簡易檢索 / 詳目顯示

研究生: 郭政諭
Cheng-Yu Kuo
論文名稱: 含氟石墨烯複合材料之製備
Preparation of Fluorocarbon-including Graphene Composites
指導教授: 今榮 東洋子
Toyoko Imae
口試委員: 江志強
Jyh-Chiang Jiang
鄭智嘉
Chih-Chia Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 47
中文關鍵詞: 氧化石墨烯樹狀高分子全氟烷化合物
外文關鍵詞: Graphene oxide, Dendrimer, Perfluorinated compound
相關次數: 點閱:168下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米複合材料因其具有極小的粒徑以及極大的表面積而提供了獨特的物理、化學及生物性質,所以廣泛的應用於生物醫學領域。在本研究中,氧化石墨烯將作為主要的基材,因氧化石墨烯在水中良好的分散性能避免其聚集成大顆粒,而其表面也具有豐富的氧化官能基團能與各種材料做結合與改質,像是金屬、高分子、等等。因此氧化石墨烯是一個非常適合用來當作奈米複合材料的基材。在本研究中,我們成功的製備了氟化樹狀高分子與氧化石墨烯之複合材料,其中,所使用之樹狀高分子分為胺基(-NH2)以及羥基(-OH)兩種。結果顯示NGO/Den(OH)-F複合物在水溶液狀態下具有良好的分散性及穩定性,反之,NGO/Den(NH2)-F複合物於水溶液狀態下則會產生聚集效應進而沉澱。另外,我們也使用含氟聚乙二醇(F-PEG)作為穩定劑,希望能使NGO/Den(OH)-F複合物形成更穩定的狀態,由Zeta電位得知,加入F-PEG後可得到較大的Zeta電位及穩定區間(|Zeta電位| > 30),由此可知,NGO/Den(OH)-F複合物與含氟聚乙二醇經由氟與氟之間的疏水效應可以形成一高穩定的結構及狀態。綜合以上結果,NGO/Den(OH)-F複合物及含氟聚乙二醇系統將可作為一奈米載體進而用於藥物輸送系統或生物醫學應用。


    Nano-composites offer interesting physicochemical and biological properties for biomedical applications because of their small size and large surface area. Graphene oxide (GO) is used as a main targeting material due to its rich oxygen-based functional groups and it can be easily functionalized with other unique materials, such as metals, polymers, etc. In this work, the NGO/Den-F composites were successfully synthesized with fluorine-containing dendrimer, which was prepared by different types of PAMAM dendrimer (-NH2 and -OH terminal). The dispersity and stability of NGO/Den(OH)-F composite in aqueous media is better than NGO/Den(NH2)-F composite because of the agglomeration of NGO/Den(NH2)-F composite. Furthermore, we also used fluorinated polyethylene glycol (F8-PEG2000) as a stabilizer in order to enhance the stability of the NGO/Den(OH)-F composite. From the results of zeta potential, we can obtain the higher value from the mixture of NGO/Den(OH)-F + F8-PEG2000, which means the F8-PEG2000 can increase the stability by hydrophobic interactions with NGO/Den(OH)-F composite. This indicates the possible application of the NGO/Den(OH)-F with F-PEG to be a novel nanocarrier for drug delivery system or biomedical applications.

    Abstract i 摘要 ii Acknowledgements iii Table of Contents iv List of Figures vii List of Tables x Chapter 1-General Introduction 1 1. Introduction 1 1.1 Graphene Oxide 1 1.2 Poly(amido amine) (PAMAM) dendrimers (Den(NH2), Den(OH)) 3 1.3 Fluorine in medicinal chemistry 5 1.4 Nanocarriers 5 2. Motivation and Objective of the work 6 Chapter 2-Experimental section 7 2.1 Materials and Reagents 7 2.2 Preparation of nano-graphene oxide (NGO) 8 2.3 Synthesis of NGO/Den(NH2)-F 8 2.4 Synthesis of NGO/Den(OH)-F 11 2.5 Instruments 14 Chapter 3-Results and Discussion 15 3.1 Characterization of NGO 15 3.2 Characterization of NGO/Den-F 17 3.2.1 Characteristics of NGO/Den(OH)-F by infrared spectrometry 18 3.2.2 Element analysis by EDS 19 3.2.3 Morphology of NGO/Den(OH)-F 20 3.2.4 Size of NGO/Den(OH)-F 23 3.2.5 Surface charge of NGO/Den(OH)-F 26 3.2.6 Comparison of NGO/Den(OH)-F and NGO/Den(NH2)-F by zeta potential 27 3.3 Characteristics of F8-PEG2000 aggregates 28 3.3.1 Morphology of F8-PEG2000 aggregates by TEM 28 3.3.2 Characteristics of F8-PEG2000 aggregates by DLS 29 3.3.3 Characteristic binding of F8-PEG2000 on NGO 31 3.4 Characteristics of NGO/Den(OH)-F with F8-PEG2000 34 3.4.1 Morphology of NGO/Den(OH)-F with F8-PEG2000 35 3.4.2 Size and zeta potential of NGO/Den(OH)-F with F8-PEG2000 39 3.4.3 Comparison of NGO/Den(OH)-F and NGO/Den(OH)-F + F8-PEG2000 40 Chapter 4-Summary and Conclusion 43 List of References 44

    List of References
    [1] Choi, W.; Lahiri, I.; Seelaboyina, R.; Kang, Y. S., Synthesis of graphene and its applications: a review. Critical Reviews in Solid State and Materials Sciences 2010, 35 (1), 52-71.
    [2] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. science 2004, 306 (5696), 666-669.
    [3] Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chemical Society Reviews 2010, 39 (1), 228-240.
    [4] Wang, G.; Yang, J.; Park, J.; Gou, X.; Wang, B.; Liu, H.; Yao, J., Facile synthesis and characterization of graphene nanosheets. The Journal of Physical Chemistry C 2008, 112 (22), 8192-8195.
    [5] Wang, G.; Shen, X.; Wang, B.; Yao, J.; Park, J., Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 2009, 47 (5), 1359-1364.
    [6] Li, X.; Wang, X.; Zhang, L.; Lee, S.; Dai, H., Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 2008, 319 (5867), 1229-1232.
    [7] Blake, P.; Brimicombe, P. D.; Nair, R. R.; Booth, T. J.; Jiang, D.; Schedin, F.; Ponomarenko, L. A.; Morozov, S. V.; Gleeson, H. F.; Hill, E. W., Graphene-based liquid crystal device. Nano letters 2008, 8 (6), 1704-1708.
    [8] Goenka, S.; Sant, V.; Sant, S., Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release 2014, 173, 75-88.
    [9] Park, S.; An, J.; Jung, I.; Piner, R. D.; An, S. J.; Li, X.; Velamakanni, A.; Ruoff, R. S., Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano letters 2009, 9 (4), 1593-1597.
    [10] Guo, F.; Kim, F.; Han, T. H.; Shenoy, V. B.; Huang, J.; Hurt, R. H., Hydration-responsive folding and unfolding in graphene oxide liquid crystal phases. Acs Nano 2011, 5 (10), 8019-8025.
    [11] Kim, F.; Cote, L. J.; Huang, J., Graphene Oxide: Surface Activity and Two‐Dimensional Assembly. Advanced Materials 2010, 22 (17), 1954-1958.
    [12] Artiles, M. S.; Rout, C. S.; Fisher, T. S., Graphene-based hybrid materials and devices for biosensing. Advanced drug delivery reviews 2011, 63 (14), 1352-1360.
    [13] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H., PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. Journal of the American Chemical Society 2008, 130 (33), 10876-10877.
    [14] Rana, V. K.; Choi, M. C.; Kong, J. Y.; Kim, G. Y.; Kim, M. J.; Kim, S. H.; Mishra, S.; Singh, R. P.; Ha, C. S., Synthesis and Drug‐Delivery Behavior of Chitosan‐Functionalized Graphene Oxide Hybrid Nanosheets. Macromolecular Materials and Engineering 2011, 296 (2), 131-140.
    [15] Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H., Chitosan‐functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 2011, 7 (11), 1569-1578.
    [16] Shen, J.; Yan, B.; Shi, M.; Ma, H.; Li, N.; Ye, M., Synthesis of graphene oxide-based biocomposites through diimide-activated amidation. Journal of colloid and interface science 2011, 356 (2), 543-549.
    [17] Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H., Nano-graphene oxide for cellular imaging and drug delivery. Nano research 2008, 1 (3), 203-212.
    [18] Makharza, S.; Cirillo, G.; Bachmatiuk, A.; Ibrahim, I.; Ioannides, N.; Trzebicka, B.; Hampel, S.; Rümmeli, M. H., Graphene oxide-based drug delivery vehicles: functionalization, characterization, and cytotoxicity evaluation. Journal of nanoparticle research 2013, 15 (12), 1-26.
    [19] Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X.; Zhong, H., Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32 (33), 8555-8561.
    [20] Siriviriyanun, A.; Imae, T.; Calderó, G.; Solans, C., Phototherapeutic functionality of biocompatible graphene oxide/dendrimer hybrids. Colloids and Surfaces B: Biointerfaces 2014, 121, 469-473.

    [21] Siriviriyanun, A.; Popova, M.; Imae, T.; Kiew, L. V.; Looi, C. Y.; Wong, W. F.; Lee, H. B.; Chung, L. Y., Preparation of graphene oxide/dendrimer hybrid carriers for delivery of doxorubicin. Chemical Engineering Journal 2015, 281, 771-781.
    [22] Buhleier, E.; Wehner, W.; Vögtle, F., ′ CASCADE′‐AND′ NONSKID‐CHAIN‐LIKE′ SYNTHESES OF MOLECULAR CAVITY TOPOLOGIES. Chemischer Informationsdienst 1978, 9 (25).
    [23] Liu, M.; Fréchet, J. M., Designing dendrimers for drug delivery. Pharmaceutical science & technology today 1999, 2 (10), 393-401.
    [24] Tomalia, D. A., Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Progress in Polymer Science 2005, 30 (3), 294-324.
    [25] Tomalia, D.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic. Polymer Journal 1985, 17 (1), 117-132.
    [26] Kirk, K. L., Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules. Journal of Fluorine Chemistry 2006, 127 (8), 1013-1029.
    [27] Deng, H.; O'Hagan, D.; Schaffrath, C., Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya. Natural product reports 2004, 21 (6), 773-784.
    [28] Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V., Fluorine in medicinal chemistry. Chemical Society Reviews 2008, 37 (2), 320-330.
    [29] Isanbor, C.; O’Hagan, D., Fluorine in medicinal chemistry: a review of anti-cancer agents. Journal of Fluorine Chemistry 2006, 127 (3), 303-319.
    [30] Ismail, F. M., Important fluorinated drugs in experimental and clinical use. Journal of Fluorine Chemistry 2002, 118 (1), 27-33.
    [31] Kang, L.; Gao, Z.; Huang, W.; Jin, M.; Wang, Q., Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharmaceutica Sinica B 2015, 5 (3), 169-175.
    [32] Qian, W.-Y.; Sun, D.-M.; Zhu, R.-R.; Du, X.-L.; Liu, H.; Wang, S.-L., pH-sensitive strontium carbonate nanoparticles as new anticancer vehicles for controlled etoposide release. Int J Nanomed 2012, 7, 5781-5792.
    [33] Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R., Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology 2007, 2 (12), 751-760.
    [34] Singh, R.; Lillard, J. W., Nanoparticle-based targeted drug delivery. Experimental and molecular pathology 2009, 86 (3), 215-223.
    [35] Tkachenko, N. H.; Yaremko, Z. M.; Bellmann, C.; Soltys, M. M., The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide. Journal of colloid and interface science 2006, 299 (2), 686-695.

    QR CODE