簡易檢索 / 詳目顯示

研究生: 伍晨豪
Chen-Hao Wu
論文名稱: 合成具不同羧酸錨基之染料敏化太陽能電池染料及其光物理性質研究
Study on Synthesis and Photophysics of DSSC Dyes with Different Carboxylic Acids as Anchoring Groups
指導教授: 何郡軒
Jinn-Hsuan Ho
口試委員: 許智偉
Chih-Wei Hsu
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 122
中文關鍵詞: 染料敏化太陽能電池錨基
外文關鍵詞: Dye-Sensitized Solar Cell, anchoring group
相關次數: 點閱:306下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文合成出一系列具電子予體-共軛橋基-電子受體的有機敏化染料,電子予體為三苯胺並加上甲氧基當作取代基,共軛橋基以具長烷鏈的噻吩,分別搭配苯、噻吩和吡啶去探討共軛性,電子受體分別以cyanoacrylic acid、acrylic acid和carboxylic acid三種羧酸錨基來組成。並以核磁共振儀(NMR)及高解析質譜分析儀(HRMS)鑑定結構,利用紫外/可見光吸收儀及循環伏安儀(CV)去探討七種染料的光物理及電化學性質。


    In this study, a series of organic sensitized dyes with Donor - π conjugation bridge - Acceptor(D - π - A)system were synthesized. These dyes used 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline as the electron donor. The conjugation bridge is 3-hexylthiophene connected with benzene, thiophene or pyridine. The acceptors are three different kinds of anchoring groups, i.e., cyanoacrylic acid, acrylic acid or carboxylic acid. The structure of compounds were identified by nuclear magnetic resonance spectrometer(NMR)and high resolution mass spectrometer(HRMS). We used
    UV-visible spectrophotometer and cyclic voltammetry(CV)to discuss photophyscial and electrochemical properties.

    摘要 I Abstract II 誌謝 III 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 前言 1 1.2 太陽能電池簡介 2 1.3 染料敏化太陽能電池的歷史發展 3 1.4 染料敏化太陽能電池的構造及工作原理 4 1.5 染料敏化太陽能電池效率的影響因素 5 1.6 染料光敏劑 6 1.6.1 染料光敏劑條件 6 1.6.2 釕金屬錯合物染料 7 1.6.3 非金屬有機染料 10 1.7 鈴木偶合反應 13 1.8 文獻回顧 14 1.9 研究動機及目的 18 第二章 結果與討論 19 2.1 化合物之合成路徑 19 2.2 化合物於不同溶劑中之光物理研究 21 2.3 化合物於相同溶劑中之光物理研究 35 2.4 化合物之消光係數 37 2.5 化合物之電化學性質 41 2.6 化合物之理論計算與實驗結果討論 43 2.7 化合物之元件效率 47 第三章 結論 48 第四章 實驗部分 49 4.1 實驗儀器 49 4.2 實驗藥品與溶劑 51 4.3 光物理性質定量量測 53 4.4 氧化還原電位量測 55 4.5 化合物之簡介 56 4.6 化合物之合成步驟 60 第五章 參考文獻 74 附錄 79

    1. Grätzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344.
    2. Chapin, D. M.; Fuller, C.; Pearson, G., A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics 1954, 25 (5), 676-677.
    3. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.; Levi, D. H.; Ho-Baillie, A. W. Y., Solar cell efficiency tables (version 49). Progress in Photovoltaics: Research and Applications 2017, 25 (4), 333-334.
    4. Wenham, S. R.; Green, M. A.; Watt , M. E.; Corkish, R., Applied Photovoltaics. London : Routledge: 2007.
    5. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
    6. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I., High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237.
    7. Hurd, F.; Livingston, R., The Quantum Yields of Some Dye-sensitized Photooxidations. The Journal of Physical Chemistry 1940, 44 (7), 865-873.
    8. Gerischer, H.; Michel-Beyerle, M.; Rebentrost, F.; Tributsch, H., Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta 1968, 13 (6), 1509-1515.
    9. Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T., Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261 (5559), 402-403.
    10. Matsumura, M.; Matsudaira, S.; Tsubomura, H.; Takata, M.; Yanagida, H., Dye sensitization and surface structures of semiconductor electrodes. Industrial & Engineering Chemistry Product Research and Development 1980, 19 (3), 415-421.
    11. O’regan, B.; Grfitzeli, M., A low-cost, high-efficiency solar cell based on dye-sensitized. Nature 1991, 353 (6346), 737-740.
    12. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., Dye-sensitized solar cells. Chemical reviews 2010, 110 (11), 6595-6663.
    13. Ito, S.; Miura, H.; Uchida, S.; Takata, M.; Sumioka, K.; Liska, P.; Comte, P.; Péchy, P.; Grätzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications 2008, (41), 5194-5196.
    14. Hara, K.; Dan-oh, Y.; Kasada, C.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Effect of additives on the photovoltaic performance of coumarin-dye-sensitized nanocrystalline TiO2 solar cells. Langmuir 2004, 20 (10), 4205-4210.
    15. Ning, Z.; Zhang, Q.; Pei, H.; Luan, J.; Lu, C.; Cui, Y.; Tian, H., Photovoltage improvement for dye-sensitized solar cells via cone-shaped structural design. The Journal of Physical Chemistry C 2009, 113 (23), 10307-10313.
    16. Mann, J. R.; Gannon, M. K.; Fitzgibbons, T. C.; Detty, M. R.; Watson, D. F., Optimizing the photocurrent efficiency of dye-sensitized solar cells through the controlled aggregation of chalcogenoxanthylium dyes on nanocrystalline titania films. The Journal of Physical Chemistry C 2008, 112 (34), 13057-13061.
    17. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M., Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
    18. Nazeeruddin, M. K.; Splivallo, R.; Liska, P.; Comte, P.; Grätzel, M., A swift dye uptake procedure for dye sensitized solar cells. Chemical Communications 2003, (12), 1456-1457.
    19. Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M., Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
    20. Wang, Z.-S.; Yamaguchi, T.; Sugihara, H.; Arakawa, H., Significant efficiency improvement of the black dye-sensitized solar cell through protonation of TiO2 films. Langmuir 2005, 21 (10), 4272-4276.
    21. Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123 (8), 1613-1624.
    22. Wang, P.; Zakeeruddin, S. M.; Humphry‐Baker, R.; Moser, J. E.; Grätzel, M., Molecular‐Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye‐Sensitized Solar Cells. Advanced Materials 2003, 15 (24), 2101-2104.
    23. Wang, P.; Zakeeruddin, S. M.; Moser, J. E.; Nazeeruddin, M. K.; Sekiguchi, T.; Grätzel, M., A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte. Nature materials 2003, 2 (6), 402-407.
    24. Kim, D.; Lee, J. K.; Kang, S. O.; Ko, J., Molecular engineering of organic dyes containing N-aryl carbazole moiety for solar cell. Tetrahedron 2007, 63 (9), 1913-1922.
    25. Wang, Z.-S.; Koumura, N.; Cui, Y.; Takahashi, M.; Sekiguchi, H.; Mori, A.; Kubo, T.; Furube, A.; Hara, K., Hexylthiophene-functionalized carbazole dyes for efficient molecular photovoltaics: tuning of solar-cell performance by structural modification. Chemistry of Materials 2008, 20 (12), 3993-4003.
    26. Hara, K.; Kurashige, M.; Dan-oh, Y.; Kasada, C.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H., Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry 2003, 27 (5), 783-785.
    27. Hara, K.; Sato, T.; Katoh, R.; Furube, A.; Ohga, Y.; Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H., Molecular design of coumarin dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry B 2003, 107 (2), 597-606.
    28. Horiuchi, T.; Miura, H.; Uchida, S., Highly-efficient metal-free organic dyes for dye-sensitized solar cells. Chemical Communications 2003, (24), 3036-3037.
    29. Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W., High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D–A–π-A featured organic indoline dyes. Energy & Environmental Science 2012, 5 (8), 8261-8272.
    30. Ferrere, S.; Gregg, B. A., New perylenes for dye sensitization of TiO 2. New Journal of Chemistry 2002, 26 (9), 1155-1160.
    31. Edvinsson, T.; Li, C.; Pschirer, N.; Schöneboom, J.; Eickemeyer, F.; Sens, R.; Boschloo, G.; Herrmann, A.; Müllen, K.; Hagfeldt, A., Intramolecular charge-transfer tuning of perylenes: spectroscopic features and performance in dye-sensitized solar cells. The Journal of Physical Chemistry C 2007, 111 (42), 15137-15140.
    32. Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai, X.; Lian, T.; Yanagida, S., Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of Materials 2004, 16 (9), 1806-1812.
    33. Hagberg, D. P.; Edvinsson, T.; Marinado, T.; Boschloo, G.; Hagfeldt, A.; Sun, L., A novel organic chromophore for dye-sensitized nanostructured solar cells. Chemical Communications 2006, (21), 2245-2247.
    34. Hagberg, D. P.; Yum, J.-H.; Lee, H.; De Angelis, F.; Marinado, T.; Karlsson, K. M.; Humphry-Baker, R.; Sun, L.; Hagfeldt, A.; Grätzel, M., Molecular engineering of organic sensitizers for dye-sensitized solar cell applications. Journal of the American Chemical Society 2008, 130 (19), 6259-6266.
    35. Wu, Y.; Zhu, W., Organic sensitizers from D–π–A to D–A–π–A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chemical Society Reviews 2013, 42 (5), 2039-2058.
    36. Lu, X.; Feng, Q.; Lan, T.; Zhou, G.; Wang, Z.-S., Molecular engineering of quinoxaline-based organic sensitizers for highly efficient and stable dye-sensitized solar cells. Chemistry of Materials 2012, 24 (16), 3179-3187.
    37. Ning, Z.; Zhang, Q.; Wu, W.; Pei, H.; Liu, B.; Tian, H., Starburst triarylamine based dyes for efficient dye-sensitized solar cells. The Journal of organic chemistry 2008, 73 (10), 3791-3797.
    38. He, J.; Liu, Y.; Gao, J.; Han, L., New DD-π-A Triphenylamine-coumarin Sensitizers for Dye Sensitized Solar Cells. Photochemical & Photobiological Sciences 2017.
    39. Miyaura, N.; Yamada, K.; Suzuki, A., A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Letters 1979, 20 (36), 3437-3440.
    40. Miyaura, N.; Suzuki, A., Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. Journal of the Chemical Society, Chemical Communications 1979, (19), 866-867.
    41. Suzuki, A., Recent advances in the cross-coupling reactions of organoboron derivatives with organic electrophiles, 1995–1998. Journal of Organometallic Chemistry 1999, 576 (1), 147-168.
    42. Suzuki, A., Cross‐Coupling Reactions Of Organoboranes: An Easy Way To Construct C-C Bonds (Nobel Lecture). Angewandte Chemie International Edition 2011, 50 (30), 6722-6737.
    43. Hutchings, G.; Polshettiwar, V.; Asefa, T., Nanocatalysis: Synthesis and applications. John Wiley & Sons: 2013.
    44. Chang, Y. J.; Chow, T. J., Triaryl linked donor acceptor dyads for high-performance dye-sensitized solar cells. Tetrahedron 2009, 65 (46), 9626-9632.
    45. Chou, H.-H.; Hsu, C.-Y.; Hsu, Y.-C.; Lin, Y.-S.; Lin, J. T.; Tsai, C., Dipolar organic pyridyl dyes for dye-sensitized solar cell applications. Tetrahedron 2012, 68 (2), 767-773.
    46. Chang, Y. J.; Chow, T. J., Dye-sensitized solar cell utilizing organic dyads containing triarylene conjugates. Tetrahedron 2009, 65 (24), 4726-4734.
    47. Shen, P.; Liu, Y.; Huang, X.; Zhao, B.; Xiang, N.; Fei, J.; Liu, L.; Wang, X.; Huang, H.; Tan, S., Efficient triphenylamine dyes for solar cells: effects of alkyl-substituents and π-conjugated thiophene unit. Dyes and Pigments 2009, 83 (2), 187-197.
    48. Liu, W.-H.; Wu, I.-C.; Lai, C.-H.; Lai, C.-H.; Chou, P.-T.; Li, Y.-T.; Chen, C.-L.; Hsu, Y.-Y.; Chi, Y., Simple organic molecules bearing a 3, 4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications 2008, (41), 5152-5154.
    49. Tian, H.; Yang, X.; Chen, R.; Pan, Y.; Li, L.; Hagfeldt, A.; Sun, L., Phenothiazine derivatives for efficient organic dye-sensitized solar cells. Chemical Communications 2007, (36), 3741-3743.

    QR CODE