簡易檢索 / 詳目顯示

研究生: Tesfaye Abebe Geleta
Tesfaye Abebe Geleta
論文名稱: 氧化鋅基染料敏化太陽能電池:添加劑的影響
ZnO-Based Dye-Sensitized Solar Cells: Effect of Additives
指導教授: 今榮東洋子
Toyoko Imae
口試委員: 陳生明
Sheng-Ming Chen
劉振良
Cheng-Liang Liu
何清華
Ching-Hwa Ho
氏原真樹
Masaki Ujihara
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 140
中文關鍵詞: 碳點,電荷複合中心,ZnO/NiO/Cdot 染料敏化太陽能電池,功率轉換率,串接 螢光共振能量轉移,p-NiO/n-ZnO 異質接面,奈米複合光陽極,染料敏化太陽能電池,潜在障碍。
外文關鍵詞: Carbon dot, charge recombination center,, ZnO/NiO/Cdot dye-sensitized solar cell, power conversion efficiency,, cascade fluorescence resonance energy transfer, p-NiO/n-ZnO heterojunction,, nanocomposite photoanode, dye-sensitized solar cell,, potential barrier.
相關次數: 點閱:269下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    各種形式的再生能源,例如風能,太陽能或太陽光電,地熱,生質能和水力發電,可用於節省電力,減少環境污染並影響成本。而在這之中,太陽能是最受歡迎的能源,由於它藉由太陽或者人造能源直接轉換為電能,可用於我們的日常生活。近幾年,市場上最盛行的太陽能電池是由矽晶材料製成的電池。因此,為了解決矽太陽能電池的成本影響,本研究實現了染料敏化太陽能電池 的構造。本文分別使用 ZnO 和 ZrS2,ZnO 和 NiO 做出 n-n 型和 n-p 型半導體,並在這基礎上製備出光陽極複合材料的染料敏化太陽能電池。此外,更加評估了添加碳點對其的影響。ZrS2 和 NiO 分別和 ZnO 形成 n-n 和 p-n 異質接面,導致電子快速轉移到導電電極基板上並且達到大量的電荷分離。當10 wt% 的 ZrS2 和 8 wt% 的 NiO 與 ZnO 結合時,功率轉換率分別是 ZnO 的 1.6倍和 1.58 倍。同時,當將碳點添加到 ZnO/ZrS2(10 wt%) 的 染料敏化太陽能電池 時,產生並轉移到 ZrS2 的電子應與產生並轉移到光敏劑的電洞復合。
    然而,當碳點摻雜到 ZnO/NiO(8 wt%) 的 染料敏化太陽能電池 時,由於碳點的能帶被分配在ZnO 和 NiO 之間的中間,成為在 ZnO 和 NiO 之間有效的電荷傳輸劑和阻擋層。因此,引入 Cdots 可以將功率轉換率提升到 ZnO/NiO(8 wt%) 的 3.8 倍。這些闡明了選擇適當材料能隙的重要性,從而提高染料敏化染料太陽能電池的能量轉換效率。
    此外,在製備光陽極上進行串接 螢光共振能量轉移沉積中,使用動態塗佈機提供光滑均勻的薄膜,提高了DSSC 的效率。因此,奈米等級的 ZnO/Cdot/NiO 光電陽極材料和串接 螢光共振能量轉移 塗覆在 ZnO/NiO 薄膜上確實能增強光伏性能。
    關鍵字:
    碳點,電荷複合中心, ZnO/NiO/Cdot 染料敏化太陽能電池,功率轉換率,串接 螢光共振能量轉移,p-NiO/n-ZnO 異質接面,奈米複合光陽極,染料敏化太陽能電池,潜在障碍。


    Abstract
    Various forms of renewable energies such as wind, solar or photovoltaic, geothermic, biomass sources, and hydroelectric power are useful in saving electricity, reducing environmental pollution, and impacting costs. Among them, photovoltaics is the most popular energy resource for that it can be available in our everyday life, by converting the energy from the sun directly into electricity. Recently, the most abundant solar cell available on the market is the cell fabricated from silicon crystal material. Thus to address the high-price issue of silicon solar cells, the construction of dye-sensitized solar cells has been carried out in this study. Dye-sensitized solar cells based on photoanode composites of n-n type (ZnO and ZrS2) and n-p type (ZnO and NiO) semiconductors were fabricated. When 10 wt% of ZrS2 and 8 wt% of NiO is combined with ZnO, the power conversation efficiencies were 1.6 and 1.58 times that of ZnO, respectively. The n-n and p-n heterojunctions of ZrS2 and NiO, respectively, with ZnO could lead to the rapid transfer of electrons to the conductive electrode substrate and higher charge separation.
    Moreover, the influence of the addition of carbon dots on them has been assessed. When carbon dots are applied to the ZnO/ZrS2(10 wt%) dye-sensitized solar cell, the electrons produced and transferred to ZrS2 should be recombined with the holes generated and transferred to the photosensitizer. However, when carbon dots are doped to ZnO/NiO(8 wt%) Dye-sensitized solar cells, the band gap energy level of carbon dots were assigned in the intermediate between the band gap energy level of ZnO and NiO, and thus the carbon dots act as efficient charge transporter and the blocking layer between the ZnO and NiO. Consequently, introducing Cdots were boosted the power conversion efficiency 3.8 times of that ZnO/NiO(8 wt%). These situations suggest that an appropriate selection in the energy levels of the materials enhances and increase the energy conversion efficiency of the dye-sensitized solar cells.
    Furthermore, the deposition of cascade fluorescence resonance energy transfer dyes on the prepared photoanodes were carried out using a spin coating to provide uniform films, resulting in the increased efficiency of DSSCs. Thus, the nanoscale materials of ZnO/Cdot/NiO photoanode and the cascade fluorescence resonance energy transfer dyes coated on ZnO/NiO film were promised to the enhancement of photovoltaic performance.
    Keywords: Carbon dot, charge recombination center, ZnO/NiO/Cdot dye-sensitized solar cell, power conversion efficiency, cascade fluorescence resonance energy transfer, p-NiO/n-ZnO heterojunction, nanocomposite photoanode, dye-sensitized solar cell, potential barrier.

    Table of Contents Declaration i Dedication iii Acknowledgments iv Lists of presentations and publications v Abstract vi Table of Contents x List of Figures xiv List of Tables xviii List of Schemes xix List of Abbreviation xx Chapter 1 1 Introduction 1 1.1 Background of the study 1 1.2 Statement of the problem 4 1.3 Aims and objectives of the study 5 1.4 Scope of the study 5 1.5 Significance of the study 6 1.6 Nano-materials for different field of studies 7 1.7 Dissertation outline 8 Chapter 2 9 Review of Literature 9 2.1 Historical background of solar cells or photovoltaic cells 9 2.2 Generations of the photovoltaic cells 10 2.2.1 First generation solar cells (Si-Wafer solar cells) 10 2.2.1.1 Mono-crystalline silicon solar cells 11 2.2.1.2 Multi/polycrystalline silicon solar cells 11 2.2.2 Second-generation solar cells (Thin-film solar cells) 11 2.2.3 Third-generation solar cells 12 2.2.3.1 Quantum dots solar cells 12 2.2.3.2 Organic solar cells 13 2.2.3.3 Perovskite solar cells 14 2.2.3.4 Dye-sensitized solar cells 15 2.3 General idea on ZnO, ZrS2, NiO, and Cdots nanoparticles and their nanocomposites 23 2.4 Motivation of the research 25 Chapter 3 26 Influence of Additives on Zinc Oxide-Based Dye-Sensitized Solar Cells 26 3.1 Introduction 26 3.2 Experimental section 28 3.2.1 Materials and methods 28 3.2.2 Synthesis of ZnO/ZrS2 nanocomposites 29 3.2.3 Synthesis of ZnO/ZrS2/Cdots nanocomposites 29 3.2.4 Solar cell fabrication 30 3.3 Results and Discussion 31 3.3.1 Characterization of composites 31 3.3.2 Photovoltaic performances of nanocomposite electrodes 36 3.3.3 Effect of additives on charge transfer in ZnO-based DSSCs 39 3.3.4 Discussion 43 3.4 Conclusions 46 Chapter 4 48 Nanocomposite Photoanodes Consisting of p-NiO/n-ZnO Heterojunction and Carbon Quantum Dot Additive for Dye-Sensitized Solar Cells 48 4.1 Introduction 48 4.2 Experimental section 50 4.2.1 Materials and methods 50 4.2.2 Synthesis of ZnO/NiO/Cdots nanocomposites 51 4.2.3 Fabrication of solar cells and photovoltaic measurements 52 4.2.4 Determination of adsorption amounts of dye on electrodes 54 4.3 Result and discussion 55 4.3.1 Characterization of the composites 55 4.3.2 Photovoltaic performances of composite electrodes 63 4.3.3 Role of additives (NiO and Cdots) on the photovoltaic performance of ZnO-based DSSCs 68 4.4 Conclusions 82 Chapter 5 84 Effects of Cascade Fluorescence Resonance Energy Transfer on the Performance of Dye-Sensitized Solar Cells 84 5.1 Introduction 84 5.2 Experimental sections 86 5.2.1 Materials and methods 86 5.2.2 Preparation of the colloidal solution of fluorescent materials and synthesis of ZnO, NiO, and ZnO/NiO NPs 87 5.2.3 Fabrication of solar cells and measurements of photovoltaic performance 87 5.3 Results and discussion 88 5.3.1 Cascade fluorescence resonance energy transfers (FRET) 88 5.3.2 The PL spectral overlap of donor-emission and acceptor-excitation of the fluorescent materials (FMs) and N719 dye 90 5.3.3 Uv-visible absorption and PL emission spectra of the addition of a different volume of N719 on fluorescent materials 92 5.3.4 Photovoltaic performances of nanocomposite electrodes 93 5.4 Conclusions 96 Chapter 6 97 Summary and Future Perspectives 97 References 100

    References
    1. Qin, Y.; Peng, Q. Ruthenium sensitizers and their applications in dye-sensitized solar cells. Int. J. Photoenergy. 2012, 2012.
    2. Burke, M. J.; Stephens, J. C. Political power and renewable energy futures: A critical review. Energy Res. Soc. Sci. 2018, 35, 78-93.
    3. Mohanta, P. R.; Patel, J.; Bhuva, J.; Gandhi, M. A Review on Solar Photovoltaics and Roof Top Application of It. Int. J. Adv. Res. Sci. Eng. Technol. 2015, 2, 2394-2444.
    4. Criqui, P.; Kouvaritakis, N. World energy projections to 2030. Int. J. Glob. Energy Issues. 2000, 14(1-4), 116-136.
    5. Raut, K. H.; Chopde, H. N.; Deshmukh, D. W. A review on comparative studies of diverse generation in solar cell. Int. J. Electr. Eng. Ethics. 2018, 1, 1-9.
    6. Grätzel, M. Dye-sensitized solar cells. J. Photochem. Photobiol. C. 2003, 4(2), 145-153.
    7. Hamann, T. W.; Jensen, R. A.; Martinson, A. B.; Van Ryswyk, H.; Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy Environ. Sci. 2008, 1(1), 66-78.
    8. Adedokun, O.; Titilope, K.; Awodugba, A. O. Review on natural dye-sensitized solar cells (DSSCs). 2016.
    9. do They Work, H. Dye-sensitized solar cells: principles of operation. Electrochem. Nanomater. 2001, 7, 201.
    10. Ji, J. M.; Zhou, H.; Eom, Y. K.; Kim, C. H.; Kim, H. K. 14.2% Efficiency Dye‐Sensitized Solar Cells by Co‐sensitizing Novel Thieno [3, 2‐b] indole‐Based Organic Dyes with a Promising Porphyrin Sensitizer. Adv. Energy Mater. 2020, 10(15), 2000124.
    11. Fakharuddin, A.; Jose, R.; Brown, T. M.; Fabregat-Santiago, F.; Bisquert, J. A perspective on the production of dye-sensitized solar modules. Energy Environ. Sci. 2014, 7(12), 3952-3981.
    12. Ibrahim, I. D.; Sadiku, E. R.; Jamiru, T.; Hamam, Y.; Alayli, Y.; Eze, A. A. Prospects of Nanostructured Composite Materials for Energy Harvesting and Storage. J. King Saud Univ. Sci. 2019.
    13. Olawoyin, R. Nanotechnology: The future of fire safety. Saf. Sci. . 2018, 110, 214-221.
    14. Wang, Z.; Pan, X.; He, Y.; Hu, Y.; Gu, H.; Wang, Y. Piezoelectric nanowires in energy harvesting applications. Adv. Mater. Sci. Eng. 2015, 2015.
    15. Sharma, G.; Kumar, A.; Sharma, S.; Naushad, M.; Dwivedi, R. P.; ALOthman, Z. A.; Mola, G. T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: a review. J. King Saud Univ. Sci. 2017.
    16. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic technology: the case for thin-film solar cells. Science. 1999, 285(5428), 692-698.
    17. Shaikh, S. F.; Shinde, N. M.; Lee, D.; Al-Enizi, A. M.; Kim, K. H.; Mane, R. S., Nanostructures in Dye-Sensitized and Perovskite Solar Cells, in Nanostructures. 2019, IntechOpen.
    18. Brabec, C.; Zeira, E., Photovoltaic cells. 2007, Google Patents.
    19. Swami, R. Solar cell. Int. J. Sci. Res. 2012, 2(7), 1-5.
    20. Dimitrijev, S. Principles of Semiconductor Devices, Oxford University Press. 2006.
    21. Green, M. A.; Dunlop, E. D.; Hohl‐Ebinger, J.; Yoshita, M.; Kopidakis, N.; Hao, X. Solar cell efficiency tables (version 56). Prog. Photovolt. 2020, 28(7), 629-638.
    22. Solar, F. First solar builds the highest efficiency thin film PV cell on record. First Solar. 2014, 5.
    23. Nakamura, M.; Yamaguchi, K.; Kimoto, Y.; Yasaki, Y.; Kato, T.; Sugimoto, H. Cd-free Cu(In, Ga)(Se, S)2 thin-film solar cell with record efficiency of 23.35%. IEEE J. Photovolt. 2019, 9(6), 1863-1867.
    24. Matsui, T.; Bidiville, A.; Maejima, K.; Sai, H.; Koida, T.; Suezaki, T.; Matsumoto, M.; Saito, K.; Yoshida, I.; Kondo, M. High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability. Appl. Phys. Lett. 2015, 106(5), 053901.
    25. Sai, H.; Matsui, T.; Kumagai, H.; Matsubara, K. Thin-film microcrystalline silicon solar cells: 11.9% efficiency and beyond. Appl. Phys. Express. 2018, 11(2), 022301.
    26. Selopal, G. S.; Zhao, H.; Wang, Z. M.; Rosei, F. Core/Shell Quantum Dots Solar Cells. Adv. Funct. Mater. 2020, 30(13), 1908762.
    27. Hou, J.; Inganäs, O.; Friend, R. H.; Gao, F. Organic solar cells based on non-fullerene acceptors. Nat. Mater. 2018, 17(2), 119-128.
    28. Pradhan, R.; Malhotra, P.; Gupta, G.; Singhal, R.; Sharma, G. D.; Mishra, A. Efficient Fullerene-Free Organic Solar Cells Using a Coumarin-Based Wide-Band-Gap Donor Material. ACS Appl. Mater. Interfaces. 2020, 12(37), 41869-41876.
    29. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131(17), 6050-6051.
    30. Kim, H.; Lim, K.-G.; Lee, T.-W. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy Environ. Sci. 2016, 9(1), 12-30.
    31. Zhu, H.; Fu, Y.; Meng, F.; Wu, X.; Gong, Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14(6), 636.
    32. Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science. 2015, 348(6240), 1234-1237.
    33. Shi, Z.; Jayatissa, A. H. Perovskites-based solar cells: A review of recent progress, materials and processing methods. Materials. 2018, 11(5), 729.
    34. O'regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature. 1991, 353(6346), 737-740.
    35. Iwata, S.; Shibakawa, S.-i.; Imawaka, N.; Yoshino, K. Stability of the current characteristics of dye-sensitized solar cells in the second quadrant of the current–voltage characteristics. Energy Rep. 2018, 4, 8-12.
    36. Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today. 2015, 18(3), 155-162.
    37. Gong, J.; Liang, J.; Sumathy, K. Review on dye-sensitized solar cells (DSSCs): fundamental concepts and novel materials. Renewable Sustainable Energy Rev. 2012, 16(8), 5848-5860.
    38. Gupta, M.; Makda, S.; Senthil, R. The latest trends in synthesis of dye-sensitized solar cells. in IOP Conf. Ser.: Mater. Sci. Eng. 2018. IOP Publishing.
    39. Reddy, K. G.; Deepak, T.; Anjusree, G.; Thomas, S.; Vadukumpully, S.; Subramanian, K.; Nair, S. V.; Nair, A. S. On global energy scenario, dye-sensitized solar cells and the promise of nanotechnology. Phys. Chem. Chem. Phys. 2014, 16(15), 6838-6858.
    40. Rondán-Gómez, V.; De Los Santos, I. M.; Seuret-Jimenez, D.; Ayala-Mato, F.; Zamudio-Lara, A.; Robles-Bonilla, T.; Courel, M. Recent advances in dye-sensitized solar cells. Appl. Phys. A. 2019, 125(12), 836.
    41. Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G.; Lin, Y.; Xie, Y.; Wei, Y. Counter electrodes in dye-sensitized solar cells. Chem. Soc. Rev. 2017, 46(19), 5975-6023.
    42. Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110(11), 6595-6663.
    43. Kuang, D.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Grätzel, M. Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells. ACS nano. 2008, 2(6), 1113-1116.
    44. Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye‐sensitized solar cells. J. Am. Ceram. Soc. 2009, 92(2), 289-301.
    45. Wang, M.; Grätzel, C.; Zakeeruddin, S. M.; Grätzel, M. Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ. Sci. 2012, 5(11), 9394-9405.
    46. Desilvestro, J.; Graetzel, M.; Kavan, L.; Moser, J.; Augustynski, J. Highly efficient sensitization of titanium dioxide. J. Am. Chem. Soc. 1985, 107(10), 2988-2990.
    47. Soni, S. S.; Vaghasiya, J. V.; Solanki, B. G. Single Component Organic Hole Transport Material for Solid State Dye Sensitized Solar Cell: An Electrochemical Study. ICONEST Special Issue. 1940, 36, 261.
    48. Haque, S. A.; Tachibana, Y.; Willis, R. L.; Moser, J. E.; Grätzel, M.; Klug, D. R.; Durrant, J. R. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B. 2000, 104(3), 538-547.
    49. Ning, Z.; Fu, Y.; Tian, H. Improvement of dye-sensitized solar cells: what we know and what we need to know. Energy Environ. Sci. 2010, 3(9), 1170-1181.
    50. Wang, X.-F.; Tamiaki, H. Cyclic tetrapyrrole based molecules for dye-sensitized solar cells. Energy Environ. Sci. 2010, 3(1), 94-106.
    51. Wu, J.; Lan, Z.; Hao, S.; Li, P.; Lin, J.; Huang, M.; Fang, L.; Huang, Y. Progress on the electrolytes for dye-sensitized solar cells. Pure Appl. Chem. 2008, 80(11), 2241-2258.
    52. Krishnakumar, B.; Imae, T.; Miras, J.; Esquena, J. Synthesis and azo dye photodegradation activity of ZrS2–ZnO nano-composites. Sep. Purif. Technol. 2014, 132, 281-288.
    53. Efa, M. T.; Imae, T. Hybridization of carbon-dots with ZnO nanoparticles of different sizes. J. Taiwan Inst. Chem. Eng. 2018, 92, 112-117.
    54. Glebko, N.; Aleksandrova, I.; Tewari, G. C.; Tripathi, T. S.; Karppinen, M.; Karttunen, A. J. Electronic and Vibrational Properties of TiS2, ZrS2, and HfS2: Periodic Trends Studied by Dispersion-Corrected Hybrid Density Functional Methods. J. Phys. Chem. C. 2018.
    55. Hashem, M.; Saion, E.; Al-Hada, N. M.; Kamari, H. M.; Shaari, A. H.; Talib, Z. A.; Paiman, S. B.; Kamarudeen, M. A. Fabrication and characterization of semiconductor nickel oxide (NiO) nanoparticles manufactured using a facile thermal treatment. Results Phys. 2016, 6, 1024-1030.
    56. Semeniuk, M.; Yi, Z.; Poursorkhabi, V.; Tjong, J.; Jaffer, S.; Lu, Z.-H.; Sain, M. Future perspectives and review on organic carbon dots in electronic applications. ACS nano. 2019, 13(6), 6224-6255.
    57. Devadas, B.; Imae, T. Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustainable Chem. Eng. 2018, 6(1), 127-134.
    58. Efa, M. T.; Imae, T. Effects of carbon dots on ZnO nanoparticle-based dye-sensitized solar cells. Electrochim. Acta. 2019, 303, 204-210.
    59. Azhar, A.; Li, Y.; Cai, Z.; Zakaria, M. B.; Masud, M. K.; Hossain, M. S. A.; Kim, J.; Zhang, W.; Na, J.; Yamauchi, Y. Nanoarchitectonics: A new materials horizon for prussian blue and its analogues. Bull. Chem. Soc. Jpn. 2019, 92(4), 875-904.
    60. Sheng, X.; Zhao, Y.; Zhai, J.; Jiang, L.; Zhu, D. Electro-hydrodynamic fabrication of ZnO-based dye sensitized solar cells. Appl. Phys. A. 2007, 87(4), 715-719.
    61. Alias, S.; Ismail, A.; Mohamad, A. Effect of pH on ZnO nanoparticle properties synthesized by sol–gel centrifugation. J. Alloys Compd. 2010, 499(2), 231-237.
    62. Ku, C.-H.; Wu, J.-J. Chemical bath deposition of ZnO nanowire–nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology. 2007, 18(50), 505706.
    63. Li, Y.; Liu, Z.; Liu, C.; Ya, J.; E, L.; Zhao, W.; Chen, Q.; Bai, J. CuInS2/N3 Co‐Sensitized ZnO Nanorods with Improved Photovoltaic Properties for Solar Cells. J. Am. Ceram. Soc. 2012, 95(4), 1343-1347.
    64. Patel, M.; Kim, H.-S.; Kim, J.; Yun, J.-H.; Kim, S. J.; Choi, E. H.; Park, H.-H. Excitonic metal oxide heterojunction (NiO/ZnO) solar cells for all-transparent module integration. Sol. Energy Mater. Sol. Cells. 2017, 170, 246-253.
    65. Xu, C.; Wu, J.; Desai, U. V.; Gao, D. High-efficiency solid-state dye-sensitized solar cells based on TiO2-coated ZnO nanowire arrays. Nano Lett. 2012, 12(5), 2420-2424.
    66. Milan, R.; Selopal, G. S.; Epifani, M.; Natile, M. M.; Sberveglieri, G.; Vomiero, A.; Concina, I. ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells. Sci. Rep. 2015, 5, 14523.
    67. Zhou, X.; Yang, J.; Cheng, J.; Qiang, Y.; Shi, H.; Xie, Y. High-efficiency ZnO/NiO composite photoanodes with Zn(Ac)2 ethanol solution-processed for dye-sensitized solar cells. J. Alloys Compd. 2018, 765, 287-298.
    68. Abraham, N.; Rufus, A.; Unni, C.; Philip, D. Dye sensitized solar cells using catalytically active CuO-ZnO nanocomposite synthesized by single step method. Spectrochim. Acta, Part A. 2018, 200, 116-126.
    69. Yan, L.-T.; Wu, F.-L.; Peng, L.; Zhang, L.-J.; Li, P.-J.; Dou, S.-Y.; Li, T.-X. Photoanode of dye-sensitized solar cells based on a ZnO/TiO2 composite film. Int. J. Photoenergy. 2012, 2012.
    70. Xie, S.; Su, H.; Wei, W.; Li, M.; Tong, Y.; Mao, Z. Remarkable photoelectrochemical performance of carbon dots sensitized TiO2 under visible light irradiation. J. Mater. Chem. A. 2014, 2(39), 16365-16368.
    71. Song, Y.; Zhu, S.; Xiang, S.; Zhao, X.; Zhang, J.; Zhang, H.; Fu, Y.; Yang, B. Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale. 2014, 6(9), 4676-4682.
    72. Barman, M. K.; Mitra, P.; Bera, R.; Das, S.; Pramanik, A.; Parta, A. An efficient charge separation and photocurrent generation in the carbon dot–zinc oxide nanoparticle composite. Nanoscale. 2017, 9(20), 6791-6799.
    73. Chieng, B. W.; Loo, Y. Y. Synthesis of ZnO nanoparticles by modified polyol method. Mater. Lett. 2012, 73, 78-82.
    74. Singh, N.; Mehra, R.; Kapoor, A.; Soga, T. ZnO based quantum dot sensitized solar cell using CdS quantum dots. J. Renewable Sustainable Energy. 2012, 4(1), 013110.
    75. Neppolian, B.; Wang, Q.; Yamashita, H.; Choi, H. Synthesis and characterization of ZrO2–TiO2 binary oxide semiconductor nanoparticles: application and interparticle electron transfer process. Appl. Catal. A. 2007, 333(2), 264-271.
    76. Gibbs, Z. M.; LaLonde, A.; Snyder, G. J. Optical band gap and the Burstein–Moss effect in iodine doped PbTe using diffuse reflectance infrared Fourier transform spectroscopy. New J. Phys. 2013, 15(7), 075020.
    77. Gahlawat, S.; Singh, J.; Yadav, A. K.; Ingole, P. P. Exploring Burstein–Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting. Phys. Chem. Chem. Phys. 2019, 21(36), 20463-20477.
    78. Djouadi, D.; Slimi, O.; Hammiche, L.; Chelouche, A.; Touam, T. Effects of (Ce, Cu) Co-doping on the Structural and Optical Properties of ZnO Aerogels Synthesized in Supercritical Ethanol. in J. Phys. Conf. Ser. 2018.
    79. Yogamalar, R.; Srinivasan, R.; Vinu, A.; Ariga, K.; Bose, A. C. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Commun. 2009, 149(43-44), 1919-1923.
    80. Parvaz, M.; Salah, N. A.; Khan, Z. H. Effect of ZnO nanoparticles doping on the optical properties of TiS2 discs. Optik. 2018, 171, 183-189.
    81. Thiyagarajan, R.; Beevi, M. M.; Anusuya, M. Nano structural characteristics of Zicronium Sulphide thin films. J. Am. Sci. 2009, 5, 6-12.
    82. Liu, W.-L.; Lin, F.-C.; Yang, Y.-C.; Huang, C.-H.; Gwo, S.; Huang, M. H.; Huang, J.-S. The influence of shell thickness of Au@TiO2 core–shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells. Nanoscale. 2013, 5(17), 7953-7962.
    83. Bisquert, J.; Fabregat-Santiago, F.; Mora-Sero, I.; Garcia-Belmonte, G.; Gimenez, S. Electron lifetime in dye-sensitized solar cells: theory and interpretation of measurements. J. Phys. Chem. C. 2009, 113(40), 17278-17290.
    84. Kumar, K. A.; Manonmani, J.; Senthilselvan, J. Effect on interfacial charge transfer resistance by hybrid co-sensitization in DSSC applications. J. Mater. Sci.: Mater. Electron. 2014, 25(12), 5296-5301.
    85. Kim, J.-H.; Kim, T. Y.; Park, K. H.; Lee, J.-W. Electron Lifetimes in Hierarchically Structured Photoelectrodes Biotemplated from Butterfly Wings for Dye-Sensitized Solar Cells. Int. J. Electrochem. Sci. 2015, 10, 5513-5520.
    86. Mahbubur Rahman, M.; Chandra Deb Nath, N.; Lee, J. J. Electrochemical Impedance Spectroscopic Analysis of Sensitization‐Based Solar Cells. Isr. J. Chem. 2015, 55(9), 990-1001.
    87. Debelo, T. T.; Ujihara, M. Effect of simultaneous electrochemical deposition of manganese hydroxide and polypyrrole on structure and capacitive behavior. J. Electroanal. Chem. 2020, 859, 113825.
    88. Burton, L. A.; Kumagai, Y.; Walsh, A.; Oba, F. DFT investigation into the underperformance of sulfide materials in photovoltaic applications. J. Mater. Chem. A. 2017, 5(19), 9132-9140.
    89. Luo, S.; Shen, H.; Hu, W.; Yao, Z.; Li, J.; Oron, D.; Wang, N.; Lin, H. Improved charge separation and transport efficiency in panchromatic-sensitized solar cells with co-sensitization of PbS/CdS/ZnS quantum dots and dye molecules. RSC Adv. 2016, 6(25), 21156-21164.
    90. Chava, R. K.; Kang, M. Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 2017, 692, 67-76.
    91. Yun, S.; Lee, J.; Chung, J.; Lim, S. Improvement of ZnO nanorod-based dye-sensitized solar cell efficiency by Al-doping. J. Phys. Chem. Solids. 2010, 71(12), 1724-1731.
    92. Zhao, Y.; Duan, J.; He, B.; Jiao, Z.; Tang, Q. Improved charge extraction with N-doped carbon quantum dots in dye-sensitized solar cells. Electrochim. Acta. 2018, 282, 255-262.
    93. Rajan, A. K.; Cindrella, L. Ameliorating the photovoltaic conversion efficiency of ZnO nanorod based dye-sensitized solar cells by strontium doping. Superlattices Microstruct. 2019, 128, 14-22.
    94. Bora, A.; Mohan, K.; Dolui, S. K. Carbon Dots as Cosensitizers in Dye-Sensitized Solar Cells and Fluorescence Chemosensors for 2, 4, 6-Trinitrophenol Detection. Ind. Eng. Chem. Res. 2019, 58(51), 22771-22778.
    95. Liu, L.; Yu, X.; Yi, Z.; Chi, F.; Wang, H.; Yuan, Y.; Li, D.; Xu, K.; Zhang, X. High efficiency solar cells tailored using biomass-converted graded carbon quantum dots. Nanoscale. 2019, 11(32), 15083-15090.
    96. Xin, X.; He, M.; Han, W.; Jung, J.; Lin, Z. Low‐cost copper zinc tin sulfide counter electrodes for high‐efficiency dye‐sensitized solar cells. Angew. Chem. Int. Ed. 2011, 50(49), 11739-11742.
    97. Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable Sustainable Energy Rev. 2017, 68, 234-246.
    98. Nada, A. A.; Selim, H.; Bechelany, M.; El-Sayed, M.; Hegazey, R.; Souaya, E. R.; Kotkata, M. A novel photoelectrode of NiO@ZnO nanocomposite prepared by Pechini method coupled with PLD for efficiency enhancement in DSSCs. Mater. Sci.-Pol. 2018.
    99. Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6(3), 242.
    100. Basu, K.; Selopal, G. S.; Mohammadnezad, M.; Akilimali, R.; Wang, Z. M.; Zhao, H.; Vetrone, F.; Rosei, F. Hybrid graphene/metal oxide anodes for efficient and stable dye sensitized solar cell. Electrochim. Acta. 2020, 136409.
    101. Geleta, T. A.; Imae, T. Influence of Additives on Zinc Oxide-Based Dye Sensitized Solar Cells. Bull. Chem. Soc. Jpn. 2020, 93(4), 611-620.
    102. Tan, R.; Wei, Z.; Liang, J.; Lv, Z.; Chen, B.; Qu, J.; Yan, W.; Ma, J. Enhanced open-circuit photovoltage and charge collection realized in pearl-like NiO/CuO composite nanowires based p-type dye sensitized solar cells. Mater. Res. Bull. 2019, 116, 131-136.
    103. Durantini, J.; Boix, P. P.; Gervaldo, M.; Morales, G. M.; Otero, L.; Bisquert, J.; Barea, E. M. Photocurrent enhancement in dye-sensitized photovoltaic devices with titania–graphene composite electrodes. J. Electroanal. Chem. 2012, 683, 43-46.
    104. Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cells. ACS nano. 2010, 4(2), 887-894.
    105. Essner, J. B.; Baker, G. A. The emerging roles of carbon dots in solar photovoltaics: a critical review. Environ. Sci.: Nano. 2017, 4(6), 1216-1263.
    106. Devadas, B.; Imae, T. Effect of carbon dots on conducting polymers for energy storage applications. ACS Sustainable Chem. Eng. 2017, 6(1), 127-134.
    107. Chang, C. C.; Geleta, T. A.; Imae, T. Effect of Carbon Dots on Supercapacitor Performance of Carbon Nanohorn/Conducting Polymer Composites. Bull. Chem. Soc. Jpn. 2020.
    108. Li, S.; Guo, Z.; Zhang, Y.; Xue, W.; Liu, Z. Blood compatibility evaluations of fluorescent carbon dots. ACS Appl. Mater. Interfaces. 2015, 7(34), 19153-19162.
    109. Liu, Y.; Zhou, L.; Li, Y.; Deng, R.; Zhang, H. Highly fluorescent nitrogen-doped carbon dots with excellent thermal and photo stability applied as invisible ink for loading important information and anti-counterfeiting. Nanoscale. 2017, 9(2), 491-496.
    110. Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. 2010, 49(38), 6726-6744.
    111. Etefa, H. F.; Imae, T.; Yanagida, M. Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells. ACS Appl. Mater. Interfaces. 2020, 12(16), 18596-18608.
    112. Varunkumar, K.; Hussain, R.; Hegde, G.; Ethiraj, A. S. Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: Structural, optical and morphological studies. Mater. Sci. Semicond. Process. 2017, 66, 149-156.
    113. Liu, H.; Zhou, Q.; Zhang, Q.; Hong, C.; Xu, L.; Jin, L.; Chen, W. Synthesis, characterization and enhanced sensing properties of a NiO/ZnO p–n junctions sensor for the SF6 decomposition byproducts SO2, SO2F2, and SOF2. Sensors. 2017, 17(4), 913.
    114. Wu, Y.; Wei, P.; Pengpumkiat, S.; Schumacher, E. A.; Remcho, V. T. Development of a carbon dot (C-dot)-linked immunosorbent assay for the detection of human α-fetoprotein. Anal. Chem. 2015, 87(16), 8510-8516.
    115. Sabouri, Z.; Akbari, A.; Hosseini, H. A.; Darroudi, M. Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J. Mol. Struct. 2018, 1173, 931-936.
    116. De, B.; Karak, N. A green and facile approach for the synthesis of water soluble fluorescent carbon dots from banana juice. RSC Adv. 2013, 3(22), 8286-8290.
    117. Karimi-Shamsabadi, M.; Behpour, M.; Babaheidari, A. K.; Saberi, Z. Efficiently enhancing photocatalytic activity of NiO-ZnO doped onto nanozeolite X by synergistic effects of pn heterojunction, supporting and zeolite nanoparticles in photo-degradation of Eriochrome Black T and Methyl Orange. J. Photochem. Photobiol. A. 2017, 346, 133-143.
    118. Mishra, S.; Yogi, P.; Saxena, S. K.; Jayabalan, J.; Behera, P.; Sagdeo, P.; Kumar, R. Significant field emission enhancement in ultrathin nano-thorn covered NiO nano-petals. J. Mater. Chem. C. 2017, 5(37), 9611-9618.
    119. Aydoghmish, S. M.; Hassanzadeh-Tabrizi, S.; Saffar-Teluri, A. Facile synthesis and investigation of NiO–ZnO–Ag nanocomposites as efficient photocatalysts for degradation of methylene blue dye. Ceram. Int. 2019.
    120. Bhatia, P.; Nath, M. Green synthesis of p-NiO/n-ZnO nanocomposites: Excellent adsorbent for removal of congo red and efficient catalyst for reduction of 4-nitrophenol present in wastewater. J. Water Process. Eng. 2020, 33, 101017.
    121. Rana, A. K.; Bankar, P.; Kumar, Y.; More, M. A.; Late, D. J.; Shirage, P. M. Synthesis of Ni-doped ZnO nanostructures by low-temperature wet chemical method and their enhanced field emission properties. RSC Adv. 2016, 6(106), 104318-104324.
    122. Siddique, A. B.; Pramanick, A. K.; Chatterjee, S.; Ray, M. Amorphous carbon dots and their remarkable ability to detect 2, 4, 6-trinitrophenol. Sci. Rep. 2018, 8(1), 9770.
    123. Bindu, P.; Thomas, S. Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 2014, 8(4), 123-134.
    124. Cortés-López, A. J.; Muñoz-Sandoval, E.; López-Urías, F. Oxygenated Surface of Carbon Nanotube Sponges: Electroactivity and Magnetic Studies. ACS Omega. 2019, 4(19), 18011-18022.
    125. Zhu, D.; Shao, Y. NiO/ZnO Nanocomposite as Electrode Material for Supercapacitors. Int. J. Electrochem. Sci. 2018, 13(4), 3601-3612.
    126. Tian, H.; Fan, H.; Dong, G.; Ma, L.; Ma, J. NiO/ZnO p–n heterostructures and their gas sensing properties for reduced operating temperature. RSC Adv. 2016, 6(110), 109091-109098.
    127. Cao, L.; Shiral Fernando, K.; Liang, W.; Seilkop, A.; Monica Veca, L.; Sun, Y.-P.; Bunker, C. E. Carbon dots for energy conversion applications. J. Appl. Phys. 2019, 125(22), 220903.
    128. Abate, M. A.; Chang, J.-Y. Boosting the Efficiency of AgInSe2 Quantum Dot Sensitized Solar Cells via Core/Shell/Shell Architecture. Sol. Energy Mater. Sol. Cells. 2018, 182, 37-44.
    129. Abate, M. A.; Dehvari, K.; Chang, J.-Y.; Waki, K. Aqueous synthesis of Mn-doped CuInSe2 quantum dots to enhance the performance of quantum dot sensitized solar cells. Dalton Trans. 2019, 48(42), 16115-16122.
    130. Wei, A.; Zuo, Z.; Liu, J.; Lin, K.; Zhao, Y. Transport and interfacial transfer of electrons in dye-sensitized solar cells based on a TiO2 nanoparticle/TiO2 nanowire “double-layer” working electrode. J. Renewable Sustainable Energy. 2013, 5(3), 033101.
    131. Wang, X.; Wang, Y.-F.; Luo, Q.-P.; Ren, J.-H.; Li, D.-J.; Li, X.-F. Highly uniform hierarchical Zn2SnO4 microspheres for the construction of high performance dye-sensitized solar cells. RSC Adv. 2017, 7(69), 43403-43409.
    132. Giansante, C.; Infante, I. Surface traps in colloidal quantum dots: a combined experimental and theoretical perspective. J. Phys. Chem. Lett. 2017, 8(20), 5209-5215.
    133. Guo, H.; Wang, Y.; Li, G.; Liu, J.; Li, Y. The persistent energy transfer of Eu2+ and Dy3+ and luminescence properties of a new cyan afterglow phosphor α-Ca3(PO4)2: Eu2+, Dy3+. RSC Adv. 2016, 6(103), 101731-101736.
    134. Wang, H.; Zhao, Y.; Wu, C.; Dong, X.; Zhang, B.; Wu, G.; Ma, Y.; Du, G. Ultraviolet electroluminescence from n-ZnO/NiO/p-GaN light-emitting diode fabricated by MOCVD. J. Lumin. 2015, 158, 6-10.
    135. Tyagi, M.; Tomar, M.; Gupta, V. Trap assisted space charge conduction in p-NiO/n-ZnO heterojunction diode. Mater. Res. Bull. 2015, 66, 123-131.
    136. Irwin, M. D.; Buchholz, D. B.; Hains, A. W.; Chang, R. P.; Marks, T. J. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells. Proc. Natl. Acad. Sci. 2008, 105(8), 2783-2787.
    137. Pansri, S.; Supruangnet, R.; Nakajima, H.; Rattanasuporn, S.; Noothongkaew, S. Band offset determination of p-NiO/n-TiO2 heterojunctions for applications in high-performance UV photodetectors. J. Mater. Sci. 2020, 55(10), 4332-4344.
    138. Praveen, E.; Peter, I. J.; Kumar, A. M.; Ramachandran, K.; Jayakumar, K. Performance of Phototronically Activated Chitosan Electrolyte in Rare-Earth doped Bi2Ti2O7 Nanostructure based DSSC. Mater. Lett. 2020, 128202.
    139. Xu, M.; Li, X.; Jin, C.; He, Z.; Zhang, X.; Zhang, Q. Novel and dual-mode strain-detecting performance based on a layered NiO/ZnO p–n junction for flexible electronics. J. Mater. Chem. C. 2020, 8(4), 1466-1474.
    140. Guo, Y.; Jin, Z.; Yuan, S.; Zhao, J.-S.; Hao, M.-Y.; Qin, Y.; Fu, L.-M.; Zhang, J.-P.; Ai, X.-C. Effects of interfacial energy level alignment on carrier dynamics and photovoltaic performance of inverted perovskite solar cells. J. Power Sources. 2020, 452, 227845.
    141. Raïssi, M.; Pellegrin, Y.; Lefevre, F.-X.; Boujtita, M.; Rousseau, D.; Berthelot, T.; Odobel, F. Digital printing of efficient dye-sensitized solar cells (DSSCs). Sol. Energy. 2020, 199, 92-99.
    142. Kang, S. H.; Kim, J.-Y.; Kim, Y.-K.; Sung, Y.-E. Effects of the incorporation of carbon powder into nanostructured TiO2 film for dye-sensitized solar cell. J. Photochem. Photobiol. A. 2007, 186(2-3), 234-241.
    143. Chen, T.; Hu, W.; Song, J.; Guai, G. H.; Li, C. M. Interface functionalization of photoelectrodes with graphene for high performance dye‐sensitized solar cells. Adv. Funct. Mater. 2012, 22(24), 5245-5250.
    144. Chan, Y. F.; Wang, C. C.; Chen, B. H.; Chen, C. Y. Dye‐sensitized TiO2 solar cells based on nanocomposite photoanode containing plasma‐modified multi‐walled carbon nanotubes. Prog. Photovolt. 2013, 21(1), 47-57.
    145. Golobostanfard, M. R.; Abdizadeh, H. Influence of carbon nanotube wall thickness on performance of dye sensitized solar cell with hierarchical porous photoanode. Microporous Mesoporous Mater. 2014, 191, 74-81.
    146. Tsai, C.-H.; Fei, P.-H.; Wu, W.-C. Enhancing the efficiency and charge transport characteristics of dye-sensitized solar cells by adding graphene nanosheets to TiO2 working electrodes. Electrochim. Acta. 2015, 165, 356-364.
    147. Riaz, R.; Ali, M.; Maiyalagan, T.; Anjum, A. S.; Lee, S.; Ko, M. J.; Jeong, S. H. Dye-sensitized solar cell (DSSC) coated with energy down shift layer of nitrogen-doped carbon quantum dots (N-CQDs) for enhanced current density and stability. Appl. Surf. Sci. 2019, 483, 425-431.
    148. Miyasaka, T. Lead halide perovskites in thin film photovoltaics: background and perspectives. Bull. Chem. Soc. Jpn. 2018, 91(7), 1058-1068.
    149. Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science. 2020, 369(6511), 1615-1620.
    150. Jena, A. K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: background, status, and future prospects. Chem. Rev. 2019, 119(5), 3036-3103.
    151. Chen, H.-W.; Chiang, Y.-D.; Kung, C.-W.; Sakai, N.; Ikegami, M.; Yamauchi, Y.; Wu, K. C.-W.; Miyasaka, T.; Ho, K.-C. Highly efficient plastic-based quasi-solid-state dye-sensitized solar cells with light-harvesting mesoporous silica nanoparticles gel-electrolyte. J. Power Sources. 2014, 245, 411-417.
    152. Wadsworth, A.; Moser, M.; Marks, A.; Little, M. S.; Gasparini, N.; Brabec, C. J.; Baran, D.; McCulloch, I. Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chem. Soc. Rev. 2019, 48(6), 1596-1625.
    153. Yang, L.; Leung, W. W.-F.; Wang, J. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer. Nanoscale. 2013, 5(16), 7493-7498.
    154. Cid, J. J.; Yum, J. H.; Jang, S. R.; Nazeeruddin, M. K.; Martínez‐Ferrero, E.; Palomares, E.; Ko, J.; Grätzel, M.; Torres, T. Molecular cosensitization for efficient panchromatic dye‐sensitized solar cells. Angew. Chem. . 2007, 119(44), 8510-8514.
    155. Gregg, B. A.; Sprague, J.; Peterson, M. W. Long-range singlet energy transfer in perylene bis (phenethylimide) films. J. Phys. Chem. B. 1997, 101(27), 5362-5369.
    156. Rizzuto, R.; Brini, M.; De Giorgi, F.; Rossi, R.; Heim, R.; Tsien, R. Y.; Pozzan, T. Double labelling of subcellular structures with organelle-targeted GFP mutants in vivo. Curr. Biol. 1996, 6(2), 183-188.
    157. Shi, J.; Tian, F.; Lyu, J.; Yang, M. Nanoparticle based fluorescence resonance energy transfer (FRET) for biosensing applications. J. Mater. Chem. B. 2015, 3(35), 6989-7005.
    158. Howe, B.; Diaz, A. L. Characterization of host-lattice emission and energy transfer in BaMgAl10O17: Eu2+. J. Lumin. 2004, 109(1), 51-59.
    159. Fujii, K.; Kuroda, T.; Sakoda, K.; Iyi, N. Fluorescence resonance energy transfer and arrangements of fluorophores in integrated coumarin/cyanine systems within solid-state two-dimensional nanospace. J. Photochem. Photobiol. A. 2011, 225(1), 125-134.
    160. Boens, N.; Qin, W.; Basarić, N.; Hofkens, J.; Ameloot, M.; Pouget, J.; Lefèvre, J.-P.; Valeur, B.; Gratton, E.; Vandeven, M. Fluorescence lifetime standards for time and frequency domain fluorescence spectroscopy. Anal. Chem. 2007, 79(5), 2137-2149.
    161. Sun, X.-Y.; Gu, M.; Huang, S.-M.; Liu, X.-L.; Liu, B.; Ni, C. Enhancement of Tb3+ emission by non-radiative energy transfer from Dy3+ in silicate glass. Physica B: Condens. Matter. 2009, 404(1), 111-114.
    162. Geleta, T. A.; Imae, T. Nanocomposite Photoanodes Consisting of p‑NiO/n-ZnO Heterojunction and Carbon Quantum Dot Additive for Dye-Sensitized Solar Cells. ACS Appl. Nano Mater. 2020. DOI: https://dx.doi.org/10.1021/acsanm.0c02547.
    163. Lee, E.; Kim, C.; Jang, J. High‐Performance Förster Resonance Energy Transfer (FRET)‐Based Dye‐Sensitized Solar Cells: Rational Design of Quantum Dots for Wide Solar‐Spectrum Utilization. Chem. Eur. J. 2013, 19(31), 10280-10286.
    164. Lohse, M. J.; Bünemann, M.; Hoffmann, C.; Vilardaga, J.-P.; Nikolaev, V. O. Monitoring receptor signaling by intramolecular FRET. Curr. Opin. Pharmacol. 2007, 7(5), 547-553.
    165. Makhal, A.; Sarkar, S.; Bora, T.; Baruah, S.; Dutta, J.; Raychaudhuri, A.; Pal, S. K. Dynamics of light harvesting in ZnO nanoparticles. Nanotechnology. 2010, 21(26), 265703.
    166. Ogunsolu, O. O.; Murphy, I. A.; Wang, J. C.; Das, A.; Hanson, K. Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 2016, 8(42), 28633-28640.
    167. Ikkda, S.; Imae, T. Induced optical activity of acridine orange bound to poly‐S‐carboxymethyl‐L‐cysteine. Biopolymers. 1971, 10(10), 1743-1757.
    168. Moore, T. A.; Harter, M. L.; Song, P.-S. Ultraviolet spectra of coumarins and psoralens. J. Mol. Spectrosc. 1971, 40(1), 144-157.
    169. Zhang, H.; Yu, T.; Zhao, Y.; Fan, D.; Chen, L.; Qiu, Y.; Qian, L.; Zhang, K.; Yang, C. Crystal structure and photoluminescence of 7-(N, N′-diethylamino)-coumarin-3-carboxylic acid. Spectrochim. Acta, Part A. 2008, 69(4), 1136-1139.
    170. Adhyaksa, G. W. P.; Lee, G. I.; Baek, S.-W.; Lee, J.-Y.; Kang, J. K. Broadband energy transfer to sensitizing dyes by mobile quantum dot mediators in solar cells. Sci. Rep. 2013, 3, 2711.
    171. Lelii, C.; Bawendi, M. G.; Biagini, P.; Chen, P.-Y.; Crucianelli, M.; D'Arcy, J. M.; De Angelis, F.; Hammond, P. T.; Po, R. Enhanced photovoltaic performance with co-sensitization of quantum dots and an organic dye in dye-sensitized solar cells. J. Mater. Chem. A. 2014, 2(43), 18375-18382.
    172. Li, T.; Zhao, Z.; Gu, C.; Ma, J.; Kuang, Y.; Wang, X.; Mao, Y.; Ran, X.; Guo, L. CsPbBr3 Quantum Dots as Artificial Antennas to Enhance the Light-Harvesting Efficiency and Photoresponse of Zinc Porphyrin. J. Phys. Chem. C. 2020, 124(9), 5069-5078.
    173. Weng, Q.; Zheng, X.; Zhang, S.; Zhu, L.; Huang, Q.; Liu, P.; Li, X.; Kang, J.; Han, Z. A photoelectrochemical immunosensor based on natural pigment sensitized ZnO for alpha-fetoprotein detection. J. Photochem. Photobiol. A. 2020, 388, 112200.

    無法下載圖示 全文公開日期 2026/01/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE