二氧化鈦奈米粒子的結構為尺寸分佈介於20 nm到30 nm的銳鈦礦(Anatase)結構。在之後的太陽能電池的研究方面,主要進行以下幾項研究。在金屬離子摻雜對染料敏化太陽能電池的影響方面,摻雜碳離子可以增加光電流,摻雜鍶離子,不僅增加光電流也增加光電壓,證實摻雜碳與鍶離子可以有效提升染料敏化太陽能電池的效能。在電解液溶劑對太陽能電池穩定性的影響方面,配置了三種不同溶劑的電解液,並與acetonitrile為溶劑的電解液比較。由分析的結果發現:皆能夠有效降低電池的衰退,其中以3-methoxypropionitrile 穩定性與轉換效率最佳。而在對電極的研究方面,發現以石墨做為對電極可具有白金電極60%的效能。此外,在本論文中並成功的以電化學循環掃描方式均勻的鍍上白金,有效降低白金的使用量,可提供一降低成本,且又能增加白金的有效工作面積的方法。
    在光陽極的研究方面,首創以聚四氟乙烯製作染料敏化太陽能電池的二氧化鈦電極結構,從電化學阻抗分析可以看出,相較於傳統使用高分子Polyethylene glycol (PEG)當作黏著劑的電極,可使內電阻下降,並具有高比表面積,且其厚度可以調控在20 m到160 m。此外,染料吸附量隨電極厚度增加而增加。當電極厚度60 m時,可達到最高光電轉換效率9.04%,相較於PEG所製作電極提高了44%。此研究成果不僅提供了可調控厚度與可撓性,也提供了簡單可靠與低成本的電極製造方式。
    在本論文中,尚藉由拉曼光譜探討N3染料與二氧化鈦工作電極之間的電子傳輸現象。由結果中可知:二氧化鈦電極的Eg(3)模式的紅位移會隨著二氧化鈦電極緻密層合成溫度增加與轉換效率的提高而增加。在二氧化鈦電極緻密層合成溫度在190℃的時候,具有最高的轉換效率及電流密度。由電化學阻抗分析量測中,發現二氧化鈦電極緻密層合成溫度較高時,具較低的內阻抗。由此可推論在二氧化鈦工作電極的兩層結構中,緻密層扮演比較重要的角色,也發現拉曼光譜為分析二氧化鈦電極非常有效的工具。
    最後,評估新型含香豆素基團之有機染料,經吸收光譜與電化學循環掃描分析,可發現將可見光吸收波峰延長增加至578 nm,在此,藉由量測出各種染料的能階變化,並與商業化染料比較,發現所合成之有機染料其轉換效率可達商業化N3染料的45%,達2.84%。且有機染料有不含金屬具有低成本的優勢,未來應用在有機染料敏化太陽能電池上是相當具有發展性。
    本研究對染料敏化太陽能電池進行有系統的分析與研究,所開發的聚四氟乙烯結構的工作電極,可以方便的進行大面積製作,並且提供相關領域的研究者一個工作平台,以利於未來發展有機高分子電池或固態太陽能電池。


    The objective of this thesis is to fabricate and characterize high efficiency Dye-Sensitized Solar Cells (DSSC) at low cost to fit commercial purpose. The nanoparticles of TiO2 used for DSSC were synthesized and characterized to be anatase structure with size distribution from 20 nm to 30 nm. These results were verified by Density Functional Theory (DFT) method.
    The doping effect of impurities on the as prepared TiO2 electrode has also been investigated. We have found that the doping effect of carbon increases the photocurrent while both the photocurrent and photo-voltage are increased by doping Sr ion. To understand the effect of solvent on the stability of electrolytes used in DSSC other than acetonitrile, we prepared the electrolyte with three different solvent systems. Although Ethylene carbonate (EC) mixed with diethyl carbonate (DEC) at ratio of 1:1, and propylene carbonate mixed with acetonitrile at ratio of 4:1 showed better stability than acetonitrile, among them 3-methoxypropionitrile showed the best stability with the highest conversion efficiency. To obtain a better counter electrode, four different material and composition were used to compare with platinum. Among those counter electrodes the one fabricated with 100% graphite showed 60% performance of platinum. Smooth thin film of platinum depositing on surface of porosity graphite electrode obtained by Cyclic Voltammetry (CV) showed very cost effective with high active area per unit mass of platinum as counter electrode.
    A novel architecture of polytetrafluoroethylene (PTFE)-framed TiO2 electrodes is developed for dye-sensitized solar cells. The PTFE-framed TiO2 electrodes with various thicknesses ranging from 20 to 160 µm with high surface area have been successfully fabricated. From the Electrochemical Impedance Spectroscopy (EIS) measurement, the PTFE-framed TiO2 electrodes showed low internal resistance compared to the Polyethylene glycol (PEG) TiO2 electrode. The quantity of dye adsorbed on the PTFE-framed TiO2 electrodes increases with increasing thickness of film. The optimal energy conversion efficiency of 9.04% is achieved at film thickness of 60 µm. The PTFE-framed structure provides not only tunable film thickness but also a cost-effective way for mass production of reliable photo-electrodes.
    The charge transfer between N3 dyes and TiO2 electrodes has been investigated by Raman spectroscopy. The red shift of Eg(3) mode of the TiO2 electrode increases with increasing synthesis temperature of TiO2 nanoparticles used in compact layer. The red shift is also associated with its structure change and conversion efficiency. The maximum charge transfer between N3 dyes and TiO2 electrodes have been obtained for TiO2 nanoparticles, synthesized at 190oC. In the EIS measurements of the DSSC, the internal resistance of the cell decreases with increasing synthesis temperature, suggesting that the electron transfer from N3 dyes into TiO2 electrodes was improved when the TiO2 nanoparticles of compact layer synthesized at higher temperature. Moreover, we have demonstrated that Raman technique is a convenient and useful tool to investigate the charge transfer between N3 dyes and TiO2 electrode and thus the impact on the performance of DSSC. To compare the conversion efficiency with N3 four cheaper organic dyes were synthesized, and characterterized with UV-vis spectrophotometry, Cyclic Voltametry, and performance test respectively. The energy levels of the dyes were calculated using the UV-vis and CV data. These new dyes were used in DSSC and compared with N3 dyes. Although one of the organic dyes shows an overall conversion efficiency of 2.84% which is only 45% of N3 dyes performance, its low cost and metal-free content make the dye a potential candidate in future application.
    Finally, the technique to fabricate PTFE-framed TiO2 electrode can be used as a platform for other researchers working on related areas such as organic and solid state solar cell.

    目 錄 目 錄 II 圖目錄 V 表目錄 VIII 摘要 IX Abstract XI 誌 謝 XIV 第一章 太陽能與太陽能電池 1 1-1 前言 1 1-2 太陽能的基本介紹 2 1-2-1 太陽能的優點 2 1-2-2 太陽能的缺點 2 1-2-3 太陽光標準光源 2 1-3太陽能電池的基本概念 4 1-4太陽能電池的分類 5 第二章 文獻回顧 7 2-1 染料敏化太陽能電池的介紹 7 2-2染料敏化太陽能電池的結構與工作原理 7 2-2-1染料敏化太陽能電池的結構 7 2-2-2染料敏化太陽能電池的工作原理 8 2-3 二氧化鈦電極 9 2-3-1二氧化鈦奈米管 10 2-3-2奈米線 12 2-4 染料 14 2-5 電解質 17 2-6 對電極 19 2-6-1 白金對電極 19 2-6-2 碳材料對電極 21 2-6-3 導電高分子對電極 22 2-7 研究的背景與動機 23 2-8 實驗藥品與溶劑 25 第三章 二氧化鈦工作電極的製作與摻雜效應 26 3-1 二氧化鈦工作電極的性質 26 3-2 二氧化鈦漿料合成與電極製作 27 3-2-1 二氧化鈦漿料的合成 27 3-2-2 二氧化鈦工作電極的製作 28 3-3 理論計算與結果驗證 29 3-3-1 二氧化鈦奈米粒子理論計算與結果驗證 29 3-3-2 二氧化鈦電極摻雜的理論計算與結果驗證 37 3-4 小結 44 第四章 液態電解液中溶劑對染料敏化太陽能電池特性的影響 45 4-1 電解液中溶劑的重要性 45 4-2 實驗方法 45 4-3 結果與討論 46 4-4 小結 51 第五章 對電極對染料敏化太陽能電池的影響 52 5-1 對電極介紹 52 5-2 實驗方法 52 5-3 結果與討論 53 5-4 小結 61 第六章 開發含聚四氟乙烯(PTFE)架構染料敏化太陽能電池的二氧化鈦電極 62 6-1 二氧化鈦電極的問題與解決方法 62 6-2 實驗步驟 63 6-3 結果與討論 64 6-3-1聚四氟乙烯電極結構的形成 64 6-3-2聚四氟乙烯電極結構的分析 67 6-3-3聚四氟乙烯電極結構染料吸附量的分析 72 6-3-4聚四氟乙烯電極電化學阻抗分析 75 6-3-5聚四氟乙烯電極效能的分析 76 6-4 小結 80 第七章 使用拉曼光譜觀察二氧化鈦電極緻密層(Compact layer)與N3染料之電子傳輸現象 81 7-1二氧化鈦電極中緻密層的重要性 81 7-2實驗部份 82 7-2-1 合成緻密層的二氧化鈦漿料 82 7-2-2 二氧化鈦電極的製作 82 7-2-3 電池的組裝與性能的量測 82 7-3結果與討論 83 7-3-1二氧化鈦電極的結構 83 7-3-2二氧化鈦電極電化學阻抗分析 85 7-3-3電池的性能分析 86 7-3-4二氧化鈦電極的拉曼分析 87 7-4 小結 92 第八章 N3染料與有機染料的測試與比較 93 8-1 有機染料的介紹 93 8-2 實驗方法 95 8-3 結果與討論 98 8-3-1 N3染料與各有機染料之光譜分析 98 8-3-2 N3染料與各有機染料之電化學分析 99 8-3-3 N3染料與各有機染料之電池性能比較分析 104 8-4 小結 108 第九章 結論與建議 109 9-1結論 109 9-2 二氧化鈦工作電極的改善 109 9-3 電解液、對電極與染料的評估 110 9-4 建議 110 參考文獻: 111 作者簡介 125

    1 黃秉鈞: ‘人類未來能源問題’, 科學發展, 民國九十四年, 386, pp. 第57-61頁
    2 張正華, 李陵岚, 葉楚平, 楊平華, and 馬振基: ‘有機與塑膠太陽能電池’, 台北 五南圖書出版有限公司, 民國九十七年
    3 衛子健: ‘染料敏化太陽電池之研究’, 國立清華大學化學工程研究所博士論文, 民國九十六年
    4 Shaheen, S.E., Ginley, D.S., and Jabbour, G.E.: ‘Organic-based photovoltaics: Toward low-cost power generation’, MRS Bulletin, 2005, 30, (1), pp. 10-15
    5 Bequerel, E.: ‘Recherches sur les effets de la radiation chimique de la lumiére solaire, au moyen des courants électriques’, C. R. Acad Sci.,, 1839, 9, pp. 145
    6 Fujishima, A., and Honda, K.: ‘Electrochemical photolysis of water at a semiconductor electrode’, Nature, 1972, 238, (5358), pp. 37-38
    7 Vogel, H.: ‘Lehrbuch der Phtographie’, Berlin, 1878
    8 O'Regan, B., and Grätzel, M.: ‘A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films’, Nature, 1991, 353, (6346), pp. 737-740
    9 Luo, Y., Li, D., and Meng, Q.: ‘Towards Optimization of Materials for Dye-Sensitized Solar Cells’, Advanced Materials, 2009, 21, pp. 1-5
    10 Kang, S.H., Kim, H.S., Kim, J.Y., and Sung, Y.E.: ‘An investigation on electron behavior employing vertically-aligned TiO2 nanotube electrodes for dye-sensitized solar cells’, Nanotechnology, 2009, 20, (35), pp. 1-6
    11 Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: ‘Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells’, Nano Letters, 2006, 6, (2), pp. 215-218
    12 Shankar, K., Bandara, J., Paulose, M., Wietasch, H., Varghese, O.K., Mor, G.K., LaTempa, T.J., Thelakkat, M., and Grimes, C.A.: ‘Highly efficient solar cells using TiO2 nanotube arrays sensitized with a donor-antenna dye’, Nano Letters, 2008, 8, (6), pp. 1654-1659
    13 Alivov, Y., and Fan, Z.Y.: ‘Efficiency of dye sensitized solar cells based on TiO2 nanotubes filled with nanoparticles’, Applied Physics Letters, 2009, 95, (6), pp. 063504-063506
    14 Daothong, S., Songmee, N., Thongtem, S., and Singjai, P.: ‘Size-controlled growth of TiO2 nanowires by oxidation of titanium substrates in the presence of ethanol vapor’, Scripta Materialia, 2007, 57, (7), pp. 567-570
    15 Ku, C.H., and Wu, J.J.: ‘Aqueous solution route to high-aspect-ratio zinc oxide nanostructures on indium tin oxide substrates’, Journal of Physical Chemistry B, 2006, 110, (26), pp. 12981-12985
    16 Wu, J.J., Chen, G.R., Yang, H.H., Ku, C.H., and Lai, J.Y.: ‘Effects of dye adsorption on the electron transport properties in ZnO-nanowire dye-sensitized solar cells’, Applied Physics Letters, 2007, 90, (21), pp. 213109-213111
    17 Wang, Y., Yang, H., and Xu, H.: ‘DNA-like dye-sensitized solar cells based on TiO2 nanowire-covered nanotube bilayer film electrodes’, Materials Letters, 2010, 64, (2), pp. 164-166
    18 Grätzel, M.: ‘Solar energy conversion by dye-sensitized photovoltaic cells’, Inorganic Chemistry, 2005, 44, (20), pp. 6841-6851
    19 Yanagida, S.: ‘Recent research progress of dye-sensitized solar cells in Japan’, Comptes Rendus Chimie, 2006, 9, (5-6), pp. 597-604
    20 Horiuchi, T., Miura, H., and Uchida, S.: ‘Highly-efficient metal-free organic dyes for dye-sensitized solar cells’, Chemical Communications, 2003, 9, (24), pp. 3036-3037
    21 Horiuchi, T., Miura, H., Sumioka, K., and Uchida, S.: ‘High efficiency of dye-sensitized solar cells based on metal-free indoline dyes’, Journal of the American Chemical Society, 2004, 126, (39), pp. 12218-12219
    22 Li, X.D., Zhang, D.W., Sun, Z., Chen, Y.W., and Huang, S.M.: ‘Metal-free indoline-dye-sensitized TiO2 nanotube solar cells’, Microelectronics Journal, 2009, 40, (1), pp. 108-114
    23 Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N.A., Ai, X., Lian, T., and Yanagida, S.: ‘Phenyl-Conjugated Oligoene Sensitizers for TiO2 Solar Cells’, Chemistry of Materials, 2004, 16, (9), pp. 1806-1812
    24 Hara, K., Tachibana, Y., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H.: ‘Dye-sensitized nanocrystalline TiO2 solar cells based on novel coumarin dyes’, Solar Energy Materials and Solar Cells, 2003, 77, (1), pp. 89-103
    25 Hara, K., Sato, T., Katoh, R., Furube, A., Ohga, Y., Shinpo, A., Suga, S., Sayama, K., Sugihara, H., and Arakawa, H.: ‘Molecular design of coumarin dyes for efficient dye-sensitized solar cells’, Journal of Physical Chemistry B, 2003, 107, (2), pp. 597-606
    26 Wang, Z.S., Cui, Y., Hara, K., Dan-Oh, Y., Kasada, C., and Shinpo, A.: ‘A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells’, Advanced Materials, 2007, 19, (8), pp. 1138-1141
    27 Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., Abe, Y., Sugihara, H., and Arakawa, H.: ‘Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain’, Chemical Communications, 2000, (13), pp. 1173-1174
    28 Sayama, K., Tsukagoshi, S., Hara, K., Ohga, Y., Shinpou, A., Abe, Y., Suga, S., and Arakawa, H.: ‘Photoelectrochemical properties of J aggregates of benzothiazole merocyanine dyes on a nanostructured TiO2 film’, Journal of Physical Chemistry B, 2002, 106, (6), pp. 1363-1371
    29 Li, S.L., Jiang, K.J., Shao, K.F., and Yang, L.M.: ‘Novel organic dyes for efficient dye-sensitized solar cells’, Chemical Communications, 2006, (26), pp. 2792-2794
    30 Polo, A.S., and Murakami Iha, N.Y.: ‘Blue sensitizers for solar cells: Natural dyes from Calafate and Jaboticaba’, Solar Energy Materials and Solar Cells, 2006, 90, (13), pp. 1936-1944
    31 Wang, X.F., Xiang, J., Wang, P., Koyama, Y., Yanagida, S., Wada, Y., Hamada, K., Sasaki, S.I., and Tamiaki, H.: ‘Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers’, Chemical Physics Letters, 2005, 408, (4-6), pp. 409-414
    32 Wang, X.F., Kitao, O., Zhou, H., Tamiaki, H., and Sasaki, S.I.: ‘Extension of π-conjugation length along the Qy axis of a chlorophyll a derivative for efficient dye-sensitized solar cells’, Chemical Communications, 2009, (12), pp. 1523-1525
    33 Chang, C.H., and Lee, Y.L.: ‘Chemical bath deposition of CdS quantum dots onto mesoscopic TiO2 films for application in quantum-dot-sensitized solar cells’, Applied Physics Letters, 2007, 91, (5), pp. 053503-053505
    34 Diguna, L.J., Shen, Q., Kobayashi, J., and Toyoda, T.: ‘High efficiency of CdSe quantum-dot-sensitized TiO2 inverse opal solar cells’, Applied Physics Letters, 2007, 91, (2), pp. 023116-023118
    35 Wolfbauer, G., Bond, A.M., Eklund, J.C., and MacFarlane, D.R.: ‘A channel flow cell system specifically designed to test the efficiency of redox shuttles in dye sensitized solar cells’, Solar Energy Materials and Solar Cells, 2001, 70, (1), pp. 85-101
    36 Wang, P., Zakeeruddin, S.M., Moser, J.E., Humphry-Baker, R., and Grätzel, M.: ‘A solvent-free, SeCN-/(SeCN)3- based ionic liquid electrolyte for high-efficiency dye-sensitized nanocrystalline solar cells’, Journal of the American Chemical Society, 2004, 126, (23), pp. 7164-7165
    37 Oskam, G., Bergeron, B.V., Meyer, G.J., and Searson, P.C.: ‘Pseudohalogens for dye-sensitized TiO2 photoelectrochemical cells’, Journal of Physical Chemistry B, 2001, 105, (29), pp. 6867-6873
    38 Kuang, D., Wang, P., Ito, S., Zakeeruddin, S.M., and Grätzel, M.: ‘Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte’, Journal of the American Chemical Society, 2006, 128, (24), pp. 7732-7733
    39 Wang, P., Klein, C., Humphry-Baker, R., Zakeeruddin, S.M., and Grätzel, M.: ‘Stable >8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility’, Applied Physics Letters, 2005, 86, (12), pp. 1-3
    40 Wang, P., Zakeeruddin, S.M., Humphry-Baker, R., and Grätzel, M.: ‘A binary ionic liquid electrolyte to achieve >7% power conversion efficiencies in dye-sensitized solar cells’, Chemistry of Materials, 2004, 16, (14), pp. 2694-2696
    41 Palomares, E., Clifford, J.N., Haque, S.A., Lutz, T., and Durrant, J.R.: ‘Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers’, Journal of the American Chemical Society, 2003, 125, (2), pp. 475-482
    42 Nakade, S., Kanzaki, T., Kubo, W., Kitamura, T., Wada, Y., and Yanagida, S.: ‘Role of electrolytes on charge recombination in dye-sensitized TiO2 solar cell (1): The case of solar cells using the I -/I3- redox couple’, Journal of Physical Chemistry B, 2005, 109, (8), pp. 3480-3487
    43 Chen, J.G., Chen, C.Y., Wu, S.J., Li, J.Y., Wu, C.G., and Ho, K.C.: ‘On the photophysical and electrochemical studies of dye-sensitized solar cells with the new dye CYC-B1’, Solar Energy Materials and Solar Cells, 2008, 92, (12), pp. 1723-1727
    44 Shi, Y., Zhan, C., Wang, L., Ma, B., Gao, R., Zhu, Y., and Qiu, Y.: ‘The electrically conductive function of high-molecular weight poly(ethylene oxide) in polymer gel electrolytes used for dye-sensitized solar cells’, Physical Chemistry Chemical Physics, 2009, 11, (21), pp. 4230-4235
    45 Kim, S., Kim, D., Choi, H., Kang, M.S., Song, K., Kang, S.O., and Ko, J.: ‘Enhanced photovoltaic performance and long-term stability of quasi-solid-state dye-sensitized solar cells via molecular engineering’, Chemical Communications, 2008, (40), pp. 4951-4953
    46 Zhu, R., Jiang, C.Y., Liu, B., and Ramakrishna, S.: ‘Highly efficient nanoporous TiO2-polythiophene hybrid solar cells based on interfacial modification using a metal-free organic dye’, Advanced Materials, 2009, 21, (9), pp. 994-1000
    47 Fang, X., Ma, T., Guan, G., Akiyama, M., and Abe, E.: ‘Performances characteristics of dye-sensitized solar cells based on counter electrodes with Pt films of different thickness’, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, (1-3), pp. 179-182
    48 Fang, X., Ma, T., Guan, G., Akiyama, M., Kida, T., and Abe, E.: ‘Effect of the thickness of the Pt film coated on a counter electrode on the performance of a dye-sensitized solar cell’, Journal of Electroanalytical Chemistry, 2004, 570, (2), pp. 257-263
    49 Papageorgiou, N.: ‘Counter-electrode function in nanocrystalline photoelectrochemical cell configurations’, Coordination Chemistry Reviews, 2004, 248, (13-14), pp. 1421-1446
    50 Kay, A., and Grätzel, M.: ‘Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder’, Solar Energy Materials and Solar Cells, 1996, 44, (1), pp. 99-117
    51 Suzuki, K., Yamaguchi, M., Kumagai, M., and Yanagida, S.: ‘Application of carbon nanotubes to counter electrodes of dye-sensitized solar cells’, Chemistry Letters, 2003, 32, (1), pp. 28-29
    52 Lindstrom, H., Holmberg, A., Magnusson, E., Lindquist, S.E., Malmqvist, L., and Hagfeldt, A.: ‘A New Method for Manufacturing Nanostructured Electrodes on Plastic Substrates’, Nano Letters, 2001, 1, (2), pp. 97-100
    53 Imoto, K., Takahashi, K., Yamaguchi, T., Komura, T., Nakamura, J.I., and Murata, K.: ‘High-performance carbon counter electrode for dye-sensitized solar cells’, Solar Energy Materials and Solar Cells, 2003, 79, (4), pp. 459-469
    54 Murakami, T.N., Ito, S., Wang, Q., Nazeeruddin, M.K., Bessho, T., Cesar, I., Liska, P., Humphry-Baker, R., Comte, P., Pechy, P., and Grätzel, M.: ‘Highly efficient dye-sensitized solar cells based on carbon black counter electrodes’, Journal of the Electrochemical Society, 2006, 153, (12), pp. A2255-A2261
    55 Saito, Y., Kubo, W., Kitamura, T., Wada, Y., and Yanagida, S.: ‘I-/I3- redox reaction behavior on poly (3,4-ethylenedioxythiophene) counter electrode in dye-sensitized solar cells’, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, (1-3), pp. 153-157
    56 Lee, K.M., Hsu, C.Y., Chen, P.Y., Ikegami, M., Miyasaka, T., and Ho, K.C.: ‘Highly porous PProDOT-Et2 film as counter electrode for plastic dye-sensitized solar cells’, Physical Chemistry Chemical Physics, 2009, 11, (18), pp. 3375-3379
    57 Li, Z., Ye, B., Hu, X., Ma, X., Zhang, X., and Deng, Y.: ‘Facile electropolymerized-PANI as counter electrode for low cost dye-sensitized solar cell’, Electrochemistry Communications, 2009, 11, (9), pp. 1768-1771
    58 Grätzel, M.: ‘Photovoltaic performance and long-term stability of dye-sensitized meosocopic solar cells’, Comptes Rendus Chimie, 2006, 9, (5-6), pp. 578-583
    59 Wang, P., Zakeeruddin, S.M., Comte, P., Charvet, R., Humphry-Baker, R., and Grätzel, M.: ‘Enhance the Performance of Dye-Sensitized Solar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid on TiO2 Nanocrystals’, Journal of Physical Chemistry B, 2003, 107, (51), pp. 14336-14341
    60 Hart, J.N., Menzies, D., Cheng, Y.B., Simon, G.P., and Spiccia, L.: ‘TiO2 sol-gel blocking layers for dye-sensitized solar cells’, Comptes Rendus Chimie, 2006, 9, (5-6), pp. 622-626
    61 Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., and Grätzel, M.: ‘Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes’, Journal of the American Chemical Society, 1993, 115, (14), pp. 6382-6390
    62 Natarajan, C., and Nogami, G.: ‘Cathodic electrodeposition of nanocrystalline titanium dioxide thin films’, Journal of the Electrochemical Society, 1996, 143, (5), pp. 1547-1550
    63 Karuppuchamy, S., Amalnerkar, D.P., Yamaguchi, K., Yoshida, T., Sugiura, T., and Minoura, H.: ‘Cathodic electrodeposition of TiO2 thin films for dye-sensitized photoelectrochemical applications’, Chemistry Letters, 2001, (1), pp. 78-79
    64 Miyasaka, T., and Kijitori, Y.: ‘Low-temperature fabrication of dye-sensitized plastic electrodes by electrophoretic preparation of mesoporous TiO2 layers’, Journal of the Electrochemical Society, 2004, 151, (11), pp. A1767-A1773
    65 Miyasaka, T., Kijitori, Y., Murakami, T.N., Kimura, M., and Uegusa, S.: ‘Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers’, Chemistry Letters, 2002, (12), pp. 1250-1251
    66 Murakami, T.N., Kijitori, Y., Kawashima, N., and Miyasaka, T.: ‘UV Light-assisted Chemical Vapor Deposition of TiO2 for Efficiency Development at Dye-sensitized Mesoporous Layers on Plastic Film Electrodes’, Chemistry Letters, 2003, 32, (11), pp. 1076-1077
    67 Murakami, T.N., Kijitori, Y., Kawashima, N., and Miyasaka, T.: ‘Low temperature preparation of mesoporous TiO2 films for efficient dye-sensitized photoelectrode by chemical vapor deposition combined with UV light irradiation’, Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, (1-3), pp. 187-191
    68 Fujimoto, M., Kado, T., Takashima, W., Kaneto, K., and Hayase, S.: ‘Dye-sensitized solar cells fabricated by electrospray coating using TiO2 nanocrystal dispersion solution’, Journal of the Electrochemical Society, 2006, 153, (5)
    69 Halme, J., Saarinen, J., and Lund, P.: ‘Spray deposition and compression of TiO2 nanoparticle films for dye-sensitized solar cells on plastic substrates’, Solar Energy Materials and Solar Cells, 2006, 90, (7-8), pp. 887-899
    70 Latroche, M., Brohan, L., Marchand, R., and Tournoux, M.: ‘New hollandite oxides: TiO2(H) and K0.06TiO2’, Journal of Solid State Chemistry, 1989, 81, (1), pp. 78-82
    71 Marchand, R., Brohan, L., and Tournoux, M.: ‘TiO2(B) a new form of titanium dioxide and the potassium octatitanate K2Ti8O17’, Mater. Res. Bull., 1980, 15, pp. 1129-1133
    72 Chomer, D.T., and Herrington, K.: ‘The Structures of Anatase and Rutile’, Journal of the American Chemical Society, 1955, 77, (18), pp. 4708-4709
    73 Baur, W.H.: ‘Atomabstande und Bindungswinkel im Brookit TiO2’, Acta Crystallogr., 1961, 14, pp. 214-216
    74 Mo, S.D., and Ching, W.Y.: ‘Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite’, Physical Review B, 1995, 51, (19), pp. 13023-13032
    75 Simons, P.Y., and Dachille, F.: ‘The structure of TiO-II, a high pressure phase of TiO2 2’, Acta Crystallogr., 1967, 23, pp. 334-336
    76 Sato, H., Endo, S., Sugiyama, M., Kikegawa, T., Shimomura, O., and Kusaba, K.: ‘Baddeleyite-type high-pressure phase of TiO2’, Science, 1991, 251, (4995), pp. 786-788
    77 Dewhurst, J.K., and Lowther, J.E.: ‘High-pressure structural phases of titanium dioxide’, Physical Review B - Condensed Matter and Materials Physics, 1996, 54, (6), pp. R3673-R3675
    78 Asahi, R., Taga, Y., Mannstadt, W., and Freeman, A.J.: ‘Electronic and optical properties of anatase TiO2’, Physical Review B - Condensed Matter and Materials Physics, 2000, 61, (11), pp. 7459-7465
    79 Valentin, C.D., Pacchioni, G., and Selloni, A.: ‘Origin of the different photoactivity of N-doped anatase and rutile TiO2’, Phys. Rev. B, 2004, 085116, pp. 70
    80 Valentin, C.D., Scagnelli, A., and Pacchioni, G.: ‘Theory of nanoscale atomic lithography. An ab initio study of the interaction of "cold" Cs atoms with organthiols self-assembled monolayers on Au(111)’, Journal of Physical Chemistry B, 2005, 109, (5), pp. 1815-1821
    81 Diamant, Y., Chen, S.G., Melamed, O., and Zaban, A.: ‘Core-shell nanoporous electrode for dye sensitized solar cells: The effect of the SrTiO3 shell on the electronic properties of the TiO2 core’, Journal of Physical Chemistry B, 2003, 107, (9), pp. 1977-1981
    82 Bandara, J., and Weerasinghe, H.C.: ‘Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high-band-gap oxide layers’, Solar Energy Materials and Solar Cells, 2005, 88, (4), pp. 341-350
    83 Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., and Han, L.: ‘Dye-sensitized solar cells with conversion efficiency of 11.1%’, Japanese Journal of Applied Physics, Part 2: Letters, 2006, 45, (24-28), pp. L630-L640
    84 Nazeeruddin, K., Amirnasr, M., Comte, P., Mackay, J.R., McQuillan, A.J., Houriet, R., and Grätzel, M.: ‘Adsorption studies of counterions carried by the sensitizer cis-dithiocyanato(2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium(II) on nanocrystalline TiO2 films’, Langmuir, 2000, 16, (22), pp. 8525-8528
    85 Murayama, M., Yamazaki, E., Nishikawa, N., Hashimoto, N., and Mori, T.: ‘Low-temperature fabrication of TiO2 necking electrode by sol-gel method and its application to dye-sensitized solar cell’, Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2006, 45, (10 A), pp. 7917-7921
    86 Grätzel, M.: ‘The magic world of nanocrystals, from batteries to solar cells’, Current Applied Physics, 2006, 6, (S1), pp. e2-e7
    87 Lee, K.M., Suryanarayanan, V., and Ho, K.C.: ‘The influence of surface morphology of TiO2 coating on the performance of dye-sensitized solar cells’, Solar Energy Materials and Solar Cells, 2006, 90, (15), pp. 2398-2404
    88 Wang, Z.S., Kawauchi, H., Kashima, T., and Arakawa, H.: ‘Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell’, Coordination Chemistry Reviews, 2004, 248, (13-14), pp. 1381-1389
    89 Ito, S., Zakeeruddin, S.M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M.K., Pechy, P., Takata, M., Miura, H., Uchida, S., and Grätzel, M.: ‘High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness’, Advanced Materials, 2006, 18, (9), pp. 1202-1205
    90 Jang, S.S., and Goddard Iii, W.A.: ‘Structures and transport properties of hydrated water-soluble dendrimer-grafted polymer membranes for application to polymer electrolyte membrane fuel cells: Classical molecular dynamics approach’, Journal of Physical Chemistry C, 2007, 111, (6), pp. 2759-2769
    91 Chandra, V., and Manoharan, S.S.: ‘Pulsed electron beam deposition of highly oriented thin films of polytetrafluoroethylene’, Applied Surface Science, 2008, 254, (13), pp. 4063-4066
    92 Han, L., Koide, N., Chiba, Y., and Mitate, T.: ‘Modeling of an equivalent circuit for dye-sensitized solar cells’, Applied Physics Letters, 2004, 84, (13), pp. 2433-2435
    93 Han, L., Koide, N., Chiba, Y., Islam, A., Komiya, R., Fuke, N., Fukui, A., and Yamanaka, R.: ‘Improvement of efficiency of dye-sensitized solar cells by reduction of internal resistance’, Applied Physics Letters, 2005, 86, (21), pp. 1-3
    94 Thavasi, V., Renugopalakrishnan, V., Jose, R., and Ramakrishna, S.: ‘Controlled electron injection and transport at materials interfaces in dye sensitized solar cells’, Materials Science and Engineering R: Reports, 2009, 63, (3), pp. 81-99
    95 Wang, H.F., Su, W.N., and Hwang, B.J.: ‘A novel architecture of poly(tetrafluoroethylene)-framed TiO2 electrodes for dye-sensitized solar cells’, Electrochemistry Communications, 2009, 11, (8), pp. 1647-1649
    96 Grätzel, M.: ‘Photoelectrochemical cells’, Nature, 2001, 414, (6861), pp. 338-344
    97 Xia, J., Masaki, N., Jiang, K., and Yanagida, S.: ‘Deposition of a thin film of TiOx from a titanium metal target as novel blocking layers at conducting glass/TiO2 interfaces in ionic liquid mesoscopic TiO2 dye-sensitized solar cells’, Journal of Physical Chemistry B, 2006, 110, (50), pp. 25222-25228
    98 Gao, K., and Wang, D.: ‘Raman study of photo-induced degradation of the Ru(II) complex adsorbed on nanocrystalline TiO2 films’, Physica Status Solidi - Rapid Research Letetrs, 2007, 1, (2), pp. R83-R85
    99 Umapathy, S., Cartner, A.M., Parker, A.W., and Hester, R.E.: ‘Time-resolved resonance Raman spectroscopic studies of the photosensitization of colloidal titanium dioxide’, Journal of Physical Chemistry, 1990, 94, (26), pp. 8880-8885
    100 Jang, S.R., Vittal, R., Lee, J., Jeong, N., and Kim, K.J.: ‘Linkage of N3 dye to N3 dye on nanocrystalline TiO2 through trans-1,2-bis(4-pyridyl)ethylene for enhancement of photocurrent of dye-sensitized solar cells’, Chemical Communications, 2006, (1), pp. 103-105
    101 Zhang, D., Downing, J.A., Knorr, F.J., and McHale, J.L.: ‘Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion’, Journal of Physical Chemistry B, 2006, 110, (43), pp. 21890-21898
    102 Shoute, L.C.T., and Loppnow, G.R.: ‘Excited-State Metal-to-Ligand Charge Transfer Dynamics of a Ruthenium(II) Dye in Solution and Adsorbed on TiO2 Nanoparticles from Resonance Raman Spectroscopy’, Journal of the American Chemical Society, 2003, 125, (50), pp. 15636-15646
    103 Hugot-Le Goff, A., Joiret, S., and Falaras, P.: ‘Raman Resonance Effect in a Monolayer of Polypyridyl Ruthenium(II) Complex Adsorbed on Nanocrystalline TiO2 via Phosphonated Terpyridyl Ligands’, Journal of Physical Chemistry B, 1999, 103, (44), pp. 9569-9575
    104 Quagliano, L.G., Jusserand, B., and Orani, D.: ‘SERS Spectroscopy to Study Adsorbates on Semiconductor Surfaces’, Journal of Raman Spectroscopy, 1998, 29, (8), pp. 720-724
    105 Barb, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., and Grtäzel, M.: ‘Nanocrystalline titanium oxide electrodes for photovoltaic applications’, Journal of the American Ceramic Society, 1997, 80, (12), pp. 3157-3171
    106 Yen, C.Y., Lin, Y.F., Liao, S.H., Weng, C.C., Huang, C.C., Hsiao, Y.H., Ma, C.C.M., Chang, M.C., Shao, H., Tsai, M.C., Hsieh, C.K., Tsai, C.H., and Weng, F.B.: ‘Preparation and properties of a carbon nanotube-based nanocomposite photoanode for dye-sensitized solar cells’, Nanotechnology, 2008, 19, (37), pp. 375305-375313
    107 Mikami, M., Nakamura, S., Kitao, O., and Arakawa, H.: ‘Lattice dynamics and dielectric properties of TiO2 anatase: A first-principles study’, Physical Review B - Condensed Matter and Materials Physics, 2002, 66, (15), pp. 1552131-1552136
    108 Pérez León, C., Kador, L., Peng, B., and Thelakkat, M.: ‘Characterization of the adsorption of Ru-bpy dyes on mesoporous TiO2 films with UV-Vis, Raman, and FTIR spectroscopies’, Journal of Physical Chemistry B, 2006, 110, (17), pp. 8723-8730
    109 王振翔: ‘新型薰香素含5-亞甲基-4-氧-2-硫酮-噻唑 -3-基乙酸末端官能基之光敏化有機太陽能電池染料之合成與性質研究’, 國立台灣科技大學化學工程系碩士論文, 民國九十八年
    110 周威宏: ‘新型薰香素含2-氰基丙烯酸末端官能基之光敏化有機太陽能電池染料的合成與性質研究’, 國立台灣科技大學化學工程系碩士論文, 民國九十八年
    111 Chen, P., Yum, J.H., De Angelis, F., Mosconi, E., Fantacci, S., Moon, S.J., Baker, R.H., Ko, J., Nazeeruddin, M.K., and Grätzel, M.: ‘High open-circuit voltage solid-state dye-sensitized solar cells with organic dye’, Nano Letters, 2009, 9, (6), pp. 2487-2492
    112 Kim, C., Kim, K.S., Kim, H.Y., and Han, Y.S.: ‘Modification of a TiO2 photoanode by using Cr-doped TiO2 with an influence on the photovoltaic efficiency of a dye-sensitized solar cell’, Journal of Materials Chemistry, 2008, 18, (47), pp. 5809-5814

    QR CODE