簡易檢索 / 詳目顯示

研究生: 李忠霖
Chung-Lin Li
論文名稱: 以電/磁流變操控複合材料粒子於夾層結構裝置作為顯示介質之應用
Electro/Magnetorheological Manipulation of Composite Particles Encapsulated in Sandwich Structures Device as Display Media
指導教授: 陳建光
Jem-Kun Chen
口試委員: 范士岡
none
邱士軒
none
黃智峯
none
黃啟賢
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 188
中文關鍵詞: 電流變磁流變核殼結構金奈米粒子鐵奈米粒子二氧化矽微米球粒子超順磁性量子點
外文關鍵詞: electrorheology, magnetorheology, core/shell, gold nanoparticle, iron oxide nanoparticle, SiO2 microsphere, superparamagnetism, quantum dots
相關次數: 點閱:266下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 顯示科技(Display Image Technology)的研究發展,主要來自於人類對於視覺感受的追求,其中,電子紙顯示器具有輕便可攜帶性,保留人類對於傳統紙張的習慣,並且同時滿足人類對於顯示訊息的需求,因此許多技術都已被開發並且實現電子紙顯示器。
    本研究利用粒子串式顯示技術開發並製備顯示裝置,分別以電場電泳技術及磁場磁泳技術驅動電/磁流變液中粒子排列行為,探討不同的材料透過結合後形成複合粒子所產生的電流變與磁流變行為:
    (1) 電流變操控二氧化矽/金奈米粒子微奈米球粒子之電場極化現象
    利用二氧化矽微米球粒子(SiMPs)與金奈米粒子(AuNPs)製備成具有核殼結構之微奈米球粒子。利用具有雙硫醇官能基結構之交聯劑(Cross-linking Agent,CLA),透過層接層(Layer-by-Layer)交聯過程,將不同層厚之低介電常數AuNPs固定於高介電常數SiMPs粒子之表面,藉此調控微米球粒子表面的介電性質。從穿透式電子顯微鏡(TEM)以及掃描式電子顯微鏡(SEM)影像中,可以觀察到SiMPs@AuNPs複合粒子為類似芝麻顆粒分布於球體表面之結構與形貌。另外,我們設計夾層結構顯示裝置(Sandwich-like Structured Displays,SSDs),將SiMPs@AuNPs粒子水溶液封裝於夾層之中。透過施加交變電場頻率,探討其SiMPs@AuNPs粒子分散液之電流變性質(Electrorheological),並且觀察電場響應穿透率之變化。核殼結構複合材料於電場之中,其有效介電常數(Permittivity)可以透過Clausius−Mossotti理論公式之實部值(ε’)與虛部值(ε”)以及介電損耗值(Dielectric Loss,tanδ)進行計算與預測。
    (2) 磁流變操控鐵磁流體之磁場極化現象
    透過化學共沉澱法(Coprecipitation,CPT)合成四氧化三鐵奈米粒子(Fe3O4 Nanoparticles,FeNPs)並以不同濃度分散於水溶液中而製備鐵磁流體(Ferrofluids),填充至具有夾層結構的顯示裝置中(Sandwich-like Structured Panels,SSPs),並放置於交變磁場(Alternating Magnetic Field,AMF)下,透過穿透率量測來評估FeNPs的磁流變行為(Magnetorheological)。在磁場下,FeNPs受到磁場誘導極化,產生粒子成串現象,進而改變SSPs中的穿透率,其響應時間約1秒。當SSPs(8.26 wt% FeNPs)被施加特定AMF磁場(700Hz和87.5gauss),穿透率從1.3 %提高到83.0 %。另外,利用磁場屏蔽材料(Magnetic Shielding Materials)金屬平板並以高能量雷射蝕刻出“NTUST”中空字母,施加磁場,使其產生圖案化(Pattern)磁場分佈的效果。將SSPs放置在上方,FeNPs在圖案化區域,受磁場極化排列成串,呈現亮態;而在實心區域,FeNPs則維持著在隨機分散的現象,呈現暗態。由於在SSPs中的高對比率,可以觀察到呈現“NTUST”的字母。此外,FeNPs之有效介磁常數(Magnetic Permeability)可以利用Clausius–Mossotti理論公式,在磁場下計算實部值(μ’)和虛部值(μ”)以及正切損耗值(Loss Tangent,tanδ),進而探討鐵磁流體在AMF磁場下的磁流變行為。

    (3) 磁流變操控二氧化矽/鐵奈米粒子微奈米球粒子之磁場極化現象
    利用SiMPs與FeNPs製備具有磁感性質(Magneto-response)的核殼結構(Core-shell)之微奈米球粒子。使用雙硫醇官能基結構之交聯劑,透過層接層(LbL)交聯技術,將FeNPs以不同層數之厚度固定於SiMPs粒子之表面。透過穿透式電子顯微鏡(TEM)與掃描式電子顯微鏡(SEM)鑑定複合粒子之核殼結構。將複合粒子分散於水溶液中並填充至具有夾層結構以及電磁線圈的顯示裝置(Solenoid Coiled Transparent Displays,SCTDs)之內,進而觀察其在靜磁場(Static Magnetic Field,SMF)以及交變磁場(AMF)下,透過磁感可逆反應所產生之穿透率變化。當FeNPs粒子固定交聯在SiMPs粒子之表面,並施加AMF磁場(940 Hz,87.5 gauss),出現明顯粒子成串行為,穿透率由10.2%提升至76.1%。透過裝載碲化鎘量子點(CdTe)形成核-殼-衛結構螢光性/磁性複合粒子,使SCTDs裝置在AMF磁場切換下,呈現出紅色螢光色彩。利用雷射共軛焦掃描顯微鏡(CLSM)來觀察鑑定複合粒子成串之現象。複合粒子在AMF磁場下之有效介磁常數(Magnetic Permeability),可以透過Clausius–Mossotti理論公式之實部值(μ’)和虛部值(μ”)來進行計算,並評估正切損耗值(Loss Tangent,tanδ),藉此獲得SiMPs@FeNPs粒子之最佳磁感操控參數。


    In this thesis, we prepared the core/shell composited particles with electro- or magnetic-response, dispersing in the suspensions as the display media. The sandwich-like structured device were fabricated and encapsulated with these electrorheological or magnetorheological fluid. Employing the particle-chains displays technique to realize the displays. This thesis divided into three parts:
    (1) Electrorheological Operation of SiMPs@AuNPs as Display Media:
    In this study, we synthesized core/shell structures comprising monodisperse 3-μm SiO2 microspheres and gold nanoparticles (AuNPs, ca. 6.7 nm) as the core and shell components, respectively. Using a layer-by-layer cross-linking process with a dithiol cross-linking agent, we prepared low-permittivity AuNPs-encapsulated high-permittivity SiO2 core/shell microspheres with variable AuNPs shell thicknesses. The dispersivity of the microspheres in solution was enhanced after grafting poly(ethylene glycol) monomethyl ether thiol (PEG-SH) onto the AuNPs layer on the SiO2 microspheres. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images revealed sesame ball-like structures for these SiO2@AuNPs@PEG microspheres. We encapsulated aqueous dispersions of these SiO2@AuNPs microspheres into sandwich structured displays (SSDs) to investigate their electrorheological properties, observing reversibly electroresponsive transmittance that is ideally suited for display applications. Increasing the thickness of the AuNPs layer dramatically enhanced the stringing behavior of the SiO2 microspheres, resulting in increased transmittance of the SSDs. The response time of the electroresponsive electrorheological fluids also decreased significantly after modifying the SiO2 with the AuNPs layers. The effective permittivities of these composites could be predicted from the real (ε’) and imaginary (ε’’) parts of the Clausius−Mossotti formalism.
    (2) Magnetorheological Operation of Ferrofluids as Display Media:
    In this study, we synthesized Fe3O4 nanoparticles (FeNPs, ca. 13.5 nm) that we dispersed in aqueous solutions at various concentrations to generate ferrofluids. After encapsulating these ferrofluids in a sandwich-like structured panels (SSPs), we evaluated the magnetorheological behavior of the FeNPs through measurements of their transmittance. Under an alternating magnetic field (AMF), the FeNPs assembled into particle chains, resulting in significant changes in the transmittance of the SSPs within a response time less than 1 s. The transmittance of the SSPs encapsulating the 8.26 wt% ferrofluid changed significantly from 1.3 to 83% under an AMF having a field strength of 87.5 gauss at a frequency of 700 Hz. Moreover, when we exploited an iron plate, featuring hollowed-out letters “NTUST,” as a magnetic shielding material, we generated a patterned AMF with open and closed zones, respectively. The FeNPs in the SSPs assembled as particle chains behind the open zone, resulting in a transparent state, while the FeNPs remained well dispersed behind the closed zone, resulting in an opaque state. The letters “NTUST” were readily recognizable because of the high contrast between the transparent and opaque states. In addition, we calculated the effective magnetic susceptibilities of the ferrofluid, including their real parts (μ’, in phase) and imaginary parts (μ’’, out of phase), and their loss tangents (tanδ), according to the Clausius–Mossotti formalism in magnetism. These parameters were consistent with the mechanisms of magnetorheology for ferrofluids under the optimal manipulation conditions.
    (3) Magnetorheological Operation of SiMPs@FeNPs as Display Media:
    In this study, we prepared magnetic core-shell structured composites utilizing monodisperse SiO2 microspheres (SiMPs) with uniform particle size 3 μm, and iron oxide nanoparticles (FeNPs) as the core material, and shell layer, respectively. We coated the magnetic FeNPs onto the SiMPs (core) to form FeNPs multi-layers by employing the layer-by-layer (LbL) technique with a cross-linking agent (CLA). The core-shell structured was conformed from transmission electron microscopy (TEM) and scanning electron microscopy (SEM). A transparent displays with solenoid coils (SCTDs), encapsulated the aqueous suspension of these multi-functions composites to observe reversible magneto-responsive transmittance. Increasing the FeNPs shell to five layers of the composite particles achieved the optimal particle stringing behavior under applying an alternating magnetic field, leading to the significant change in transmittance of the SCTDs that could be manipulated between 10.2 and 76.1% reversibly. Response time of the aqueous suspension of these composites decreased gradually after assembling the FeNPs layers. After loading the CdTe QDs, the core-shell-satellite structure of SiMPs@FeNPs@SiO2@CdTe were obtained. The SCTDs encapsulated these composites to show the fluorescent red color between AMF OFF/ON. The particle stringing behavior was observed by the confocal laser scanning microscopy (CLSM). The effective magnetic permittivity of these core-shell structured composites could be estimated by using the real (μ’) and imaginary (μ’’) parts of the Clausius–Mossotti formalism of magnetism to obtain the optimal operation parameters.
    Such composites exhibiting efficient linear microsphere stringing behavior are attractive for display applications. We suspect that these approaches offer a technology for the feasible realization of displays.

    推 薦 書 i 審 定 書 ii 摘 要 iii ABSTRACT vi 致 謝 ix 目 錄 xii 表目錄 xviii 圖目錄 xix 1 緒論 1 1.1 前言 1 1.2 複合材料 2 1.3 有機高分子材料 3 1.4 金屬奈米材料 4 1.5 目的與研究動機 5 2 文獻回顧與理論 11 2.1 智能流體 11 2.2 電子紙簡介 12 2.2.1 電子紙顯示技術及原理 13 2.3 極化理論 15 2.3.1 電場極化 15 2.3.2 磁場極化 21 2.4 交變磁場屏蔽理論 27 2.5 二氧化矽 28 2.6 金奈米粒子 29 2.7 超順磁性氧化鐵奈米粒子 30 2.8 碲化鎘量子點 31 3 SiMPs@AuNPs電流變液於交流電場操控電流變性質 43 3.1 摘要 43 3.2 實驗部份 44 3.2.1 實驗藥品與材料 44 3.2.2 製備SiMPs@AuNPs粒子 45 3.2.3 製備SSDs顯示裝置 46 3.3 樣品性質鑑定與結構分析 47 3.3.1 光譜定性分析 47 3.3.2. 表面形貌與穿透型態分析 49 3.3.3. 粒子極化成串現象觀察與分析 50 3.3.4. 粒子極化成串穿透率變化與分析 50 3.4. 結果與討論 51 3.4.1. SiMPs@AuNPs粒子光譜定性分析 51 3.4.2. SiMPs@AuNPs粒子表面形貌與穿透型態分析 52 3.4.3. SiMPs@AuNPs粒子受電場極化成串現象觀察分析 54 3.4.4. SiMPs@AuNPs粒子極化成串穿透率變化與分析 56 3.4.5. Clausius-Mossotti因子複介電常數實部值與虛部值理論計算 58 3.5. 結論 62 4 FeNPs鐵磁流體於交變磁場操控磁流變性質 78 4.1 摘要 78 4.2 實驗部份 79 4.2.1 實驗藥品與材料 79 4.2.2 製備FeNPs鐵磁流體 80 4.3. 樣品性質鑑定與結構分析 82 4.3.1. 穿透型態、結構與粒徑分析 82 4.3.2. 磁性鑑定與分析 83 4.3.3. 粒子極化成串穿透率變化與分析 83 4.3.4. 粒子極化成串現象觀察與分析 83 4.3.5. AMF磁場測量與屏蔽分析 84 4.4. 結果與討論 84 4.4.1. FeNPs粒子穿透型態、結構與粒徑分析 84 4.4.2. FeNPs粒子磁性鑑定與分析 85 4.4.3. FeNPs粒子極化成串穿透率變化與分析 86 4.4.4. FeNPs粒子極化成串現象觀察與分析 89 4.4.5. SSPs在AMF磁場以及圖案化AMF磁場之顯示性能 90 4.4.6. Clausius-Mossotti因子複介磁常數實部值與虛部值理論計算 92 4.5. 結論 94 5 SiMPs@FeNPs磁流變液於靜磁場/交變磁場操控磁流變性質 109 5.1 摘要 109 5.2 實驗部分 110 5.2.1 實驗藥品與材料 110 5.2.2 製備SiMPs@FeNPs粒子 111 5.2.3 製備SiMPs@FeNPs@SiO2@CdTeQDs粒子 111 5.2.4 製備SiMPs@FeNPs@PEG粒子 113 5.2.5 製備SCTDs顯示裝置 113 5.3 樣品性質鑑定與結構分析 114 5.3.1 光譜定性分析 114 5.3.2 磁性鑑定與分析 116 5.3.3 表面形貌與穿透型態分析 116 5.3.4 粒子極化成串現象觀察與分析 117 5.3.5 粒子極化成串穿透率變化與分析 118 5.3.6 AMF磁場與SMF磁場測量 118 5.4 結果與討論 119 5.4.1 SiMPs@FeNPs粒子光譜定性分析 119 5.4.1.1 FTIR光譜分析 119 5.4.1.2 UV-Vis光譜分析 120 5.4.1.3 PL光譜分析 120 5.4.1.4 XRD結晶分析 121 5.4.2 SiMPs@FeNPs粒子磁性鑑定與分析 122 5.4.2.1 SQUID 磁性分析 122 5.4.2.2 磁分離現象觀察 123 5.4.3 SiMPs@FeNPs粒子表面形貌和穿透型態分析 123 5.4.3.1 SEM表面形貌分析 123 5.4.3.2 TEM穿透型態分析 124 5.4.4 SiMPs@FeNPs粒子受磁場極化現象 126 5.4.4.1 靜磁場 (Static Magnetic Field,SMF) 127 5.4.4.1.1 粒子極化成串現象觀察與分析 127 5.4.4.1.2 粒子極化成串穿透率變化與分析 129 5.4.4.1.3 粒子極化成串SCTDsSMF裝置之顯示性能 131 5.4.4.1.4 粒子極化成串Clausius-Mossotti因子磁化率理論計算 132 5.4.4.2 交變磁場 (Alternating Magnetic Field,AMF) 133 5.4.4.2.1 粒子極化成串現象觀察與分析 133 5.4.4.2.2 粒子極化成串穿透率變化與分析 136 5.4.4.2.3 粒子極化成串SCTDsAMF裝置之顯示性能 138 5.4.4.2.4 粒子極化成串SCTDsAMF裝置之螢光顯示 139 5.4.4.2.5 粒子極化成串Clausius-Mossotti因子磁化率理論計算 140 5.5 結論 142 6 總結 172 參考文獻 174 附錄 184

    [1] Lauhon LJ, Gudiksen MS, Wang D, Lieber CM. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002;420:57-61.
    [2] Serpell CJ, Cookson J, Ozkaya D, Beer PD. Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 2011;3:478-83.
    [3] Veedu VP, Cao A, Li X, Ma K, Soldano C, Kar S, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat Mater 2006;5:457-62.
    [4] Liu Y, Kumar S. Polymer/carbon nanotube nano composite fibers--a review. ACS applied materials & interfaces 2014;6:6069-87.
    [5] George V. Franks SBJ, Peter J. Scales, David V. Boger, and Thomas W. Healy. Ion-Specific Strength of Attractive Particle Networks. Langmuir 1999;15:4411-20.
    [6] Page KA, Kusoglu A, Stafford CM, Kim S, Kline RJ, Weber AZ. Confinement-driven increase in ionomer thin-film modulus. Nano letters 2014;14:2299-304.
    [7] Kono A, Shimizu K, Nakano H, Yamamoto M, Goto Y, Takahashi S, et al. Development of Ni particle dispersed poly(methylmethacrylate) composites exhibiting conductor/insulator transition by the positive temperature coefficient effect of electrical resistivity. Polymer Journal 2013;45:690-4.
    [8] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 2014;advance online publication.
    [9] Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical reviews 2012;112:2373-433.
    [10] Cheong S-W, Mostovoy M. Multiferroics: a magnetic twist for ferroelectricity. Nat Mater 2007;6:13-20.
    [11] Gil E, Hudson S. Stimuli-reponsive polymers and their bioconjugates. Progress in Polymer Science 2004;29:1173-222.
    [12] Kumar A, Srivastava A, Galaev IY, Mattiasson B. Smart polymers: Physical forms and bioengineering applications. Progress in Polymer Science 2007;32:1205-37.
    [13] Lei Y, Lodge TP. Effects of component molecular weight on the viscoelastic properties of thermoreversible supramolecular ion gels via hydrogen bonding. Soft Matter 2012;8:2110.
    [14] Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Advanced drug delivery reviews 2006;58:1655-70.
    [15] Yan B, Boriskina SV, Reinhard BM. Design and Implementation of Noble Metal Nanoparticle Cluster Arrays for Plasmon Enhanced Biosensing. The journal of physical chemistry C, Nanomaterials and interfaces 2011;115:24437-53.
    [16] Van Roosbroeck R, Van Roy W, Stakenborg T, Trekker J, D'Hollander A, Dresselaers T, et al. Synthetic antiferromagnetic nanoparticles as potential contrast agents in MRI. ACS nano 2014;8:2269-78.
    [17] Tucek J, Kemp KC, Kim KS, Zboril R. Iron-oxide-supported nanocarbon in lithium-ion batteries, medical, catalytic, and environmental applications. ACS nano 2014;8:7571-612.
    [18] Kim JH, Bryan WW, Chung HW, Park CY, Jacobson AJ, Lee TR. Gold, palladium, and gold-palladium alloy nanoshells on silica nanoparticle cores. ACS applied materials & interfaces 2009;1:1063-9.
    [19] Leung SL, Li M, Li WJ, Mai JD. Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques. Sensors and Actuators A: Physical 2012;178:32-9.
    [20] Nagaoka Y, Morimoto H, Maekawa T. Ordered complex structures formed by paramagnetic particles via self-assembly under an ac/dc combined magnetic field. Langmuir 2011;27:9160-4.
    [21] Polyushkin DK, Hendry E, Stone EK, Barnes WL. THz generation from plasmonic nanoparticle arrays. Nano letters 2011;11:4718-24.
    [22] Sedlacik M, Pavlinek V, Vyroubal R, Peer P, Filip P. A dimorphic magnetorheological fluid with improved oxidation and chemical stability under oscillatory shear. Smart Materials and Structures 2013;22:035011.
    [23] Salafranca J, Gazquez J, Perez N, Labarta A, Pantelides ST, Pennycook SJ, et al. Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano letters 2012;12:2499-503.
    [24] Graham-Rowe D. 2013.
    [25] Wen W, Huang X, Yang S, Lu K, Sheng P. The giant electrorheological effect in suspensions of nanoparticles. Nat Mater 2003;2:727-30.
    [26] M. Trau SS, D. A. Saville I.A. Aksay. Electric-field-induced pattern formation in colloidal dispersions. Nature 1995;374:437-9.
    [27] Velev OD, Lenhoff AM, Kaler EW. A Class of Microstructured Particles Through Colloidal Crystallization. Science 2000;287:2240-3.
    [28] Shin KY, Lee S, Hong S, Jang J. Graphene size control via a mechanochemical method and electroresponsive properties. ACS applied materials & interfaces 2014;6:5531-7.
    [29] Fang FF, Choi HJ, Seo Y. Sequential coating of magnetic carbonyliron particles with polystyrene and multiwalled carbon nanotubes and its effect on their magnetorheology. ACS applied materials & interfaces 2010;2:54-60.
    [30] Martin TCHaJE. Electrorheological Fluids. SCIENTIFIC AMERICAN 1993:58-64.
    [31] Ko YG, Gu T, Oh HC, Lee HJ, Han HG, Kim CH, et al. Line-patterning of polyaniline coated MWCNT on stepped substrates using DC electric field. Scientific reports 2014;4:6656.
    [32] Mietta JL, Negri RM, Tamborenea PI. Numerical Simulations of Stick Percolation: Application to the Study of Structured Magnetorheological Elastomers. The Journal of Physical Chemistry C 2014;118:20594-604.
    [33] Yu M, Ju B, Fu J, Liu S, Choi S-B. Magnetoresistance Characteristics of Magnetorheological Gel under a Magnetic Field. Industrial & Engineering Chemistry Research 2014;53:4704-10.
    [34] Promislow JHE, Gast AP. Magnetorheological Fluid Structure in a Pulsed Magnetic Field. Langmuir 1996;12:4095-102.
    [35] Eric Brown NAF, Carlos S. Orellana, Hanjun Zhang, BenjaminW. Maynor, Douglas E. Betts, Joseph M. DeSimone and Heinrich M. Jaeger1. Generality of shear thickening in dense suspensions. NATURE MATERIALS 2010;9:220-4.
    [36] E. Lemaire GB, Y. Grasselli. Rheological Behavior of Electrorheological Fluids. Langmuir 1992;8:2957-61.
    [37] Fan SK, Chiu CP, Huang PW. Transmittance tuning by particle chain polarization in electrowetting-driven droplets. Biomicrofluidics 2010;4:43011.
    [38] Hayes RA, Feenstra BJ. Video-speed electronic paper based on electrowetting. Nature 2003;425:383-5.
    [39] Comiskey B, Albert JD, Yoshizawa H, Jacobson J. An electrophoretic ink for all-printed reflective electronic displays. Nature 1998;394:253-5.
    [40] Fan S-K, Chiu C-P, Lin J-W. Electrowetting on polymer dispersed liquid crystal. Applied Physics Letters 2009;94:164109.
    [41] Wang A-H, Hwang S-L, Kuo H-T. Effects of bending curvature and ambient illuminance on the visual performance of young and elderly participants using simulated electronic paper displays. Displays 2012;33:36-41.
    [42] Howard ME, Richley EA, Sprague R, Sheridon NK. Gyricon electric paper. Journal of the Society for Information Display 1998;6:215-7.
    [43] Hattori R, Yamada S, Masuda Y, Nihei N. A novel bistable reflective display using quick-response liquid powder. Journal of the Society for Information Display 2004;12:75-80.
    [44] Joseph M.Crowley NKS, Linda Romano. Dipole moments of gyricon balls. Journal of Electrostatics 2002;55:247-59.
    [45] Liang RC, Hou J, Zang H, Chung J, Tseng S. MicrocupR displays: Electronic paper by roll-to-roll manufacturing processes. Journal of the Society for Information Display 2003;11:621-8.
    [46] Fan SK, Chiu CP, Hsu CH, Chen SC, Huang LL, Lin YH, et al. Particle chain display--an optofluidic electronic paper. Lab on a chip 2012;12:4870-6.
    [47] Hywel Morgan NGG. AC Electrokinetic: Colloids and Nanoparticles: Research Studies Press: Philadelphia; 2003.
    [48] T.B. Jones MW. Multipolar dielectrophoretic and electrorotation theory. Journal of Electrostatics 1996;37:121-34.
    [49] Chiu C-P, Chiang T-J, Chen J-K, Chang F-C, Ko F-H, Chu C-W, et al. Liquid Lenses and Driving Mechanisms: A Review. Journal of Adhesion Science and Technology 2012;26:1773-88.
    [50] Valero A, Braschler T Fau - Renaud P, Renaud P. A unified approach to dielectric single cell analysis: impedance and dielectrophoretic force spectroscopy.
    [51] Murau P, Singer B. The understanding and elimination of some suspension instabilities in an electrophoretic display. Journal of Applied Physics 1978;49:4820-9.
    [52] Jones TB. Electromechanics of Particles. UK: Cambridge University Press; 2005.
    [53] Wen W, Zheng D, Tu K. In situ time response measurement of the microspheres dispersed in electrorheological fluids. Physical Review E 1998;57:4516-9.
    [54] Buschow KHJdB, F. R. Physics of Magnetism and Magnetic Materials. USA: Springer New York; 2003.
    [55] Park BJ, Fang FF, Choi HJ. Magnetorheology: materials and application. Soft Matter 2010;6:5246.
    [56] Neel L. Some theoretical aspects of rock-magnetism. Advances in Physics 1955;4:191-243.
    [57] Donolato M, Sogne E, Dalslet BT, Cantoni M, Petti D, Cao J, et al. On-chip measurement of the Brownian relaxation frequency of magnetic beads using magnetic tunneling junctions. Applied Physics Letters 2011;98:073702.
    [58] Liang T, Klein T, Wei W, Yinglong F, Yi W, Jian-Ping W. Measurement of Brownian and Neel Relaxation of Magnetic Nanoparticles by a Mixing-Frequency Method. Magnetics, IEEE Transactions on 2013;49:227-30.
    [59] Erne BH, Butter K, Kuipers BWM, Vroege GJ. Rotational Diffusion in Iron Ferrofluids. Langmuir 2003;19:8218-25.
    [60] Moser Y, Lehnert T, Gijs MAM. Quadrupolar magnetic actuation of superparamagnetic particles for enhanced microfluidic perfusion. Applied Physics Letters 2009;94:022505.
    [61] Butter K, Bomans PHH, Frederik PM, Vroege GJ, Philipse AP. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat Mater 2003;2:88-91.
    [62] Barrett M, Deschner A, Embs JP, Rheinstadter MC. Chain formation in a magnetic fluid under the influence of strong external magnetic fields studied by small angle neutron scattering. Soft Matter 2011;7:6678.
    [63] Kim YJ, Liu YD, Seo Y, Choi HJ. Pickering-emulsion-polymerized polystyrene/Fe2O3 composite particles and their magnetoresponsive characteristics. Langmuir 2013;29:4959-65.
    [64] Song NN, Yang HT, Liu HL, Ren X, Ding HF, Zhang XQ, et al. Exceeding natural resonance frequency limit of monodisperse Fe(3)O(4) nanoparticles via superparamagnetic relaxation. Scientific reports 2013;3:3161.
    [65] Morozov KI, Shliomis MI. Ferrofluids: flexibility of magnetic particle chains. Journal of Physics: Condensed Matter 2004;16:3807-18.
    [66] JitKang Lim CL, Eric R. Evarts, Frederick Lanni, Robert D. Tilton, Sara A. Majetich. Magnetophoresis of Nanoparticles. ACS nano 2011;5:217-26.
    [67] Abbas SM, Dixit AK, Chatterjee R, Goel TC. Complex permittivity, complex permeability and microwave absorption properties of ferrite–polymer composites. Journal of Magnetism and Magnetic Materials 2007;309:20-4.
    [68] Liu XL, Choo ESG, Ahmed AS, Zhao LY, Yang Y, Ramanujan RV, et al. Magnetic nanoparticle-loaded polymer nanospheres as magnetic hyperthermia agents. Journal of Materials Chemistry B 2014;2:120.
    [69] Schmidt M. Density functional for the Widom-Rowlinson model. Physical Review E 2000;63:010101.
    [70] Li J, Wu W, Liu Q, Pan Y. Magnetic anisotropy, magnetostatic interactions and identification of magnetofossils. Geochemistry, Geophysics, Geosystems 2012;13:n/a-n/a.
    [71] Rablau C, Vaishnava P, Sudakar C, Tackett R, Lawes G, Naik R. Magnetic-field-induced optical anisotropy in ferrofluids: A time-dependent light-scattering investigation. Physical Review E 2008;78.
    [72] Getzlaff M. Fundamentals of Magnetism: Springer Berlin Heidelberg; 2008.
    [73] Park SY, Handa H, Sandhu A. Determination of Inter-Molecular Forces by Magneto-Optical Transmittance of Molecule-Covered Superparamagnetic Particles in Solution. IEEE Transactions on Magnetics 2010;46:1409-11.
    [74] Chen D-X, Sanchez A, Xu H, Gu H, Shi D. Size-independent residual magnetic moments of colloidal Fe[sub 3]O[sub 4]-polystyrene nanospheres detected by ac susceptibility measurements. Journal of Applied Physics 2008;104:093902.
    [75] Kuchel PW, Chapman BE, Bubb WA, Hansen PE, Durrant CJ, Hertzberg MP. Magnetic susceptibility: Solutions, emulsions, and cells. Concepts in Magnetic Resonance 2003;18A:56-71.
    [76] Rodriguez-Arco L, Lopez-Lopez MT, Kuzhir P, Bossis G, Duran JD. Optimizing the magnetic response of suspensions by tailoring the spatial distribution of the particle magnetic material. ACS applied materials & interfaces 2013;5:12143-7.
    [77] Olsen RG, Moreno P. Some observations about shielding extremely low-frequency magnetic fields by finite width shields. Electromagnetic Compatibility, IEEE Transactions on 1996;38:460-8.
    [78] Liu K-A, I L. Bacterial turbulence reduction by passive magnetic particle chains. Physical Review E 2013;88.
    [79] Claesson EM, Philipse AP. Monodisperse magnetizable composite silica spheres with tunable dipolar interactions. Langmuir 2005;21:9412-9.
    [80] Dominguez-Garcia P, Rubio MA. Three-dimensional morphology of field-induced chain-like aggregates of superparamagnetic microparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2010;358:21-7.
    [81] Sang-Yun L, Yun-Seog L, In-Hyuk C, Dong-Il L, Sang-Beom K. Effective Combination of Soft Magnetic Materials for Magnetic Shielding. Magnetics, IEEE Transactions on 2012;48:4550-3.
    [82] Sasada I, Inoue I, Harada K. An improved mesh shaking coil and its application to a magnetic shielding panel. Magnetics, IEEE Transactions on 1991;27:5435-7.
    [83] Hasselgren L, Luomi J. Geometrical aspects of magnetic shielding at extremely low frequencies. Electromagnetic Compatibility, IEEE Transactions on 1995;37:409-20.
    [84] Snedaker ML, Zhang Y, Birkel CS, Wang H, Day T, Shi Y, et al. Silicon-Based Thermoelectrics Made from a Boron-Doped Silicon Dioxide Nanocomposite. Chemistry of Materials 2013;25:4867-73.
    [85] Masood MN, Chen S, Carlen ET, van den Berg A. All-(111) surface silicon nanowires: selective functionalization for biosensing applications. ACS applied materials & interfaces 2010;2:3422-8.
    [86] Park HH, Woo K, Ahn JP. Core-shell bimetallic nanoparticles robustly fixed on the outermost surface of magnetic silica microspheres. Scientific reports 2013;3:1497.
    [87] Kalele SA, Ashtaputre SS, Hebalkar NY, Gosavi SW, Deobagkar DN, Deobagkar DD, et al. Optical detection of antibody using silica–silver core–shell particles. Chemical Physics Letters 2005;404:136-41.
    [88] Jankiewicz BJ, Jamiola D, Choma J, Jaroniec M. Silica-metal core-shell nanostructures. Advances in colloid and interface science 2012;170:28-47.
    [89] Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science 1968;26:62-9.
    [90] Gao B, Chen Y, Zhang Z. Preparation of functional composite grafted particles PDMAEMA/SiO2 and preliminarily study on functionality. Applied Surface Science 2010;257:254-60.
    [91] Gandra N, Abbas A, Tian L, Singamaneni S. Plasmonic planet-satellite analogues: hierarchical self-assembly of gold nanostructures. Nano letters 2012;12:2645-51.
    [92] Janovak L, Dekany I. Optical properties and electric conductivity of gold nanoparticle-containing, hydrogel-based thin layer composite films obtained by photopolymerization. Applied Surface Science 2010;256:2809-17.
    [93] Chen J-K, Qui J-Q. Nanowires of 3-D cross-linked gold nanoparticle assemblies behave as thermosensors on silicon substrates. Colloid and Polymer Science 2011;289:1829-37.
    [94] J. Kimling MM, B. Okenve, V. Kotaidis, H. Ballot, A. Plech. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J Phys Chem B 2006:15700-7.
    [95] Perala SR, Kumar S. On the mechanism of metal nanoparticle synthesis in the Brust-Schiffrin method. Langmuir 2013;29:9863-73.
    [96] Brust M, Schiffrin DJ, Bethell D, Kiely CJ. Novel gold-dithiol nano-networks with non-metallic electronic properties. Advanced Materials 1995;7:795-7.
    [97] Kale A, Kale S, Yadav P, Gholap H, Pasricha R, Jog JP, et al. Magnetite/CdTe magnetic-fluorescent composite nanosystem for magnetic separation and bio-imaging. Nanotechnology 2011;22:225101.
    [98] Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical reviews 2008;108:2064-110.
    [99] Corr SA, Rakovich YP, Gun’ko YK. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications. Nanoscale Research Letters 2008;3:87-104.
    [100] Sun J, Zhou S, Hou P, Yang Y, Weng J, Li X, et al. Synthesis and characterization of biocompatible Fe3O4 nanoparticles. Journal of biomedical materials research Part A 2007;80:333-41.
    [101] Yi-Xiang J. Wang SMH, Gabriel P. Krestin. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. European Radiology 2001;11:2319-31.
    [102] Wu KT, Yao YD, Rao GN, Chen YL, Chen JW. Magnetic field induced optical variation in nanosize iron oxide fluid-particles. Microelectronic Engineering 2005;81:323-8.
    [103] Zhou K, Zhu Y, Yang X, Li C. One-pot preparation of graphene/Fe3O4 composites by a solvothermal reaction. New Journal of Chemistry 2010;34:2950.
    [104] Quantum dot. wikipedia.
    [105] Ulbricht R, Pijpers JJ, Groeneveld E, Koole R, Donega Cde M, Vanmaekelbergh D, et al. Loosening quantum confinement: observation of real conductivity caused by hole polarons in semiconductor nanocrystals smaller than the Bohr radius. Nano letters 2012;12:4937-42.
    [106] Zhonghua Yu JL, Donald B. O'Connor, Lin-Wang Wang, Paul F. Barbara. Large Resonant Stokes Shift in CdS Nanocrystals. J Phys Chem B 2003;107:5670–4.
    [107] Kuklewicz CE, Malein RN, Petroff PM, Gerardot BD. Electro-elastic tuning of single particles in individual self-assembled quantum dots. Nano letters 2012;12:3761-5.
    [108] Shahbazyan TV. Theory of plasmon-enhanced metal photoluminescence. Nano letters 2013;13:194-8.
    [109] Liu J, Zhang Y, Yan C, Wang C, Xu R, Gu N. Synthesis of magnetic/luminescent alginate-templated composite microparticles with temperature-dependent photoluminescence under high-frequency magnetic field. Langmuir 2010;26:19066-72.
    [110] Jang E, Jun S, Jang H, Lim J, Kim B, Kim Y. White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater 2010;22:3076-80.
    [111] S. Coe-Sullivan JSS, W.-K. Woo, M. G. Bawendi V. Bulović. Large-Area Ordered Quantum-Dot Monolayers via Phase Separation During Spin-Casting. Advanced Functional Materials 2005;15:1117-24.
    [112] He H, Feng M, Hu J, Chen C, Wang J, Wang X, et al. Designed short RGD peptides for one-pot aqueous synthesis of integrin-binding CdTe and CdZnTe quantum dots. ACS applied materials & interfaces 2012;4:6362-70.
    [113] Sung JM. Dielectrophoresis and Optoelectronic Tweezers for Nanomanipulation. Stanford University; 2007.
    [114] van Berkum S, Dee JT, Philipse AP, Erne BH. Frequency-Dependent Magnetic Susceptibility of Magnetite and Cobalt Ferrite Nanoparticles Embedded in PAA Hydrogel. International journal of molecular sciences 2013;14:10162-77.
    [115] Shibata S, Aoki K, Yano T, Yamane M. Preparation of Silica Microspheres Containing Ag Nanoparticles. Journal of Sol-Gel Science and Technology 1998;11:279-87.
    [116] Biradar AV, Biradar AA, Asefa T. Silica-dendrimer core-shell microspheres with encapsulated ultrasmall palladium nanoparticles: efficient and easily recyclable heterogeneous nanocatalysts. Langmuir 2011;27:14408-18.
    [117] Park C, Youn H, Kim H, Noh T, Kook YH, Oh ET, et al. Cyclodextrin-covered gold nanoparticles for targeted delivery of an anti-cancer drug. Journal of Materials Chemistry 2009;19:2310-5.
    [118] Liu YD, Fang FF, Choi HJ. Core-shell structured semiconducting PMMA/polyaniline snowman-like anisotropic microparticles and their electrorheology. Langmuir 2010;26:12849-54.
    [119] Feng L, Wang Y, Wang N, Ma Y. Preparation of poly(ethylene glycol)-grafted silica nanoparticles using a facile esterification condensation method. Polymer Bulletin 2009;63:313-27.
    [120] Osterloh F, Hiramatsu H, Porter R, Guo T. Alkanethiol-Induced Structural Rearrangements in Silica−Gold Core−Shell-type Nanoparticle Clusters: An Opportunity for Chemical Sensor Engineering. Langmuir 2004;20:5553-8.
    [121] Tape GF. Beta-Spectra of Iodine. Physical Review 1939;56:965-71.
    [122] Li Z, Fredin LA, Tewari P, DiBenedetto SA, Lanagan MT, Ratner MA, et al. In Situ Catalytic Encapsulation of Core-Shell Nanoparticles Having Variable Shell Thickness: Dielectric and Energy Storage Properties of High-Permittivity Metal Oxide Nanocomposites. Chemistry of Materials 2010;22:5154-64.
    [123] O’Connell AD, Ansmann M, Bialczak RC, Hofheinz M, Katz N, Lucero E, et al. Microwave dielectric loss at single photon energies and millikelvin temperatures. Applied Physics Letters 2008;92:-.
    [124] Pecharroman C, Moya JS. Experimental Evidence of a Giant Capacitance in Insulator–Conductor Composites at the Percolation Threshold. Advanced Materials 2000;12:294-7.
    [125] Fornara A, Johansson P, Petersson K, Gustafsson S, Qin J, Olsson E, et al. Tailored magnetic nanoparticles for direct and sensitive detection of biomolecules in biological samples. Nano letters 2008;8:3423-8.
    [126] Odenbach S. Recent progress in magnetic fluid research. Journal of Physics: Condensed Matter 2004;16:R1135-R50.
    [127] Liu X, Duan X, Qin Q, Wang Q, Zheng W. Ionic liquid-assisted solvothermal synthesis of oriented self-assembled Fe3O4 nanoparticles into monodisperse nanoflakes. CrystEngComm 2013;15:3284.
    [128] Toster J, Kusumawardani I, Eroglu E, Iyer KS, Rosei F, Raston CL. Superparamagnetic imposed diatom frustules for the effective removal of phosphates. Green Chemistry 2014;16:82-5.
    [129] Hong X, Li J, Wang M, Xu J, Guo W, Li J, et al. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-assembly Approach. Chemistry of Materials 2004;16:4022-7.
    [130] Park SY, Handa H, Sandhu A. High speed magneto-optical valve: Rapid control of the optical transmittance of aqueous solutions by magnetically induced self-assembly of superparamagnetic particle chains. Journal of Applied Physics 2009;105:07B526.
    [131] Butter K, Bomans PH, Frederik PM, Vroege GJ, Philipse AP. Direct observation of dipolar chains in iron ferrofluids by cryogenic electron microscopy. Nat Mater 2003;2:88-91.
    [132] Li CL, Chen JK, Fan SK, Ko FH, Chang FC. Electrorheological operation of low-/high-permittivity core/shell SiO2/Au nanoparticle microspheres for display media. ACS applied materials & interfaces 2012;4:5650-61.
    [133] Yu-Ching Kuo QW, Chada Ruengruglikit, Hailong Yu, Qingrong Huang. Antibody-Conjugated CdTe Quantum Dots for Escherichia coli Detection. J Phys Chem C 2008;112:4818-24.
    [134] Takuya Nakashima YKaTK. Optical Activity and Chiral Memory of Thiol-Capped CdTe Nanocrystals. J Am Chem Soc 2009;131:10342-3.
    [135] Soylu MC, Shih W-H, Shih WY. Insulation by Solution 3-Mercaptopropyltrimethoxysilane (MPS) Coating: Effect of pH, Water, and MPS Content. Industrial & Engineering Chemistry Research 2013;52:2590-7.
    [136] Ying Wang ZT, Xiaorong Liang, Luis M. Liz-Marzan, and Nicholas A. Kotov. SiO2-Coated CdTe Nanowires:  Bristled Nano Centipedes. Nano Lett 2004;4:225-31.
    [137] Zhu Y, Li Z, Chen M, Cooper HM, Lu GQ, Xu ZP. Synthesis of Robust Sandwich-Like SiO2@CdTe@SiO2Fluorescent Nanoparticles for Cellular Imaging. Chemistry of Materials 2012;24:421-3.
    [138] Paula Caregnato MDEF, Delia B. Soria, Daniel O. Martire and Monica C. Gonzalez. Chemisorbed Thiols on Silica Particles: Characterization of Reactive Sulfur Species. J Phys Chem C 2010;114:5080–7.
    [139] Du Q, Zhang W, Ma H, Zheng J, Zhou B, Li Y. Immobilized palladium on surface-modified Fe3O4/SiO2 nanoparticles: as a magnetically separable and stable recyclable high-performance catalyst for Suzuki and Heck cross-coupling reactions. Tetrahedron 2012;68:3577-84.
    [140] Tsai DH, Davila-Morris M, DelRio FW, Guha S, Zachariah MR, Hackley VA. Quantitative determination of competitive molecular adsorption on gold nanoparticles using attenuated total reflectance-Fourier transform infrared spectroscopy. Langmuir 2011;27:9302-13.
    [141] Hui C, Shen C, Tian J, Bao L, Ding H, Li C, et al. Core-shell Fe3O4@SiO2 nanoparticles synthesized with well-dispersed hydrophilic Fe3O4 seeds. Nanoscale 2011;3:701-5.
    [142] Zhou D, Lin M, Chen Z, Sun H, Zhang H, Sun H, et al. Simple Synthesis of Highly Luminescent Water-Soluble CdTe Quantum Dots with Controllable Surface Functionality. Chemistry of Materials 2011;23:4857-62.
    [143] Fang FF, Liu YD, Choi HJ, Seo Y. Core-shell structured carbonyl iron microspheres prepared via dual-step functionality coatings and their magnetorheological response. ACS applied materials & interfaces 2011;3:3487-95.
    [144] Zhang X, Xu X, Li T, Lin M, Lin X, Zhang H, et al. Composite photothermal platform of polypyrrole-enveloped Fe(3)O(4) nanoparticle self-assembled superstructures. ACS applied materials & interfaces 2014;6:14552-61.
    [145] Zhang X, Lin M, Lin X, Zhang C, Wei H, Zhang H, et al. Polypyrrole-enveloped Pd and Fe3O4 nanoparticle binary hollow and bowl-like superstructures as recyclable catalysts for industrial wastewater treatment. ACS applied materials & interfaces 2014;6:450-8.
    [146] Xia H, Cheng D, Xiao C, Chan HSO. Controlled synthesis of polyaniline nanostructures with junctions using in situ self-assembly of magnetic nanoparticles. Journal of Materials Chemistry 2005;15:4161.
    [147] Le He MW, Jianping Ge, and Yadong Yin. Magnetic Assembly Route to Colloidal Responsive Photonic Nanostructures. Acc Chem Res 2012;45:1431-40.
    [148] Serantes D, Simeonidis K, Angelakeris M, Chubykalo-Fesenko O, Marciello M, Morales MdP, et al. Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling. The Journal of Physical Chemistry C 2014;118:5927-34.
    [149] van Netten K, Zhou J, Galvin KP, Moreno-Atanasio R. Influence of magnetic and hydrodynamic forces on chain-aggregation and motion of magnetisable particles and composites. Chemical Engineering Science 2013;93:229-37.
    [150] Kong I, Hj Ahmad S, Hj Abdullah M, Hui D, Nazlim Yusoff A, Puryanti D. Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials 2010;322:3401-9.

    無法下載圖示 全文公開日期 2019/12/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE