簡易檢索 / 詳目顯示

研究生: 張怡萱
Yi-Hsuan Chang
論文名稱: 氧化石墨烯量子點功能化的水溶性π共軛聚合物作為生物成像的供體-受體混成材料
Graphene Oxide Quantum Dots-Functionalized Water-Soluble π‐Conjugated Polymer as Donor–Acceptor Hybrid Materials for Biological Imaging
指導教授: 鄭智嘉
Chih-Chia Cheng
口試委員: 楊長謀
Chang-Mou Yang
邱智瑋
Chih-Wei Chiu
蔡協致
Hsieh-Chih Tsai
李愛薇
Ai-Wei Lee
莊偉綜
Wei-Tsung Chuang
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 141
中文關鍵詞: 水溶性共軛高分子聚噻吩氧化石墨烯量子點供體–受體能量轉移酸鹼值響應
外文關鍵詞: water-soluble conjugated polymers, polythiophene, graphene oxide quantum dots, donor-acceptor energy transfer, pH-response
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 I Abstract II 致謝 III 目錄 IV 表目錄 XI 圖目錄 XII 第一章 緒論 1 1.1研究背景 1 1.2研究動機 3 第二章 文獻回顧 4 2.1水溶性共軛高分子(Water-soluble conjugate polymer) 4 2.1.1共軛高分子概述 4 2.1.2水溶性共軛高分子概述及發展近況 5 2.1.3水溶性聚噻吩特性及應用 7 2.2氧化石墨烯量子點(Graphene Oxide Quantum Dots) 9 2.2.1量子點概述 9 2.2.2量子點製備方式 10 2.2.3氧化石墨烯量子點特性及其應用 12 2.3 複合材料及能量轉移概述(Energy Transform) 14 2.3.1複合材料概述 14 2.3.2光學能量轉移概述 15 2.3.3複合材料透過光學能量轉移概述 17 2.4螢光探針(Fluorescense Probes) 18 2.4.1生物顯影技術概述 18 2.4.2螢光探針發展特性及其應用 20 2.5文獻回顧總結 22 第三章 實驗材料與方法 23 3.1研究設計 23 3.2實驗材料 24 3.2.1實驗藥品 24 3.2.2實驗溶劑 27 3.2.3細胞實驗材料 29 3.2.4相關實驗材料 31 3.3實驗儀器與設備參數 31 3.3.1電灑游離質譜儀(Electrospray Ionization Mass Spectrometer) 31 3.3.2液態核磁共振光譜(Nuclear Magnetic Resonance Spectrometer,NMR) 32 3.3.3基質輔助雷射脫附游離飛行時間式質譜儀(Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry,MALDI-TOF MS) 33 3.3.4旋轉塗佈機(Spin Coaters) 33 3.3.5斜式旋轉濃縮機(Rotary Evaporation) 34 3.3.6震盪混合器(Vortex Mixer) 34 3.3.7元素分析儀(Elemental Analyzer) 35 3.3.8傅立葉轉換紅外光譜(Fourier Transform Infrared spectroscopy,FTIR) 35 3.3.9紫外線可見光光譜儀(UV/VIis spectrophotometer,UV/Vis) 36 3.3.10光致螢光光譜儀(Photoluminescence,PL) 36 3.3.11奈米粒徑分析儀及電位功能(Dynamic Light Scattering,DLS) 37 3.3.14 X-Ray繞射儀(D2 PHASER X-Ray Powder Diffractometer) 38 3.3.15化學元素分析儀(Electron Spectroscopy for Chemical Analysis,ESCA) 38 3.3.17原子力顯微鏡(Atomic Force Microscpoic,AFM) 39 3.3.18高解析度場發射掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 40 3.3.19生物型穿透式電子顯微鏡(Bio-Transmission Electron Microscope,Bio-TEM) 41 3.3.20桌上型酸鹼度計(pH Meter) 41 3.3.21電化學分析儀(Cyclic Voltammetry,CV) 42 3.3.22 CO2培養箱(CO2 incubators) 43 3.3.23螢光顯微鏡(Fluorescence microscope) 43 3.3.24酵素免疫分析儀(ELISA Reader) 44 3.3.25冷凍離心機(Refrigerated Centrifuge) 44 3.3.26流式細胞儀(Flow Cytometers) 45 3.4 實驗合成步驟 45 3.4.1合成單體前驅物Methyl thiophene-3-acetate 46 3.4.2合成單體N-[3-(dimethylamino)propyl]-2-(2-thienyl)acetamide (簡稱M) 47 3.4.3合成高分子Poly{N-[3-(dimethylamino)propyl]-2-(2-thienyl)acetamide} (簡稱P) 48 3.5複合材料製備 48 3.5.1高分子保存方式以及製備方法 49 3.5.2複合材料製備方法 49 3.6細胞生物性製備 50 3.6.1磷酸鹽緩衝生理鹽水(Phosphate buffered saline,PBS) 50 3.6.2胰蛋白酶(Trypsin - EDTA) 50 3.6.3細胞培養基(Dulbecco's Modified Eagle Medium,DMEM) 51 3.6.4細胞解凍培養 51 3.6.5細胞培養條件 51 3.6.6細胞生物毒性測試 52 3.6.7螢光顯微鏡製備 52 3.6.8流式細胞儀(Flow cytometer) 53 第四章 結果與討論 54 4.1 高分子材料鑑定 54 4.1.1單體透過傅里葉轉換紅外光譜(FTIR)材料鑑定 55 4.1.2單體透過核磁共振儀(1H和13C NMR)材料鑑定 57 4.1.3單體透過元素分析儀(EA)材料鑑定 59 4.1.4單體透過質譜儀(LC MASS)材料鑑定 60 4.1.5高分子以基質輔助雷射脫附游離飛行時間式質譜儀(MALDI-TOF MS)材料鑑定 61 4.1.6高分子水溶液最適化濃度測試 62 4.2 複合材料性質鑑定及比較 65 4.2.1複合材料系統之紫外線可見光光譜比較 65 4.2.2複合材料系統之光致螢光譜比較 67 4.2.3複合材料系統於動態光閃射儀之粒徑及表面電位變化探討 70 4.2.4複合材料系統之表面型貌及微觀結構探討 72 4.2.5複合材料系統之核磁共振儀1H NMR材料鑑定 77 4.2.6複合材料系統之X-ray繞射圖比較 79 4.2.7複合材料系統之化學分析電子光譜 81 4.2.8複合材料系統以循環伏安分析之結果 87 4.2.9複合材料系統於酸性條件下光學性質測試 91 4.3生物影像分析 94 4.3.1複合材料系統之細胞毒性測試(Cytotoxicity test) 94 4.3.2複合材料系統之螢光顯微鏡觀察(Fluorescence microscope) 96 4.3.3複合材料系統之流式細胞儀測試(Flow cytometer) 104 第五章 結論 110 第六章 未來展望 111 第七章 參考文獻 112

    [1] P. Roy, G. Devatha, S. Roy, A. Rao, and P. P. Pillai, “Electrostatically driven resonance energy transfer in an all-quantum dot based donor-acceptor system,” J Phys Chem Lett, vol. 11, pp. 5354-5360, 2020.
    [2] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, “Light-emitting-diodes based on conjugated polymers,” Nature, vol. 347, no. 6293, pp. 539-541, 1990.
    [3] D. T. McQuade, A. E. Pullen, and T. M. Swager, “Conjugated polymer-based chemical sensors,” Chemical Reviews, vol. 100, no. 7, pp. 2537-2574, 2000.
    [4] S. Das, P. Routh, R. Ghosh, D. P. Chatterjee, and A. K. Nandi, “Water-soluble ionic polythiophenes for biological and analytical applications,” Polymer International, vol. 66, no. 5, pp. 623-639, 2017.
    [5] B. S. Kim, H. Fukuoka, H. P. Gong, and Y. Osada, “Titration behaviors and spectral properties of hydrophobically modified water-soluble polythiophenes,” European Polymer Journal, vol. 37, no. 12, pp. 2499-2503, 2001.
    [6] C. L. Zhu, L. B. Liu, Q. Yang, F. T. Lv, and S. Wang, “Water-Soluble Conjugated Polymers for Imaging, Diagnosis, and Therapy,” Chemical Reviews, vol. 112, no. 8, pp. 4687-4735, 2012.
    [7] C. Zhu, L. Liu, Q. Yang, F. Lv, and S. Wang, “Water-soluble conjugated polymers for imaging, diagnosis, and therapy,” Chem Rev, vol. 112, no. 8, pp. 4687-4735, 2012.
    [8] L. Zhou, F. Lv, L. Liu, and S. Wang, “Water-Soluble Conjugated Organic Molecules as Optical and Electrochemical Materials for Interdisciplinary Biological Applications,” Acc Chem Res, vol. 52, no. 11, pp. 3211-3222, 2019.
    [9] S. A. Jenekhe, and X. L. Chen, “Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes,” Science, vol. 279, no. 5358, pp. 1903-1907, 1998.
    [10] D. Wu, Y. Huang, F. Xu, Y. Mai, and D. Yan, “Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers,” Journal of Polymer Science Part A: Polymer Chemistry, vol. 55, no. 9, pp. 1459-1477, 2017.
    [11] K. Lee, L. K. Povlich, and J. Kim, “Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors,” Analyst, vol. 135, no. 9, pp. 2179-2189, 2010.
    [12] F. Wang, M. Li, B. Wang, J. Zhang, Y. Cheng, L. Liu, F. Lv, and S. Wang, “Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging,” Sci Rep, vol. 5, pp. 7617, 2015.
    [13] Y. Huang, H. C. Pappas, L. Zhang, S. Wang, R. Cai, W. Tan, S. Wang, D. G. Whitten, and K. S. Schanze, “Selective Imaging and Inactivation of Bacteria over Mammalian Cells by Imidazolium-Substituted Polythiophene,” Chemistry of Materials, vol. 29, no. 15, pp. 6389-6395, 2017.
    [14] S. Zhu, J. Zhang, X. Liu, B. Li, X. Wang, S. Tang, Q. Meng, Y. Li, C. Shi, R. Hu, and B. Yang, “Graphene quantum dots with controllable surface oxidation, tunable fluorescence and up-conversion emission,” RSC Advances, vol. 2, no. 7, pp. 2717-2720, 2012.
    [15] Z. Wang, H. Zeng, and L. Sun, “Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications,” Journal of Materials Chemistry C, vol. 3, no. 6, pp. 1157-1165, 2015.
    [16] K. Kalyanasundaram, E. Borgarello, D. Duonghong, and M. Gratzel, “Cleavage of water by visible-light irradiation of colloidal CdS solutions; inhibition of photocorrosion by RuOz,” Angewandte Chemie International Edition, vol. 20, no. 11, pp. 987-988, 1981.
    [17] R. Rossetti, S. Nakahara, and L. E. Brus, “Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution,” The Journal of Chemical Physics, vol. 79, no. 2, pp. 1086-1088, 1983.
    [18] C. Murray, D. J. Norris, and M. G. Bawendi, “Synthesis and characterization of nearly monodisperse CdE (E= sulfur, selenium, tellurium) semiconductor nanocrystallites,” Journal of the American Chemical Society, vol. 115, no. 19, pp. 8706-8715, 1993.
    [19] D. Yu, C. Wang, and P. Guyot-Sionnest, “n-Type conducting CdSe nanocrystal solids,” Science, vol. 300, no. 5623, pp. 1277-1280, 2003.
    [20] Y. T. Kim, H. W. Shin, Y. S. Ko, T. K. Ahn, and Y. U. Kwon, “Synthesis of a CdSe-graphene hybrid composed of CdSe quantum dot arrays directly grown on CVD-graphene and its ultrafast carrier dynamics,” Nanoscale, vol. 5, no. 4, pp. 1483-1488, 2013.
    [21] P. Petroff, and S. DenBaars, “MBE and MOCVD growth and properties of self-assembling quantum dot arrays in III-V semiconductor structures,” Superlattices and microstructures, vol. 15, no. 1, pp. 15-21, 1994.
    [22] E. Prati, M. De Michielis, M. Belli, S. Cocco, M. Fanciulli, D. Kotekar-Patil, M. Ruoff, D. P. Kern, D. A. Wharam, and J. Verduijn, “Few electron limit of n-type metal oxide semiconductor single electron transistors,” Nanotechnology, vol. 23, no. 21, pp. 215204, 2012.
    [23] X. Zhu, G. Wu, N. Lu, X. Yuan, and B. Li, “A miniaturized electrochemical toxicity biosensor based on graphene oxide quantum dots/carboxylated carbon nanotubes for assessment of priority pollutants,” J Hazard Mater, vol. 324, no. Pt B, pp. 272-280, 2017.
    [24] X. Michalet, F. F. Pinaud, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss, “Quantum dots for live cells, in vivo imaging, and diagnostics,” science, vol. 307, no. 5709, pp. 538-544, 2005.
    [25] R. Teti, “Machining of composite materials,” CIRP Annals, vol. 51, no. 2, pp. 611-634, 2002.
    [26] T. Rousseau, A. Cravino, T. Bura, G. Ulrich, R. Ziessel, and J. Roncali, “Multi-donor molecular bulk heterojunction solar cells: improving conversion efficiency by synergistic dye combinations,” Journal of Materials Chemistry, vol. 19, no. 16, pp. 2298-2300, 2009.
    [27] H. Hirano, T. Okada, Y. Nakamura, J. Kadota, S. Watase, and K. Hasegawa, “Enhancement of Epoxy Resin/Copper Heterojunction by Introduction of Sulfur-Containing Polymers,” Macromolecular Materials and Engineering, vol. 291, no. 3, pp. 205-209, 2006.
    [28] M. Yoshimoto, H. Nagata, S. Gonda, J. Gong, H. Ohkubo, and H. Koinuma, “Fabrication of ceramics heterojunctions and layered cuprates by epitaxial layer-by-layer growth,” Physica C: Superconductivity, vol. 190, no. 1-2, pp. 43-45, 1991.
    [29] H.L. Yip, S. K. Hau, N. S. Baek, and A. K. Y. Jen, “Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells,” Applied Physics Letters, vol. 92, no. 19, 2008.
    [30] X. H. Li, and M. Antonietti, “Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: functional Mott-Schottky heterojunctions for catalysis,” Chem Soc Rev, vol. 42, no. 16, pp. 6593-604, 2013.
    [31] H. Wang, L. Zhang, Z. Chen, J. Hu, S. Li, Z. Wang, J. Liu, and X. Wang, “Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances,” Chem Soc Rev, vol. 43, no. 15, pp. 5234-5244, 2014.
    [32] K. Yoon, K. Kim, X. Wang, D. Fang, B. S. Hsiao, and B. Chu, “High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating,” Polymer, vol. 47, no. 7, pp. 2434-2441, 2006.
    [33] H. Yu, X. Quan, S. Chen, and H. Zhao, “TiO2− multiwalled carbon nanotube heterojunction arrays and their charge separation capability,” The Journal of Physical Chemistry C, vol. 111, no. 35, pp. 12987-12991, 2007.
    [34] B. O'Regan, D. T. Schwartz, S. M. Zakeeruddin, and M. Grätzel, “Electrodeposited Nanocomposite n–p Heterojunctions for Solid‐State Dye‐Sensitized Photovoltaics,” Advanced Materials, vol. 12, no. 17, pp. 1263-1267, 2000.
    [35] F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, and X. Zhou, “The quenching of the fluorescence of carbon dots: A review on mechanisms and applications,” Microchimica Acta, vol. 184, no. 7, pp. 1899-1914, 2017.
    [36] C. C. Cheng, W. L. Lin, Z. S. Liao, C. W. Chu, J. J. Huang, S. Y. Huang, W. L. Fan, and D. J. Lee, “Water-soluble fullerene-functionalized polymer micelles for efficient aqueous-processed conductive devices,” Polymer Chemistry, vol. 8, no. 48, pp. 7469-7474, 2017.
    [37] V. Gupta, N. Chaudhary, R. Srivastava, G. D. Sharma, R. Bhardwaj, and S. Chand, “Luminscent graphene quantum dots for organic photovoltaic devices,” J Am Chem Soc, vol. 133, no. 26, pp. 9960-9963, 2011.
    [38] P. Routh, S. Das, A. Shit, P. Bairi, P. Das, and A. K. Nandi, “Graphene quantum dots from a facile sono-Fenton reaction and its hybrid with a polythiophene graft copolymer toward photovoltaic application,” ACS Appl Mater Interfaces, vol. 5, no. 23, pp. 12672-12680, 2013.
    [39] J. Maddox, “The sensational discovery of X-rays,” Nature, vol. 375, no. 6528, pp. 183, 1995.
    [40] G. N. Hounsfield, “Computerized transverse axial scanning (tomography): Part 1. Description of system,” The British journal of radiology, vol. 46, no. 552, pp. 1016-1022, 1973.
    [41] J. Zhou, Z. Liu, and F. Y. Li, “Upconversion nanophosphors for small-animal imaging,” Chemical Society Reviews, vol. 41, no. 3, pp. 1323-1349, 2012.
    [42] T. Terai, and T. Nagano, “Fluorescent probes for bioimaging applications,” Current Opinion in Chemical Biology, vol. 12, no. 5, pp. 515-521, Oct, 2008.
    [43] B. N. G. Giepmans, S. R. Adams, M. H. Ellisman, and R. Y. Tsien, “Review - The fluorescent toolbox for assessing protein location and function,” Science, vol. 312, no. 5771, pp. 217-224, 2006.
    [44] M. Zhang, M. X. Yu, F. Y. Li, M. W. Zhu, M. Y. Li, Y. H. Gao, L. Li, Z. Q. Liu, J. P. Zhang, D. Q. Zhang, T. Yi, and C. H. Huang, “A highly selective fluorescence turn-on sensor for Cysteine/Homocysteine and its application in bioimaging,” Journal of the American Chemical Society, vol. 129, no. 34, pp. 10322, 2007.
    [45] Q. Zhao, C. H. Huang, and F. Y. Li, “Phosphorescent heavy-metal complexes for bioimaging,” Chemical Society Reviews, vol. 40, no. 5, pp. 2508-2524, 2011.
    [46] G. Grynkiewicz, M. Poenie, and R. Y. Tsien, “A new generation of Ca2+ indicators with greatly improved fluorescence properties,” Journal of Biological Chemistry, vol. 260, no. 6, pp. 3440-3450, 1985.
    [47] T. Terai, and T. Nagano, “Fluorescent probes for bioimaging applications,” Curr Opin Chem Biol, vol. 12, no. 5, pp. 515-521, 2008.
    [48] F. Hu, D. Mao, Kenry, X. Cai, W. Wu, D. Kong, and B. Liu, “A light-up probe with aggregation-induced emission for real-time bio-orthogonal tumor labeling and image-guided photodynamic therapy,” Angew Chem Int Ed Engl, vol. 57, no. 32, pp. 10182-10186, 2018.
    [49] Y. C. LAI, “水溶性共軛高分子作為具有氣體響應性的自組裝奈米粒子應用於生物成像,” 2019.
    [50] L. Zong, Y. Xie, C. Wang, J. R. Li, Q. Li, and Z. Li, “From ACQ to AIE: the suppression of the strong π–π interaction of naphthalene diimide derivatives through the adjustment of their flexible chains,” Chemical Communications, vol. 52, no. 77, pp. 11496-11499, 2016.
    [51] Y. Zhu, S. Xu, L. Jiang, K. Pan, and Y. Dan, “Synthesis and characterization of polythiophene/titanium dioxide composites,” Reactive and Functional Polymers, vol. 68, no. 10, pp. 1492-1498, 2008.
    [52] Y. Xie, J. Zhao, Z. Le, M. Li, J. Chen, Y. Gao, Y. Huang, Y. Qin, R. Zhong, D. Zhou, and Y. Ling, “Preparation and electromagnetic properties of chitosan-decorated ferrite-filled multi-walled carbon nanotubes/polythiophene composites,” Composites Science and Technology, vol. 99, pp. 141-146, 2014.
    [53] S. R. P. Gnanakan, M. Rajasekhar, and A. Subramania, “Synthesis of polythiophene nanoparticles by surfactant-assisted dilute polymerization method for high performance redox supercapacitors,” Int. J. Electrochem. Sci, vol. 4, no. 9, pp. 1289-1301, 2009.
    [54] C. Bora, C. Sarkar, K. J. Mohan, and S. Dolui, “Polythiophene/graphene composite as a highly efficient platinum-free counter electrode in dye-sensitized solar cells,” Electrochimica Acta, vol. 157, pp. 225-231, 2015.
    [55] W. Zhang, S. Zhang, Z. Zhang, H. Yang, A. Zhang, X. Hao, J. Wang, C. Zhang, and J. Pu, “2D Organic Superlattice Promoted via Combined Action of pi-pi Stacking and Dipole-Dipole Interaction in Discotic Liquid Crystals,” J Phys Chem B, vol. 121, no. 31, pp. 7519-7525, 2017.
    [56] Y.C. Wu, X.K. Ren, E.Q. Chen, H.M. Lee, J.L. Duvail, C.L. Wang, and C.S. Hsu, “Preservation of photoluminescence efficiency in the ordered phases of poly(2,3-diphenyl-1,4-phenylenevinylene) via disturbing the intermolecular π–π interactions with dendritic aliphatic side chains,” Macromolecules, vol. 45, no. 11, pp. 4540-4549, 2012.
    [57] J. Ahn, S. Park, J. H. Lee, S. H. Jung, S. J. Moon, and J. H. Jung, “Fluorescent hydrogels formed by CH-pi and pi-pi interactions as the main driving forces: an approach toward understanding the relationship between fluorescence and structure,” Chem Commun (Camb), vol. 49, no. 21, pp. 2109-2111, 2013.
    [58] S. Sivakova, D. A. Bohnsack, M. E. Mackay, P. Suwanmala, and S. J. Rowan, “Utilization of a combination of weak hydrogen-bonding interactions and phase segregation to yield highly thermosensitive supramolecular polymers,” Journal of the American Chemical Society, vol. 127, no. 51, pp. 18202-18211, 2005.
    [59] M. Azizi, and S. A. Mousavi, “CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation,” Journal of Molecular Structure, vol. 1100, pp. 401-414, 2015.
    [60] A. Dementjev, A. De Graaf, M. Van de Sanden, K. Maslakov, A. Naumkin, and A. Serov, “X-Ray photoelectron spectroscopy reference data for identification of the C3N4 phase in carbon–nitrogen films,” Diamond and related materials, vol. 9, no. 11, pp. 1904-1907, 2000.
    [61] B. Murugesan, J. Sonamuthu, N. Pandiyan, B. Pandi, S. Samayanan, and S. Mahalingam, “Photoluminescent reduced graphene oxide quantum dots from latex of Calotropis gigantea for metal sensing, radical scavenging, cytotoxicity, and bioimaging in Artemia salina: A greener route,” J Photochem Photobiol B, vol. 178, pp. 371-379, 2018.
    [62] L. J. Gerenser, “XPS studies of in situ plasma-modified polymer surfaces,” Journal of Adhesion Science and Technology, vol. 7, no. 10, pp. 1019-1040, 1993.
    [63] S.G. Hong, “The thermal-oxidative degradation of an epoxy adhesive on metal substrates: XPS and RAIR analyses,” Polymer degradation and stability, vol. 48, no. 2, pp. 211-218, 1995.
    [64] M. Fathizadeh, H. N. Tien, K. Khivantsev, Z. Song, F. Zhou, and M. Yu, “Polyamide/nitrogen-doped graphene oxide quantum dots (N-GOQD) thin film nanocomposite reverse osmosis membranes for high flux desalination,” Desalination, vol. 451, pp. 125-132, 2019.
    [65] C. Zhang, K. Wei, W. Zhang, Y. Bai, Y. Sun, and J. Gu, “Graphene Oxide Quantum dots incorporated into a thin film nanocomposite membrane with high flux and antifouling properties for low-pressure nanofiltration,” ACS Appl Mater Interfaces, vol. 9, no. 12, pp. 11082-11094, 2017.
    [66] U. Olgun, and M. Gülfen, “Effects of different dopants on the band gap and electrical conductivity of the poly(phenylene-thiazolo[5,4-d]thiazole) copolymer,” RSC Adv., vol. 4, no. 48, pp. 25165-25171, 2014.

    無法下載圖示 全文公開日期 2025/08/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE