簡易檢索 / 詳目顯示

研究生: 白炳峻
Ping-chun Pai
論文名稱: 奈米金粒子、pH感應型聚甲基丙烯酸N,N-二甲氨乙酯高分子刷合成於矽晶片表面之製備與特性
Preparation and Characterization of Poly (2-Dimethylaminoethyl Methacrylate) Brush on the Silicon Surface for pH Responsive Property with Au Nanoparticle
指導教授: 陳建光
Jem-kun Chen
口試委員: 邱顯堂
Hsien-tang Chiu
蘇清淵
Ching-Iuan Su
張豐志
Feng-chih Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 144
中文關鍵詞: 原子轉移自由基聚合法高分子刷pH感應奈米金粒子DNA
外文關鍵詞: Atom Transfer Radical Polymerization, Polymer brushes, pH Responsive, Gold Nanoparticles, DNA
相關次數: 點閱:369下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是藉由原子轉移自由基聚合法( atom transfer radical polymerization,ATRP),將聚甲基丙烯酸N,N-二甲氨乙酯 (Poly (2-Dimethylaminoethyl Methacrylate), PDMAEMA)高分子刷接枝於矽晶片表面。
    使用化學分析之X射線光電子能譜儀(X-ray photoelectron spectroscopy,XPS),證實表面自組裝起始劑及PDMAEMA高分子成功接枝於矽晶片表面;使用高解析熱電子型場發掃描式電子顯微鏡(high-resolution thermal field emission scanning electron microscopy,HRFE-SEM)與原子力顯微鏡(atomic force microscopy,AFM) 觀看PDMAEMA高分子刷表面形貌與高分子刷粒徑,經不同聚合時間2、4、6、8小時的高分子刷,其粒徑從10nm至25nm。並用表面輪廓儀(nano measurement instrument for surface roughness,Alpha-Step)測量PDMAEMA高分子刷之厚度,其厚度從90.6nm至329.3nm。由接觸角的量測證實在pH=1時PDMAEMA高分子刷呈現延展型態,而在pH=11時PDMAEMA高分子刷呈現捲曲型態。另外在反覆的酸鹼度溶液測試下,PDMAEMA高分子刷具有酸鹼應變可逆行為。
    利用PDMAEMA高分子刷之末端基帶有正電荷( R4N+)基團,將奈米金離子吸附於分子鏈上,再還原成奈米金粒子。根據證實甲苯的合成方式比去離子水的合成方式吸附奈米金粒子更多,此外,將合成於甲苯的奈米金粒子晶片浸泡於不同pH值,奈米金粒子呈現的型態也有所不同,並具有奈米金粒子型態回復的特性。藉由固體表面界面電位分析儀(Delsa nano solid interface surface zeta potential measurement system)測量其PDMAEMA與奈米金粒子表面電位,其電位-10.36至-19.98 mV。另外,測試PDMAEMA高分子刷的能力,將鯡魚精子DNA(Herring sperm DNA) 10μg/μl 分子以物理吸附方式附著於高分子刷上。經實驗證實,PDMAEMA高分子刷在pH=7溶液中會抓取DNA分子,而pH=3溶液則會釋放出DNA分子。由結果得知, PDMAEMA高分子刷可作為一種新的特定DNA的萃取方式。
    運用微影技術在矽晶圓製備出線寬比為1:2(400nm:800nm)的圖案化的光阻層,利用圖型化光阻之矽晶圓進行起始劑自組裝後,並用丙酮清洗光阻層,即可合成圖案化高分子刷。藉由圖案化高分子刷可進一步應用在生物微機電和半導體製程上。


    Poly (2-Dimethylaminoethyl Methacrylate) (PDMAEMA) polymer brushes were grafted on the silicon surface by using atom transfer radical polymerization (ATRP). The silicon surface was treated by oxygen plasma, causing the sueface to become chemically modified (hydroxyl groups). 3-aminopropyltriethoxy silane (APTES) was used to react with the hydroxyl group on the surface, α-Bromoisobutyl bromide reacted with NH2 group of APTES to form halogen groups on chain ends to be the initiator of atom transfer radical reaction. Sequentially, PDMAEMA brushes were grafted on the silicon surface.
    Electron Spectroscopy for X-ray photoelectron spectroscopy (XPS) was utilized to verity the surface element of initiator and PDMAEMA polymer brushes for each stage. We observed coil-like structure with 10nm, 13nm, 19nm and 25nm of diameters for PDMAEMA brushes after grafting for 2, 4, 6 and 8 h by atomic force microscopy (AFM) and high-resolution thermal field emission scanning electron microscopy (HRFE-SEM). Approximately linear increase in thickness of the grafted PDMAEMA layer from 90.6 to 329.3 nm was observed on the surface upon increasing the polymerization time to 8 h. Furthermore, the patterned PDMAEMA brushes with width of 400 nm were fabricated by using lithography on the silicon wafer. The patterns of PDMAEMA brushes matched perfectly with the patterns from lithography, indicating that the patterned PDMAEMA could be fabricated by using a very-large-scale integration (VLSI) system to approach commercial application.
    Contact angles on the PDMAEMA layer increased to 61.5°at PH=1, but decreased to 72.5°at PH=11, indicating a PH responsive property on the surface. At a PH of 1, the tethered PDMAEMA stretched its polymer chains to increase the hydrogen bonding between water and polymer to create a hydrophilic surface. Upon increasing PH to 11, the tethered PDMAEMA collapsed due to disappearance of positive charges, increasing hydrogen bonding among polymer to create a hydrophobic surface. The PH responsive behavior of PDMAEMA polymer brushes repeated three cycles to verity the property. Moreover, PDMAEMA layer was used to be a extractor on the surface through the PH responsive property. The positive charge on the PDMAEMA attracted a herring sperm DNA with 10μg/μl at PH = 7, a DNA capture process. Upon increasing PH to 3, the positive charge groups disappeared, causing the release of the DNA. The results suggests that The results suggest that tethered PDMAEMA brushes could be a extractor to miniaturize cartridges of sample preparation for rapid disease diagnosis through fluid device to approach the lab-on-a-chip (LOC).
    The positive charge (R4N+) groups on the side chain of PDMAEMA brush were used to synthesize gold nanoparticles on the surface in water and toluene. The sizes of Au particles, synthesized in water and toluene, were 8 and 25nm, respectively. The Au particles on the PDMAEMA side chains reduced surface zeta potential from -10.36 to -16.98 mV, indicateing the Au particles carried negative charges which is induced by R4N+ groups.

    目錄 摘 要 I ABSTRACT III 致謝 VI 表目錄 XI 圖目錄 XII 第一章 前言 1 1.1 研究背景 1 1.2 研究目的 2 第二章 文獻回顧 3 2.1高分子刷簡介 3 2.2自組裝單分子層 7 2.3原子轉移自由基聚合法 10 2.4酸鹼感應型高分子 17 2.5高分子刷吸附奈米金粒子 20 2.6高分子刷吸附生物分子 21 2.7微影製程技術 23 2.8高分子刷之電位分析 26 第三章 儀器原理 27 3.1原子力顯微鏡 27 3.2 X光光電子能譜 36 3.3接觸角量測 38 3.4高解析熱電子型場發射掃描式電子顯微鏡 43 3.5固體/液體表面界達電位量測儀 44 3.6 X-射線繞射儀 49 3.7紫外光/可見光分光光譜儀 50 3.8表面粗度測定儀 52 3.9電漿蝕刻機 52 第四章 實驗設備與方法 54 4.1實驗材料 54 4-2實驗儀器 55 4-3矽晶片上接枝高分子刷製備 57 4-4圖案化高分子刷製備 62 第五章 結果與討論 70 5.1起始劑之製備結果分析 70 5.1.1 XPS分析 70 5.1.2 HRTFE-SEM分析 71 5.2 矽晶片表面高分子刷之結果分析 73 5.2.1 XPS分析 73 5.2.2 接觸角量測分析 76 5.2.3 HRTFE-SEM分析 81 5.2.4高分子刷厚度分析 83 5.2.5 AFM表面型態分析 84 5.3 酸鹼感應型高分子刷 88 5.3.1接觸角分析 88 5.4電解質高分子刷吸附奈米金粒子 91 (1) 不同的合成方式之表面形貌 91 5.4.1 XPS分析 91 5.4.2 X光繞射分析 92 5.4.3 AFM之表面分析 93 5.4.4 HRTFE-SEM之表面形貌分析 96 (2) 浸泡不同酸鹼值溶液之表面形貌 97 5.5 高分子刷吸附與釋放生物分子分析 98 5.5.1 UV分析 100 5.5.2 XPS分析 101 5.6 PDMAEMA高分子刷圖案化之結果分析 103 5.6.1 AFM光阻表面型態分析 103 5.6.2 SEM光阻表面型態分析 104 5.6.3 AFM圖形化PDMAEMA分子刷分析 105 5.6.4 SEM圖形化PDMAEMA分子刷分析 107 5.7 高分子刷之電位分析 109 5.7.1高分子刷之界達電位分析 109 第六章 結論 111 參考文獻 113 表目錄 表一. 典型測試液體 42 表二. 起始劑的各元素百分比之XPS 70 表三. 不同聚合時間與表面能關係表 80 表四. 不同酸鹼溶液之表面能變化 89 圖目錄 圖2-1聚合物分子鏈示意圖(A)固體基材表面(B)高分子之主幹 3 圖2-2聚合物接枝在表面之構象示意圖 (A)煎餅(B)蘑菇(C)刷子 4 圖2 3各種不同介面的高分子刷 5 圖2-4 高分子刷接枝在固體表面之分類 (A1)均質高分子刷 (B)混合均質高分子刷 (C)無規律均質高分子刷 (D) 嵌段共聚高分子刷 (A2)電解質高分子刷 (A3) 液晶高分子刷 (A4) 半柔軟式高分子刷 6 圖2-5高分子刷的表面接枝方式 8 圖2-6 APTES自組裝膜形成示意圖 10 圖2 7利用ATPR合成之各種功能性的高分子 11 圖2-8活性聚合之反應機制 12 圖2-9原子轉移自由基聚合之反應機制 12 圖2-10適用原子轉移自由基聚合之單體 14 圖2-11適用原子轉移自由基聚合之起始劑 15 圖2-12各種類型的過渡金屬錯合物 16 圖2-13在不同pH值溶液高分子刷型態之變化示意圖 18 圖2-14在不同pH值溶液PVP高分子刷型態之TEM圖。A是在pH=3.1;B是在pH=4.4;C是在pH=3.1 19 圖2-15高分子刷吸附奈米金粒子示意圖 20 圖2-16高分子刷吸附奈米金粒子之TEM圖 21 圖2-17高分子刷吸附DNA之示意圖 22 圖2-18高分子刷吸附DNA之SEM與AFM 22 圖2-19微影製程之流程圖 24 圖2-20圖案化高分子刷示意圖 25 圖2-21 2微米線寬之圖案化高分子刷,AFM高度圖 25 圖2-22 10微米線寬之圖案化高分子刷,SEM圖 25 圖 3 1原子力顯微鏡的原理示意圖 28 圖 3 2探針與樣比間距離與原子力關係示意圖 29 圖 3 3原子力顯微鏡之非接觸式原理示意圖 31 圖 3 4原子力顯微鏡之非接觸式原理示意圖 33 圖 3 5原子力顯微鏡之輕敲式原理示意圖 35 圖 3 6光電子產生示意圖 37 圖 3 7 ESCA儀器圖 38 圖 3 8 接觸角示意圖 39 圖 3 9 接觸角儀器圖 42 圖 3 10掃描式電子顯微鏡原理示意圖 43 圖 3 11滑動面原理示意圖 44 圖3-12在封閉樣品池中電滲流之示意圖 46 圖3-13樣品池中電滲流的邊界條件 47 圖3-14平面樣品池和樣品池中表觀粒子遷移率的示意圖 48 圖3-15布拉格繞射原理 50 圖3-16電漿蝕刻機 53 圖4 1表面清理以及氧電漿效應示意圖 58 圖4 2形成表面自組裝膜示意圖 59 圖4 3表面接鹵素起始端示意圖 59 圖4 4 PDMAEMA高分子刷聚合示意圖 61 圖4-5表面與處理之示意圖 62 圖4-6光阻塗佈之示意圖 63 圖4-7軟烤示意圖 63 圖4-8曝光之示意圖 64 圖4-9曝後烤之示意圖 64 圖4-10顯影之示意圖 65 圖4-11硬烤之示意圖 65 圖4-12圖案化矽晶片以氧電漿處理示意圖 66 圖4-13圖案化接枝起始劑-氮端並去除光阻示意圖 67 圖4-14圖案化接枝起始劑-溴端示意圖 68 圖4-15圖案化高分子刷之示意圖 69 圖5-1為不同濃度的APTES單分子自組裝 (A) 2wt% (B) 1.2wt% (C) 0.4wt% (D) 0.04wt% 72 圖5 2 N1s XPS圖譜 73 圖5 3 Br 3d XPS圖譜 74 圖5 4 C 1s XPS圖譜 75 圖5 5 C 1s XPS之分峰圖譜 76 圖5 6 Si 2p XPS圖譜 77 圖5 7各製程之接觸角量測 78 圖5-8為各製程 (A) Si wafer (B) O2 Plasma (C) APTES (D) Br end (E) PDMAEMA之接觸角圖 79 圖5-9不同聚合時間與接觸角關係圖 80 圖5-10不同聚合時間高分子刷之HRTFE-SEM圖 (A) 2 hr (B) 4hr (C) 6hr (D) 8hr 81 圖5-11不同聚合時間高分子刷之HRTFE-SEM圖傾斜角 (A) 2hr (B) 8hr 82 圖5-12不同聚合時間與高分子刷厚度關係圖 83 圖5-13空白矽晶片表面AFM之3D圖 84 圖5-14 APTES表面AFM之3D圖 84 圖5-15起始劑表面AFM之3D圖 85 圖5-16 2小時聚合時間之PDMAEMA高分子刷AFM 3D圖 86 圖5-17 4小時聚合時間之PDMAEMA高分子刷AFM 3D圖 86 圖5-18 6小時聚合時間之PDMAEMA高分子刷AFM 3D圖 87 圖5-19 8小時聚合時間之PDMAEMA高分子刷AFM 3D圖 87 圖5-20高分子刷在不同pH值溶液下與接觸角之關係圖 88 圖5-21高分子刷在不同pH值溶液下型態示意圖 89 圖5-22 PDMAEMA在不同pH值溶液反覆測量接觸角 90 圖5-23奈米金粒子吸附在高分子刷示意圖 91 圖5-24奈米金粒子吸附在高分子刷之XPS分析圖 91 圖5-25奈米金粒子吸附在高分子刷之XRD分析圖 92 圖5-26奈米金粒子合成於去離子水,高分子刷之型態示意圖 93 圖5-27奈米金粒子合成於去甲苯,高分子刷之型態示意圖 93 圖5-28奈米金粒子合成於去離子水之AFM相圖。聚合時間:(A) 2hr (B) 4hr (C) 6hr (D) 8hr 94 圖5-29奈米金粒子合成於甲苯之AFM相圖。聚合時間:(A) 2hr (B) 4hr (C) 6hr (D) 8hr 94 圖5-30奈米金粒子合成於去離子水之SEM圖 94 圖5-31奈米金粒子合成於甲苯之SEM圖 94 圖5-32浸泡不同PH值溶液之AFM相圖。(A)甲苯 (B) pH=1 (C) pH=7 (D) pH=11 94 圖5-33浸泡於甲苯溶液之AFM相圖 99 圖5-34高分子刷吸附DNA之UV光譜圖 94 圖5-35高分子刷吸附DNA之XPS分析圖 94 圖5-36高分子刷吸附DNA之酸洗示意圖 94 圖5-37高分子刷吸附DNA之酸洗XPS分析圖 94 圖5-38電子束微影製備之線寬400nm的直線圖案AFM圖 94 圖5-39電子束微影製備之線寬400nm的直線圖案SEM圖(A)20000倍 (B) 40000倍 94 圖5-40為線寬400nm的表面AFM圖 (A) 5μm2 (B) 2μm2 (C) 500nm2 94 圖5-41為線寬400nm的表面SEM圖(A)15000倍(B) 25000倍 94 圖5-42為各樣品的表觀遷移率 (A) 矽晶片 (B) PDMAEMA高分子刷 (C) PDMAEMA高分子刷吸附奈米金粒子 94

    1.Jurgen Ruhe., Matthias Ballauff. , Markus Biesalski., Peter Dziezok.
    , Franziska Grohn., Diethelm Johannsmann., Nikolay Houbenov., Norbert Hugenberg., Rupert Konradi., Sergiy Minko., Michail Motornov., Roland R. Netz., Manfred Schmidt., Christian Seidel., Manfred Stamm., Tim Stephan., Denys Usov., Haining Zhang.,Polyelectrolyte Brushes. Adv Polym Sci . 2004, 165:79–150.
    2.B. Zhao, W.J. Brittain., Polymer brushes: surface-immobilized
    macromolecules. Prog. Polym. Sci. 2000, 25, 677–710.
    3.S. T. MILNER., Polymer Brushes. Science. 251:905-914.
    4.Jeffrey Pyun., Krzyszt of Matyjaszewski. Synthesis of Nano-
    Composite Organic/Inorganic Hybrid Materials Using Controlled/
    “Living” Radical Polymerization. Chem. Mater. 2001, 13, 3436-3448.
    5.John A. Howarter., Jeffrey P. Youngblood., Optimization of Silica
    Silanization by 3-Aminopropyltriethoxysilane. Langmuir 2006, 22, 11142-11147.
    6.A. Simon, T. Cohen-Bouhacina, M. C. Port’e, J. P. Aim’e, C.
    Baquey. Study of Two Grafting Methods for Obtaining a 3-Aminopropyltriethoxysilane Monolayer on Silica Surface. J Colloid Interf Sci. 2002, 251, 278–283.
    7.Krzyszt of Matyjaszewski, Jianhui Xia. Atom Transfer Radical
    Polymerization. Chem. Rev. 2001, 101, 2921-2990.
    8.J. Xue, L. Chen, H. L. Wang, Z. B. Zhang, X. L. Zhu, E. T. Kang,
    K.G.Neoh. Stimuli-Responsive Multifunctional Membranes of Controllable Morphology from Poly(vinylidenefluoride)-graft-Poly
    [2-(N,N-dimthylamino) ethyl methacrylate] Prepared via Atom Transfer Radical Polymerization. Langmuir 2008, 24, 14151-14158.
    9.Xiaofeng Sui, Jinying Yuan, Mi Zhou, Jun Zhang, Haijun Yang,
    Weizhong Yuan, Yen Wei, and Caiyuan Pan. Synthesis of Cellulose- graft-Poly(N,N-dimethylamino-2-ethyl methacrylate) Copolymers via Homogeneous ATRP and Their Aggregates in Aqueous Media. Biomacromolecules 2008, 9, 2615–2620.
    10.S. Sanjuan, P. Perrin, N. Pantoustier, Y. Tran. Synthesis and
    Swelling Behavior of pH-Responsive Polybase Brushes. Langmuir 2007, 23, 5769-5778.
    11.Sarah Sanjuan, Yvette Tran. Stimuli-Responsive Interfaces Using
    Random Polyampholyte Brushes. Macromolecules 2008, 41, 8721-872.
    12.Dongxiang Li, Qiang He, Yang Yang, Helmuth Moohwald, Junbai
    Li. Two-Stage pH Response of Poly(4-vinylpyridine) Grafted Gold Nanoparticles. Macromolecules 2008, 41, 7254-7256.
    13.P. van de Wetering, N. J. Zuidam, M. J. van Steenbergen, O. A. G. J.
    van der Houwen, W. J. M. Underberg, W. E. Hennink. A Mechanistic Study of the Hydrolytic Stability of Poly(2-(dimethylamino)ethyl methacrylate). Macromolecules 1998, 31, 8063-8068.
    14.Byeong Su Kim, Haifeng Gao, Avni A. Argun, Krzyszt of Matyjaszewski, Paula T. Hammond. All-Star Polymer Multilayers as pH-Responsive Nanofilms. Macromolecules 2009, 42, 368-375.
    15.Dongxiang Li, Qiang He, Yue Cui, Junbai Li. Fabrication of pH-Responsive Nanocomposites of Gold Nanoparticles/ Poly(4-vinylpyridine) . Chem. Mater. 2007, 19, 412-417.
    16.Josefina Lindqvist, Daniel Nystrom, Emma ostmark, Per Antoni, Anna Carlmark, Mats Johansson, Anders Hult, Eva Malmstrom. Intelligent Dual-Responsive Cellulose Surfaces via Surface-Initiated ATRP. Biomacromolecules 2008, 9, 2139-2145.
    17.S. Dai, P. Ravi, C. H. Tan, K. C. Tam. Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60] Fullerene-Containing Polymer. Langmuir 2004, 20, 8569-8575.
    18.Sarah Sanjuan, Yvette Tran. Synthesis of Random Polyampholyte Brushes by Atom Transfer Radical Polymerization. J Polym Sci pol chem 2008,46,4305-4319.
    19.Felix A. Plamper, Markus Ruppel, Alexander Schmalz, Oleg Borisov, Matthias Ballauff, Axel H. E. Muller. Tuning the Thermoresponsive Properties of Weak Polyelectrolytes: Aqueous Solutions of Star- Shaped and Linear Poly(N,N-dimethylaminoethy Methacrylate). Macromolecules 2007, 40, 8361-8366.
    20.Smrati Gupta, Mukesh Agrawal, Petra Uhlmann, Frank Simon, Manfred Stamm. Poly(N-isopropyl acrylamide)-Gold Nanoassem- -blies on Macroscopic Surfaces: Fabrication, Characterization, and Application. Chem. Mater. 2010, 22, 504–509.
    21.Kaiqiang Chen, Dehai Liang, Jia Tian, Linqi Shi, and Hanying Zhao.In-Situ Polymerization at the Interfaces of Micelles: A “Grafting From” Method to Prepare Micelles with Mixed Coronal Chains. J. Phys. Chem. B 2008, 112, 12612–12617.
    22.Mingming Zhang, Li Liu, Chenglin Wu, Guoqi Fu, Hanying Zhao,Binglin He. Synthesis, characterization and application of well- defined environmentally responsive polymer brushes on the surface of colloid particles. Polymer 2007, 48, 1989-1997.
    23.Iryna Tokareva, Sergiy Minko, Janos H. Fendler, Eliza Hutter. Nanosensors Based on Responsive Polymer Brushes and Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 2004, 126, 15950-15951.
    24.G. Neri, A.M. Visco, S. Galvagno, A. Donatob, M. Panzalorto. Au/iron oxide catalysts: temperature programmed reduction and X-ray diffraction characterization. Thermochimica Acta 1999, 329,39-46.
    25.Gokcen Birlik Demirel,Samet Coşkun, Meryem Kalkan, Tuncer caykara. Preparation of a Novel Polymer-Modified Si Surface for DNA Immobilization. Macromol. Biosci. 2009, 9, 472–479.
    26.Linglu Yang, Shuo Bai, Dunshen Zhu, Zhaohui Yang, Maofeng Zhang, Zhifeng Zhang,Erqiang Chen, and Weixiao Cao. Superhydrophobic Patterned Film Fabricated from DNA Assembly and Ag Deposition. J. Phys. Chem. C 2007, 111, 431-434.
    27.Song Lin, Fusheng Du, Yang Wang, Shouping Ji, Dehai Liang, Lei Yu, Zichen Li. An Acid-Labile Block Copolymer of PDMAEMA and PEG as Potential Carrier for Intelligent Gene Delivery Systems. Biomacromolecules 2008, 9, 109–115.
    28.Sabine Pirotton, Caroline Muller, Nadege Pantoustier, Francois Botteman, Sebastien Collinet, Christian Grandfils, Guy Dandrifosse, Philippe Degee, Philippe Dubois, Martine Raes. Enhancement of Transfection Efficiency Through Rapid and Noncovalent Post- PEGylation of Poly(Dimethylaminoethyl Methacrylate)/DNA Complexes. Pharm.Res. 2004, 21,1471-1479.
    29. Peng Zhang, Wenguang Liu. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials 2010,31, 3087–3094.
    30. Rong Dong, Sitaraman Krishnan, Barbara A. Baird, Manfred Lindau, Christopher K. Ober. Patterned Biofunctional Poly- -(acrylic acid) Brushes on Silicon Surfaces. Biomacromolecules 2007, 8, 3082-3092.
    31.Rahul R. Shah, David Merreceyes, Marc Husemann, Ian Rees,
    Nicholas L. Abbott, Craig J. Hawker, James L. Hedrick. Using Atom Transfer Radical Polymerization To Amplify Monolayers of Initiators Patterned by Microcontact Printing into Polymer Brushes for Pattern Transfer. Macromolecules 2000, 33, 597-605.
    32. F. J. Xu, Y. Song, Z. P. Cheng, X. L. Zhu, C. X. Zhu, E. T. Kang, K. G. Neoh. Controlled Micropatterning of a Si(100) Surface by Combined Nitroxide-Mediated and Atom Transfer Radical Polymerizations. Macromolecules 2005, 38, 6254-6258.
    33.Feng Zhou, Lei Jiang, Weimin Liu, Qunji Xue. Fabrication of Chemically Tethered Binary Polymer-Brush Pattern through Two- -Step Surface-Initiated Atomic-Transfer Radical Polymerization. Macromol. Rapid Commun. 2004, 25, 1979–1983.
    34.A. Genua, J. A. Aldunćın, J. A. Pomposo, H. Grande, N. Kehagias, V. Reboud, C. Sotomayor, I. Mondragon, D. Mecerreyes. Functional patterns obtained by nanoimprinting lithography and subsequent growth of polymer brushes. Nanotechnology 2007, 18, 215301.
    35.Marc Husemann, Michael Morrison, Didier Benoit, Jane Frommer, C. Mathew Mate, William D. Hinsberg, James L. Hedrick, Craig J. Hawker. Manipulation of Surface Properties by Patterning of Covalently Bound Polymer Brushes. J. Am. Chem. Soc. 2000, 122, 1844-1845.
    36.Amalvy, J. I.Wanless, E. J. Li, Y.; Michailidou, V. Armes, S. P. Langmuir 2004, 20, 8992–8999.
    37.Olga Schepelina, Ilya Zharov. Poly(2-(dimethylamino)ethyl methacrylate)-Modified Nanoporous Colloidal Films with pH and Ion Response. Langmuir 2008, 24, 14188-14194.
    38.Verbaan F.J, Oussoren C, van Dam IM, et al. The fate of poly(2-dimethylaminoethyl)methacrylate-based polyplexes after
    intravenous administration. Int J Pharm 2001, 214, 99–101.
    39.F. J. Verbaan,C. Oussoren,C. J. Snel,D. J. A. Crommelin,W. E. Hennink,G. Storm.Steric stabilization of poly(2-(dimethylamino)- -ethylmethacrylate)based polyplexes mediates prolonged circul- -ation and tumor targeting in mice. J Gene Med 2004, 6, 64–75.
    40.Jong-Yuh Cherng, Petra van de Wetering, Herre Talsma, Daan J.A. crommelin, Win E. Hennink. Effect of Size and Serum Proteins on Transfection Efficiency of Poly((2-dimethylamino)ethyl Methacry -late)-Plasmid Nanoparticles. Pharm.Res 1996,13,1038-1042.
    41.Severine Munier, Isabelle Messai, Thierry Delair, Bernard Verrier, Yasemin Ataman-onal. Cationic PLA nanoparticles for DNA delivery: Comparison of three surface polycations for DNA binding, protectionand transfectio operties. Colloid Surface B 2005,43,163–173.
    42.W. H. Yu, E. T. Kang, K. G. Neoh. Controlled Grafting of Well- Defined Polymers on Hydrogen-Terminated Silicon Substrates
    by Surface-Initiated Atom Transfer Radical Polymerization. J. Phys. Chem. B 2003, 107, 10198-10205.
    43.Qian Yang, Jing Tian, Meng-Xin Hu, and Zhi-Kang Xu. Construction of a Comb-like Glycosylated Membrane Surface by a Combination of UV-Induced Graft Polymerization and Surface-Initiated ATRP. Langmuir 2007, 23, 6684-6690.
    44.Chang Xu, Tao Wu, Charles Michael Drain, James D. Batteas, Michael J. Fasolka, Kathryn L. Beers. Effect of Block Length on Solvent Response of lock Copolymer Brushes: Combinatorial Study with Block Copolymer Brush Gradients. Macromolecules 2006, 39, 3359-3364.
    45.Felix A. Plamper, Alexander Schmalz, Evis Penott-Chang, Markus Drechsler, Arben Jusufi, Matthias Ballauff, Axel H. E. Mller. Synthesis and Characterization of Star-Shaped Poly(N,N- dimethy
    -laminoethyl methacrylate) and Its Quaternized Ammonium Salts. Macromolecules 2007, 40, 5689-5697.
    46.Alexander S. J Phys 1977,28,977.
    47.de Gennes PG. J Phys 1976,37,1445.
    48.de Gennes PG . Macromolecules 1980,13,1069.
    49.Kopf A, Baschnagel J, Wittmer J, Binder K. Macromolecules 1996,29,1433.
    50.Zajac R, Chakrabati A. Phys Rev 1995,52,6536.
    51.Ejaz M, Tsujii Y, Fukuda T. Polymer 2001, 42,6811.
    52.Biesalski M, R he J. Macromolecules 1999, 32,2309
    53.Biesalski M, R he J Langmuir 2000,16,1943.
    54.Delamarche, E., Michel, B., Kang, H., Gerber, C.Thermal Stability of Self-Assemble Monolayers.Langmuir 1994,10,4103-4108.
    55.Deepthi Gopireddy,Scott M. Husson. Room Temperature Growth of Surface-Confined Poly(acrylamide) fromSelf-Assembled Monolayers Using AtomTransfer Radical Polymerization. Macromolecules 2002, 35, 4218-4221.

    無法下載圖示 全文公開日期 2015/07/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE