簡易檢索 / 詳目顯示

研究生: 李彥亨
Yan-Heng Li
論文名稱: 非水溶性多精胺酸聚天門冬胺酸-聚乙烯亞胺接枝物結合球狀金奈米粒子進行基因傳遞探討
Assessment of gene delivery by insoluble multi-L-arginyl-poly-L-aspartate-polyethylenimine conjugates with spherical gold nanoparticles
指導教授: 曾文祺
Wen-Chi Tseng
口試委員: 曾文祺
Wen-Chi Tseng
方翠筠
Tsuei-Yun Fang
林析右
Shi-Yow Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 147
中文關鍵詞: 多精胺酸聚天門冬胺酸聚乙烯亞胺金奈米粒子基因轉染
外文關鍵詞: cyanophycin, polyethyleneimine, gold nanoparticles, gene transfection
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由基因重組大腸桿菌所製備的非水溶性多精胺酸聚天門冬胺酸,結構上以天門冬胺酸為主鏈,精胺酸與離胺酸為側鏈所組成,目前已被證實是一種溫敏性高分子,具有上限臨界溶解溫度 (upper critical solution temperature, UCST),透過溫度調控而使其在水溶液中型態產生變化,應用於基因轉染。
    本研究利用1-乙基-(3-二甲基氨基丙基)碳二亞胺 (EDC) 和N-羥基琥珀醯亞胺 (NHS) 作為羧基活化劑,使具有羧基的多精胺酸聚天門冬胺酸與聚乙烯亞胺上的胺基形成共價鍵鍵結,接枝物保留良好的生物相容性和溫度敏感性特點作為基因載體。
    接枝物利用溫度敏感性和靜電作用的特性與球狀金奈米和DNA結合成複合體,由細胞的內吞作用攝入至細胞中,並以近紅外光照射,引發局部升溫,刺激DNA釋放,利用調整紅外光強度和照射時間可達到最佳的轉染效率。透過流式細胞儀和β-galactosidase基因表現分析,確認含金奈米的複合體所引發的光熱效應可以提高基因的表現量。證實此複合體在基因傳遞方面具有相當的潛力。


    The insoluble multi- L-arginyl-poly-L -aspartate (MAPA) produced by recombinant Escherichia coli is composed of aspartate as the main chain with arginine and lysine as the side chains. It has been shown to be a thermo-responsive polymer with upper critical solution temperature (UCST) property, By thermal control to change its form in aqueous solution, it can be expected to be used in gene transfection.
    In this study, 1-(3-dimethylamino-propyl)-3-ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) were used as carboxyl activation agents to covalently bond the carboxyl-functionalized MAPA with polyethyleneimine. The cross-linked polymer retains good biocompatibility and thermo-responsiveness.
    Through thermo-responsive and electrostatic interactions, MAPA forms complexes with spherical gold nanoparticles and DNA, and the complex can enter cells through endocytosis. Then, using infrared light irradiation to induce localized heating could stimulate DNA release. Adjusting the intensity and duration of the infrared light irradiation can achieve high transfection efficiency as analyzed by flow cytometry and MUG assay. It has been shown that the photothermal property of the complexes containing gold nanoparticle-containing can increase the expression of genes. The delivery system shows potential in gene transfection.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 IX 表目錄 XIII 第一章 緒論 1 第二章 文獻回顧 2 2.1 多精胺酸聚天門冬胺酸 2 2.1.1 多精胺酸聚天門冬胺酸簡介 2 2.1.2 多精胺酸聚天門冬胺酸應用 4 2.2 基因轉染 5 2.2.1 基因轉染簡介 5 2.2.2 基因傳遞方法 7 2.3 聚乙烯亞胺特性 18 2.4 球狀金奈米應用 21 2.5 溫敏性高分子 23 第三章 實驗材料與方法 26 3.1 實驗藥品 26 3.2 實驗儀器 29 3.3 藥品配置 30 3.3.1 基因重組大腸桿菌的培養 30 3.3.2 蛋白質電泳 32 3.3.3 多精胺酸聚天門冬胺酸的胺基酸組成分析 34 3.3.4 非水溶性多精胺酸聚天門冬胺酸-聚乙烯亞胺定量 35 3.3.5 L929細胞毒性測試 36 3.3.6 質體核酸純化 37 3.3.7 MUG Assay 39 3.4 實驗步驟 41 3.4.1 基因重組大腸桿菌之培養 41 3.4.2 破菌與純化 41 3.4.3 蛋白質電泳 42 3.4.4 多精胺酸聚天門冬胺酸之胺基酸組成分析 43 3.4.5 球狀金奈米粒子的合成 44 3.4.6 非水溶性多精胺酸聚天門冬胺酸-聚乙烯亞胺合成 44 3.4.7 iMAPA-PEI定量 47 3.4.8 iMAPA-PEI之相轉變分析 48 3.4.9 iMAPA-PEI 物理特性分析 49 3.4.10 複合體粒徑與電位分析 50 3.4.11 製備及純化質體核酸 52 3.4.12 細胞轉染和毒性測試 55 3.4.13 MUG 螢光檢測法 58 3.4.14 Bradford protein定量分析 60 3.4.15 DNA電泳 61 3.4.16 定量DNA釋放 62 3.4.17 UV-Vis 圖譜分析 62 3.4.18 流式細胞儀轉染處理方法 63 第四章結果與討論 64 4.1 iMAPA-PEI物理特性分析 64 4.1.1 定量iMAPA含量 64 4.1.2 iMAPA-PEI電位分析 66 4.1.3 核磁共振波譜法分析 68 4.1.4 傅立葉轉換紅外線光譜儀分析 70 4.1.5 交聯相轉變分析 72 4.2 複合體特性分析 75 4.2.1 DNA電泳 75 4.2.2 穿透式電子顯微鏡分析 76 4.2.3 粒徑分析 79 4.2.4 電位分析 80 4.2.5 UV-Vis 圖譜分析 82 4.3 MUG螢光檢測法與Bradford protein定量分析 83 4.3.1 MUB標準曲線 83 4.3.2 BSA標準曲線 85 4.4 iMAPA-PEI和PEI 相對轉染效率分析 86 4.5 L929細胞毒性測試 88 4.5.1 不同濃度iMAPA-PEI和PEI對細胞毒性影響 88 4.5.2 MTT細胞毒性與相對轉染效率分析 91 4.5.3 加入金奈米和照光對細胞毒性影響 92 4.6 顯微鏡下轉染效率 96 4.7 不同照光條件對相對轉染效率影響 105 4.8 探討不同照光時間點對相對轉染效率影響 106 4.9 螢光定性和定量DNA釋放 108 4.9.1 DNA電泳定性DNA釋放 108 4.9.2 螢光定量DNA釋放 109 4.10 流式細胞儀轉染效率分析 111 第五章 結論 116 附錄 117 附錄一 SDS-PAGE分析sMAPA & iMAPA分子量 117 附錄二 HPLC分析MAPA的胺基酸組成 118 附錄三 粒徑分析 119 附錄四 電位分析 121 參考文獻 125

    1. Ziegler, K, Diener A, Herpin C, Richter R, Deutzmann R, Lockau W. Molecular characterization of cyanophycin synthetase, the enzyme catalyzing the biosynthesis of the cyanobacterial reserve material multi-L-arginyl-poly-L-aspartate (cyanophycin). Eur J Biochem, 1998. 254(1): p. 154-9.
    2. Dembinska, M.E. and M.M. Allen, Cyanophycin Granule Size Variation in Aphanocapsa. Microbiology, 1988. 134(2): p. 295-298.
    3. Tseng WC, Fang TY, Lin YC, Huang SJ, Huang YH. Reversible Self-Assembly Nanovesicle of UCST Response Prepared with Multi-l-arginyl-poly-l-aspartate Conjugated with Polyethylene Glycol.Biomacromolecules, 2018. 19(12): p. 4585-4592.
    4. Tseng WC, Fang TY, Cho CY, Chen PS, Tsai CS. Assessments of Growth Conditions on the Production of Cyanophycin by Recombinant Escherichia Coli Strains Expressing Cyanophycin Synthetase Gene. Biotechnol Progress 2012;28(2):358-63
    5. Lars Wiefel, Alexander Steinbüchel. Solubility Behavior of Cyanophycin Depending on Lysine Content. Applied and Environmental Microbiology (2014) 80:1091-1096.
    6. Noreña-Caro, D. and M.G. Benton, Cyanobacteria as photoautotrophic biofactories of high-value chemicals. Journal of CO2 Utilization, 2018. 28: p. 335-366.
    7. Kwiatos, N. and A. Steinbüchel, Cyanophycin Modifications-Widening the Application Potential. Front Bioeng Biotechnol, 2021. 9: p. 763804.
    8. Georgilis, E., et al., Nanoparticles based on natural, engineered or synthetic proteins and polypeptides for drug delivery applications. International Journal of Pharmaceutics, 2020. 586: p. 119537.
    9. Santana-Armas, M.L. and C. Tros de Ilarduya, Strategies for cancer gene-delivery improvement by non-viral vectors. International Journal of Pharmaceutics, 2021. 596: p. 120291.
    10. Sivarajah, S., K. Emerick, and H.L. Kaufman, What Surgeons Need to Know About Gene Therapy for Cancer. Advances in Surgery, 2022. 56(1): p. 151-168
    11. Ulas, T. and M.S. Dal, Gene therapy approaches for sickle cell anemia. Transfusion and Apheresis Science, 2023. 62(2): p. 103677.
    12. Zhang, Z., W. Hou, and S. Chen, Updates on CRISPR-based gene editing in HIV-1/AIDS therapy. Virologica Sinica, 2022. 37(1): p. 1-10.
    13. Arora, S., T. Kanekiyo, and J. Singh, Functionalized nanoparticles for brain targeted BDNF gene therapy to rescue Alzheimer's disease pathology in transgenic mouse model. International Journal of Biological Macromolecules, 2022. 208: p. 901-911.
    14. Kumar, R., N.R. Sinha, and R.R. Mohan, Corneal gene therapy: Structural and mechanistic understanding. The Ocular Surface, 2023. 29: p. 279-297.
    15. Jain, Mittal S, Tripathi LP, Nussinov R, Ahmad S. Host-pathogen protein-nucleic acid interactions: A comprehensive review. Computational and Structural Biotechnology Journal, 2022. 20: p. 4415-4436.
    16. Sheen, J. and S. Kay, Cell signalling and gene regulation: Exploring new functions and actions of regulatory molecules. Current Opinion in Plant Biology, 2004. 7(5): p. 487-490.
    17. Wang, H, Tenkumo T, Nemoto E, Kanda Y, Ogawa T, Sasaki K. Introduction of tenomodulin by gene transfection vectors for rat bone tissue regeneration. Regenerative Therapy, 2023. 22: p. 99-108.
    18. Yeh, L.-C.C. and J.C. Lee. Co-transfection with the osteogenic protein (OP)-1 gene and the insulin-like growth factor (IGF)-I gene enhanced osteoblastic cell differentiation. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006. 1763(1): p. 57-63.
    19. Zhang P, Li X, Xu Q, Wang Y, Ji J. Polydopamine nanoparticles with different sizes for NIR-promoted gene delivery and synergistic photothermal therapy. Colloids and Surfaces B: Biointerfaces, 2021. 208: p. 112125.
    20. Ma Y, Lei Z, Wu D, Shen Y, Sun M. A neural network estimation model based light dose control method and system for low-temperature photothermal therapy. Biomedical Signal Processing and Control, 2023. 85: p. 104935.
    21. Qi K , Sun B, Liu S-y, Zhang M. Research progress on carbon materials in tumor photothermal therapy. Biomedicine & Pharmacotherapy, 2023. 165: p. 115070
    22. Liao, Yulong, Xin Wang, Jingyi Zhu, Wenkai Yu, Yuncao Li, Ziyang Wang, and Lei Wang. Peapodlike Phenol-Formaldehyde Resin Nanofiber Confined One-Dimensional Au Nanoparticle Arrays for Enhanced Photothermal Therapy. Materials Today Communications, 2023: p. 106536.
    23. Deng, Y., E. Li, X. Cheng, J. Zhu, S. Lu, C. Ge, H. Gu, and Y. Pan. Facile preparation of hybrid core-shell nanorods for photothermal and radiation combined therapy. Nanoscale, 2016. 8(7): p. 3895-3899.
    24. Qiu, Chong, Yanyan Wu, Qiuyan Guo, Qiaoli Shi, Junzhe Zhang, Yuqing Meng, Fei Xia, and Jigang Wang. Preparation and application of calcium phosphate nanocarriers in drug delivery. Materials Today Bio, 2022. 17: p. 100501.
    25. Neuhaus, Bernhard, Benjamin Tosun, Olga Rotan, Annika Frede, Astrid M. Westendorf, and Matthias Epple. Nanoparticles as transfection agents: a comprehensive study with ten different cell lines. RSC Advances, 2016. 6(22): p. 18102-18112.
    26. Xu, E., W.M. Saltzman, and A.S. Piotrowski-Daspit, Escaping the endosome: assessing cellular trafficking mechanisms of non-viral vehicles. Journal of Controlled Release, 2021. 335: p. 465-480.
    27. Nsairat, Hamdi, Walhan Alshaer, Fadwa Odeh, Ezzaldeen Esawi, Dima Khater, Abeer Al Bawab, Mohamed El-Tanani, Abdalla Awidi, and Mohammad S. Mubarak. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano, 2023. 11: p. 100132.
    28. Zhang, Yuan, Xian Rong Qi, Yan Gao, Lai Wei, Yoshie Maitani, and Tsuneji Nagai. Mechanisms of co-modified liver-targeting liposomes as gene delivery carriers based on cellular uptake and antigens inhibition effect. Journal of Controlled Release, 2007. 117(2): p. 281-290.
    29. Elbayomi, Smaher M., Xuan Nie, Ye-Zi You, and Tamer M. Tamer. Hydrogen bonds in polycation improve the gene delivery efficiency in the serum-containing environment. Journal of Saudi Chemical Society, 2021. 25(12): p. 101361.
    30. Elzes, M. Rachèl, Ine Mertens, Ondrej Sedlacek, Bart Verbraeken, Aniek C. A. Doensen, Maarten A. Mees, Mathias Glassner, Somdeb Jana, Jos M. J. Paulusse, and Richard Hoogenboom. Linear Poly(ethylenimine-propylenimine) Random Copolymers for Gene Delivery: From Polymer Synthesis to Efficient Transfection with High Serum Tolerance. Biomacromolecules, 2022. 23(6): p. 2459-2470.
    31. Meng, Ying, Shanshan Wang, Chengyi Li, Min Qian, Xueying Yan, Shuangchao Yao, Xiyue Peng, Yi Wang, and Rongqin Huang Photothermal combined gene therapy achieved by polyethyleneimine-grafted oxidized mesoporous carbon nanospheres. Biomaterials, 2016. 100: p. 134-142.
    32. Hong, H. and Y. Lee, Generation of hematopoietic lineage cell-specific chimeric mice using retrovirus-transduced fetal liver cells. STAR Protocols, 2022. 3(3): p. 101526.
    33. Pupo, A., A. Fernandez, S. H. Low, A. Francois, L. Suarez-Amaran, and R. J. Samulski. AAV vectors: The Rubik’s cube of human gene therapy. Molecular Therapy, 2022. 30(12): p. 3515-3541.
    34. Nsairat, Hamdi, Walhan Alshaer, Fadwa Odeh, Ezzaldeen Esawi, Dima Khater, Abeer Al Bawab, Mohamed El-Tanani, Abdalla Awidi, and Mohammad S. Mubarak. Recent advances in using liposomes for delivery of nucleic acid-based therapeutics. OpenNano, 2023. 11: p. 100132.
    35. Uchida, Masaki, Xiong Wei Li, Peter Mertens, and H. Oya Alpar. Transfection by particle bombardment: Delivery of plasmid DNA into mammalian cells using gene gun. Biochimica et Biophysica Acta (BBA) - General Subjects, 2009. 1790(8): p. 754-764.
    36. Aps,Luana R. M. M., Milene B. Tavares, Julio H. K. Rozenfeld, M. Teresa Lamy, Luís C. S. Ferreira, and Mariana O. Diniz. Bacterial spores as particulate carriers for gene gun delivery of plasmid DNA. Journal of Biotechnology, 2016. 228: p. 58-66.
    37.Jakstys B, Jakutaviciute M, Uzdavinyte D, Satkauskiene I, Satkauskas S. Correlation between the loss of intracellular molecules and cell viability after cell electroporation. Bioelectrochemistry, 2020. 135: p. 107550.
    38. Jacobs Iv EJ, Graybill PM, Jana A, Agashe A, Nain AS, Davalos RV. Engineering high post-electroporation viabilities and transfection efficiencies for elongated cells on suspended nanofiber networks. Bioelectrochemistry, 2023. 152: p. 108415.
    39. Beaujean, Manon, Rienke F. Uijen, Jeroen D. Langereis, David Boccara, Denise Dam, Angèle Soria, Gert Veldhuis, Lucille Adam, Olivia Bonduelle, Nicole N. van der Wel, Joen Luirink, Eric Pedruzzi, Jeroen Wissink, Marien I. de Jonge, and Behazine Combadière. The immunological effects of intradermal particle-based vaccine delivery using a novel microinjection needle studied in a human skin explant model. Vaccine, 2023. 41(13): p. 2270-2279.
    40. Berg, K., Photochemical internalization (PCI) - an intracellular drug delivery technology for treatment of solid tumors. Photodiagnosis and Photodynamic Therapy, 2023. 41: p. 103453.
    41. Tortajada, L., C. Felip-León, and M.J. Vicent, Polymer-based non-viral vectors for gene therapy in the skin. Polymer Chemistry, 2022. 13(6): p. 718-735.
    42. Han, J., H.S. Hwang, and K. Na, TRAIL-secreting human mesenchymal stem cells engineered by a non-viral vector and photochemical internalization for pancreatic cancer gene therapy. Biomaterials, 2018. 182: p. 259-268.
    43. Wang, Xiaowen, Zhen Luo, Qiuyue Hu, Wei Tang, Hequan Lu, Changle Ma, Zenglan Wang, Ahmedov Miraziz Baltaevich, and Xiangqiang Kong. Light induced shoot-sourced transcription factor HY5 regulates the nitrate uptake of cotton by shoot-to-root signal transport. Plant Physiology and Biochemistry, 2023. 200: p. 107738.
    44. Kim, Jinhwan, Juhee Park, Hyunwoo Kim, Kaushik Singha, and Won Jong Kim. Transfection and intracellular trafficking properties of carbon dot-gold nanoparticle molecular assembly conjugated with PEI-pDNA. Biomaterials, 2013. 34(29): p. 7168-7180.
    45. Yamada, Mayumi, Shinji C. Nagasaki, Yusuke Suzuki, Yukinori Hirano, and Itaru Imayoshi. Optimization of Light-Inducible Gal4/UAS Gene Expression System in Mammalian Cells. iScience, 2020. 23(9): p. 101506.
    46. Rezaeivala, Zahra, Armin Imanparast, Zahra Mohammadi, Bahareh Khalili Najafabad, and Ameneh Sazgarnia. The multimodal effect of Photothermal/Photodynamic/Chemo therapies mediated by Au-CoFe2O4 @Spiky nanostructure adjacent to mitoxantrone on breast cancer cells. Photodiagnosis and Photodynamic Therapy, 2023. 41: p. 103269.
    47. Godbey, W.T., K.K. Wu, and A.G. Mikos, Poly(ethylenimine) and its role in gene delivery. Journal of Controlled Release, 1999. 60(2): p. 149-160.
    48. Zhang, Yong, Bingyu Mei, Binhao Shen, Lingyi Jia, Jun Liao, and Wenkun Zhu. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydrate Polymers, 2023. 312: p. 120834.
    49. Peñas-Sanjuán, Antonio, James A. Anderson, Rafael López-Garzón, Manuel Pérez-Mendoza, and Manuel Melguizo. Carbon-supported statistically distributed polyethyleneimine/palladium (II) complexes as efficient and sustainable Sonogashira catalysts. Reactive and Functional Polymers, 2023. 190: p. 105643.
    50. Ren, Yuxuan, Yachao Xu, Jiahui Zhu, Qi Liu, Jing Yu, Peili Liu, Jun Wang, and Rumin Li. Photocatalytic reduction of uranium (VI) by 2D-perylene diimide with surface cross-linked polyethyleneimine. Applied Surface Science, 2023. 635: p. 157554.
    51. Cagdas Tunali, Beste, Omer Akturk, Durukan Sahingoz, Mustafa Turk, and Ayten Celebi Keskin. Synthesis and characterization of polyethyleneimine/silk fibroin/gold nanoparticle nanocomposites: Potential application as a gene carrier in breast cancer cell lines. European Polymer Journal, 2023. 191: p. 112042.
    52. Rajesh, R., M.R. Rekha, and C.P. Sharma, Evaluation of lauryl chitosan graft polyethyleneimine as a potential carrier of genes and anticancer drugs. Process Biochemistry, 2012. 47(7): p. 1079-1088.
    53. Gök, Mehmet Koray, Kamber Demir, Erdal Cevher, Serhat Pabuccuoğlu, and Saadet Özgümüş. Efficient polycation non-viral gene delivery system with high buffering capacity and low molecular weight for primary cells: Branched poly(β-aminoester) containing primary, secondary and tertiary amine groups. European Polymer Journal, 2022. 166: p. 111046.
    54. Dunlap, David D., Alessia Maggi, Marco R. Soria, and Lucia Monaco. Nanoscopic structure of DNA condensed for gene delivery. Nucleic Acids Research, 1997. 25(15): p. 3095-3101.
    55. Klemm, A.R., D. Young, and J.B. Lloyd, Effects of Polyethyleneimine on Endocytosis and Lysosome Stability. Biochemical Pharmacology, 1998. 56(1): p. 41-46.
    56. Lungwitz, U., M. Breunig, T. Blunk, and A. Göpferich. Polyethylenimine-based non-viral gene delivery systems. European Journal of Pharmaceutics and Biopharmaceutics, 2005. 60(2): p. 247-266.
    57. Rémy-Kristensen, Arlette, Jean-Pierre Clamme, Constance Vuilleumier, Jean-Georges Kuhry, and Yves Mély. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2001. 1514(1): p. 21-32.
    58. Akbarzadeh, Mahdi, Reza Kazemi Oskuee, Leila Gholami, Asma Mahmoudi, and Bizhan Malaekeh-Nikouei. BR2 cell penetrating peptide improved the transfection efficiency of modified polyethyleneimine. Journal of Drug Delivery Science and Technology, 2019. 53: p. 101154.
    59. Ahn, Hyun Hee, Min Suk Lee, Mi Hee Cho, Yu Na Shin, Jung Hwa Lee, Kyung Sook Kim, Moon Suk Kim, Gilson Khang, Ki Chul Hwang, Il Woo Lee, Scott L. Diamond, and Hai Bang Lee. DNA/PEI nano-particles for gene delivery of rat bone marrow stem cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008. 313-314: p. 116-120.
    60. Mikami, T., Y. Takayasu, and I. Hirasawa, PEI-assisted preparation of Au nanoparticles via reductive crystallization process. Chemical Engineering Research and Design, 2010. 88(9): p. 1248-1251.
    61. Capomaccio, Robin, Isaac Ojea Jimenez, Pascal Colpo, Douglas Gilliland, Giacomo Ceccone, François Rossi, and Luigi Calzolai. Determination of the structure and morphology of gold nanoparticle–HSA protein complexes. Nanoscale, 2015. 7(42): p. 17653-17657.
    62. De-Llanos, Raquel, Santiago Sánchez-Cortes, Concepción Domingo, José V. García-Ramos, and Paz Sevilla Surface Plasmon Effects on the Binding of Antitumoral Drug Emodin to Bovine Serum Albumin. The Journal of Physical Chemistry C, 2011. 115(25): p. 12419-12429.
    63. Chen, Xue-Jiao, Gema Cabello, De-Yin Wu, and Zhong-Qun Tian. Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014. 21: p. 54-80.
    64. Pan, Y., S. Neuss, A. Leifert, M. Fischler, F. Wen, U. Simon, G. Schmid, W. Brandau, and W. Jahnen-Dechent. Size-dependent cytotoxicity of gold nanoparticles. Small, 2007. 3(11): p. 1941-9.
    65. Gosens, I., J. A. Post, L. J. de la Fonteyne, E. H. Jansen, J. W. Geus, F. R. Cassee, and W. H. de Jong Impact of agglomeration state of nano- and submicron sized gold particles on pulmonary inflammation. Part Fibre Toxicol, 2010. 7(1): p. 37.
    66. Lazarus, G.G. and M. Singh, In vitro cytotoxic activity and transfection efficiency of polyethyleneimine functionalized gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2016. 145: p. 906-911.
    67. Kelly, K. Lance, Eduardo Coronado, Lin Lin Zhao, and George C. Schatz. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. The Journal of Physical Chemistry B, 2003. 107(3): p. 668-677.
    68. Kim, B., D. Hong, and W.V. Chang, LCST and UCST double-phase transitions of poly(N-isopropylacrylamide-co-2-acrylamidoglycolic acid)/poly(dimethylaminoethyl methacrylate) complex. Colloid and Polymer Science, 2015. 293(3): p. 699-708.
    69. Seuring, J. and S. Agarwal, Polymers with Upper Critical Solution Temperature in Aqueous Solution: Unexpected Properties from Known Building Blocks. ACS Macro Letters, 2013. 2(7): p. 597-600.
    70. Kohno, Yuki, Shohei Saita, Yongjun Men, Jiayin Yuan, and Hiroyuki Ohno. Thermoresponsive polyelectrolytes derived from ionic liquids. Polymer Chemistry, 2015. 6(12): p. 2163-2178.
    71. Zhu, X., Y. Tian, and B. He, Developing an ecofriendly UCST-type enzymatic cascade system for efficient and cost-effective starch solid wastes treatment. Environmental Research, 2023. 222: p. 115414.
    72. Karimi, A., A. Kordzadeh, and A.R. Saadatabadi, Acrylamidevinyl acetate copolymer as a new UCST copolymer: Phase transition and aggregation behavior; an experimental and theoretical study. Reactive and Functional Polymers, 2022. 181: p. 105456.
    73. Seo, Hye In, Ann-Na Cho, Jiho Jang, Dong-Wook Kim, Seung-Woo Cho, and Bong Geun Chung. Thermo-responsive polymeric nanoparticles for enhancing neuronal differentiation of human induced pluripotent stem cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2015. 11(7): p. 1861-1869.
    74. Hammami, Inès, Nadiyah M. Alabdallah, Amjad Al jomaa, and Madiha kamoun. Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science, 2021. 33(7): p. 101560.
    75. Usha, R., K.J. Sreeram, and A. Rajaram, Stabilization of collagen with EDC/NHS in the presence of l-lysine: A comprehensive study. Colloids and Surfaces B: Biointerfaces, 2012. 90: p. 83-90.
    76. Yan, Mingyan, Xiangsheng An, Shujun Duan, Zhicong Jiang, Xiaoyan Liu, Xiaochen Zhao, and Yinping Li. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin. International Journal of Biological Macromolecules, 2022. 213: p. 639-650
    77. Xiong, Kun, Qingbo Fan, Tingting Wu, Haishan Shi, Lin Chen, and Minhao Yan. Enhanced bovine serum albumin absorption on the N-hydroxysuccinimide activated graphene oxide and its corresponding cell affinity. Materials Science and Engineering: C, 2017. 81: p. 386-392.
    78. Paeth, Matthew, Jacob Stapleton, Melissa L. Dougherty, Henry Fischesser, Jerry Shepherd, Matthew McCauley, Rebecca Falatach, Richard C. Page, Jason A. Berberich, and Dominik Konkolewicz. Chapter Nine - Approaches for Conjugating Tailor-Made Polymers to Proteins, in Methods in Enzymology, C.V. Kumar, Editor. 2017, Academic Press. p. 193-224.
    79. Jena, H., Z. Ahmadi, P. Kumar, and G. Dhawan. Bioreducible polyethylenimine core–shell nanostructures as efficient and non-toxic gene and drug delivery vectors. Bioorganic & Medicinal Chemistry, 2022. 69: p. 116886.
    80. Sastry, C.S.P. and M.K. Tummuru, Spectrophotometric determination of arginine in proteins. Food Chemistry, 1984. 15(4): p. 257-260.
    81. Tomlinson, G. and T. Viswanatha, Determination of the arginine content of proteins by the Sakaguchi procedure. Analytical Biochemistry, 1974. 60(1): p. 15-24.
    82. Francis, Paul S., Neil W. Barnett, Richard C. Foitzik, Michelle E. Gange, and Simon W. Lewis. Chemiluminescence from the Sakaguchi reaction. Analytical Biochemistry, 2004. 329(2): p. 340-341.
    83. Carnevale, D., 9.02 - Nitrogen-14 NMR spectroscopy, in Comprehensive Inorganic Chemistry III (Third Edition), J. Reedijk and K.R. Poeppelmeier, Editors. 2023, Elsevier: Oxford. p. 4-25.
    84. Mohamed, M. A., J. Jaafar, A. F. Ismail, M. H. D. Othman, and M. A. Rahman. Chapter 1 - Fourier Transform Infrared (FTIR) Spectroscopy, in Membrane Characterization, edited by Nidal Hilal, Ahmad Fauzi Ismail, Takeshi Matsuura and Darren Oatley-Radcliffe, 3-29: Elsevier, 2017. Babick, F., Chapter 3.2.1 - Dynamic light scattering (DLS), in Characterization of Nanoparticles, V.-D. Hodoroaba, W.E.S. Unger, and A.G. Shard, Editors. 2020, Elsevier. p. 137-172.
    85. Zhao, J. and X. Liu, Electron microscopic methods (TEM, SEM and energy dispersal spectroscopy), in Reference Module in Earth Systems and Environmental Sciences. 2022, Elsevier.
    86. Rémy-Kristense, Arlette, Jean-Pierre Clamme, Constance Vuilleumier, Jean-Georges Kuhry, and Yves Mély. Role of endocytosis in the transfection of L929 fibroblasts by polyethylenimine/DNA complexes. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2001. 1514(1): p. 21-32.
    87. McGuire, James B. J., Tim J. James, Charles J. Imber, Shawn D. St. Peter, Peter J. Friend, and Richard P. Taylor. Optimisation of an enzymatic method for β-galactosidase. Clinica Chimica Acta, 2002. 326(1): p. 123-129.
    88. Hosseini, A. and J. Mas, The β-galactosidase assay in perspective: Critical thoughts for biosensor development. Analytical Biochemistry, 2021. 635: p. 114446.
    89. Tantray, Tantray, Javeed Ahmad, Sheikh Mansoor, Rasy Fayaz Choh Wani, and Nighat Un Nissa. Chapter 20 - To estimate protein by Bradford assay, in Basic Life Science Methods, J.A. Tantray, et al., Editors. 2023, Academic Press. p. 83-86.
    90. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1): p. 248-254
    91. Adkins, N.L., J.A. Hall, and P.T. Georgel, The use of Quantitative Agarose Gel Electrophoresis for rapid analysis of the integrity of protein–DNA complexes. Journal of Biochemical and Biophysical Methods, 2007. 70(5): p. 721-726.
    92. Shahabadi, N., S. Zendehcheshm, and F. Khademi, Exploring the ct-DNA and plasmid DNA binding affinity of the biogenic synthesized Chloroxine-conjugated silver nanoflowers: Spectroscopic and gel electrophoresis methods. Process Biochemistry, 2022. 121: p. 360-370.
    93. Son, K.K., D. Tkach, and D.H. Patel, Zeta potential of transfection complexes formed in serum-free medium can predict in vitro gene transfer efficiency of transfection reagent. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2000. 1468(1): p. 11-14.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE