簡易檢索 / 詳目顯示

研究生: 關惠玲
Veronica Wenny Kencono
論文名稱: 研究一利用鋅指蛋白所建構之新型質體DNA純化系統
A Novel Method for Targeted Plasmid DNA Purification
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
王勝仕
Sheng-Shih Wang
葉怡均
Yi-Chun Yeh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 71
中文關鍵詞: 質粒DNA純化鋅指蛋白(ZFP)蛋白質/DNA相互作用間諜標籤/間諜捕手纖維素結合域 (CBD)
外文關鍵詞: plasmid DNA purification, zinc finger protein (ZFP), protein/DNA interaction, Spytag/Spycatcher, cellulose-binding domain (CBD)
相關次數: 點閱:195下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 分子生物學中,質體DNA(pDNA)的純化為至關重要的一環。過去的幾十年間,pDNA純化方法透過不同方法進行改良,獲取更好的產量及純度以用於後續應用。本研究,利用以下方法建立一新系統以進行質體DNA的純化:鋅指蛋白(Zinc finger protein)與具特異性的DNA序列、SpyTag-SpyCatcher接合系統以及纖維素與纖維素結合域(CBD);此系統使用改造之鋅指蛋白與抗生素抗性基因(例如:卡那黴素或氨芐青黴素)具特異性的 9 bp 區域進行結合。
    本研究成功建構出可分別表達融合蛋白zinc finger-Spytag (ZFP-Spytag) 和 CBD-Spycatcher之大腸桿菌菌株。而 Spytag/Spycatcher 系統中自然發生之異肽鍵與其複合物固定於微晶纖維素上,可使ZFP-Spytag 融合蛋白與 CBD-Spycatcher 融合蛋白進行接合。由接合測試中可得知Spytag/Spycatcher接合所需時間為 5 分鐘,並以3:1的比例接合ZFP-Spytag 和 CBD-Spycatcher。最後,為了探討以本研究所建之新系統進行細胞裂解物中純化目標質體DNA其穩健性,藉由瓊脂凝膠電泳檢查目標質體與本研究之蛋白質複合體以完成初步測試,並藉由Cross-binding確認其特異性。截至目前,我們成功建立以簡單的系統以進行目標 pDNA 的純化,未來需清除裂解物以評估靈敏度與純度。


    Purification of plasmid DNA (pDNA) is a very important step in molecular biology. Over the past few decades, pDNA purification methods have been improved with a different approach to obtain better yield and purity for downstream applications. In this study, a new system to purify plasmid DNA utilizing the interaction between zinc finger protein and specific DNA sequence; Spytag and Spycatcher; and cellulose-binding domain (CBD) with cellulose was proposed. The system uses the engineered zinc finger protein to bind specifically to a 9 bp region of the antibiotic resistance gene of interest (e.g., Kanamycin or Ampicillin). Here, two fusion proteins namely zinc finger-Spytag (ZFP-Spytag) and CBD-Spycatcher were constructed and expressed in Escherichia coli. The ZFP-Spytag fusion protein was conjugated to CBD-Spycatcher fusion protein based on the naturally occurring isopeptide linkages of the Spytag/Spycatcher system and the complex was immobilized on microcrystalline cellulose. The conjugation test of Spytag/Spycatcher was found to be 5 minutes and the ratio of ZFP-Spytag and CBD-Spycatcher was 3:1, respectively. Taken together, to discover the robustness of our system in purifying target plasmid DNA from cell lysates, a preliminary test was done by examining the binding of targeted plasmid after miniprep with our complex protein on agarose gel electrophoresis. Furthermore, the specificity was also investigated by doing cross-binding. Up to now, our newly established simple system could be an alternative for targeted pDNA purification, and yet, the sensitivity and the purification from cleared lysate need to be assessed in the future.

    Recommendation Form I Qualification Form II Abstract III 摘要 IV Acknowledgment V List of Figures VIII List of Tables XI Abbreviation list XII CHAPTER 1 Introduction 1 1.1 Research Background 1 1.2 Research Objective 2 1.3 Research Content and Proposed Method 3 CHAPTER 2 Literature Review 5 2.1 Plasmid DNA (pDNA) Purification 5 2.2 Zinc Finger Protein (ZFP) 7 2.3 Spytag-Spycatcher System 10 2.4 Cellulose Binding Domains (CBDs) 11 CHAPTER 3 Experimental Materials and Methods 12 3.1 Bacteria and Plasmid 12 3.2 Material 13 3.3 Equipment and Instrumentation 16 3.4 Methods 17 3.4.1 Plasmid Extraction (Miniprep) 17 3.4.2 Polymerase Chain Reaction (PCR) 17 3.4.3 Agarose Gel Electrophoresis 20 3.4.4 Plasmid DNA Recovery (Gel Purification) 20 3.4.5 Restriction Enzyme Digestion 21 3.4.6 DNA Ligation 22 3.4.7 Gibson Assembly 22 3.4.8 Competent Cell Preparation 23 3.4.9 Transformation 24 3.4.10 Sodium Dodecyl-Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 25 3.4.11 Bradford Protein Assay 27 3.4.12 Spytag-Spycatcher Conjugation Test 27 3.4.13 Cellulose Binding Domain Functionality Test 28 3.4.14 DNA-protein Binding Test 28 CHAPTER 4 Results and Discussion 30 4.1 Plasmid Construction 30 4.1.1 pET-CBD-Spycatcher and new pET-CBD-Spycatcher 31 4.1.2 pET24a-ZFP(AMP)-G4S-Spytag 34 4.1.3 pET21b-ZFP(KAN)-G4S-Spytag 35 4.2 Protein Expression 37 4.3 Spytag/Spycatcher Conjugation 38 4.4 Cellulose Binding Domain Functionality 42 4.5 Protein-DNA Binding 45 CHAPTER 5 Conclusion 50 Appendix 51 References 55

    [1] B. Zakeri et al., "Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin," Proceedings of the National Academy of Sciences, vol. 109, no. 12, pp. E690-E697, 2012, doi: 10.1073/pnas.1115485109.
    [2] L. Li, J. O. Fierer, T. A. Rapoport, and M. Howarth, "Structural Analysis and Optimization of the Covalent Association between SpyCatcher and a Peptide Tag," journal of molecular biology, vol. 426, pp. 309-317, 2014, doi: 10.1016/j.jmb.2013.10.021.
    [3] A. Klug, "The Discovery of Zinc Fingers and Their Applications in Gene Regulation and Genome Manipulation," Annual Review of Biochemistry, vol. 79, pp. 213-231, 2010, doi: 10.1146/annurev-biochem-010909-095056.
    [4] P. Research. "Plasmid DNA Manufacturing Market (By Product: Viral Vectors, Plasmid DNA, Non-Viral, Electroporation, Lipid/Polymer, Nanoparticles, and Others; By Application: Gene Therapy, DNA Vaccines, Immunotherapy, Others; By Disease: Infectious Disease, Genetic Disorder, and Cancer) - Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2021 - 2030." Precedence Research. https://www.precedenceresearch.com/plasmid-dna-manufacturing-market (accessed.
    [5] J. G. Mandell and C. F. Barbas, "Zinc Finger Tools: custom DNA-binding domains for transcription factors and nucleases," Nucleic Acids Research, vol. 34, no. Web Server, pp. W516-W523, 2006, doi: 10.1093/nar/gkl209.
    [6] M. Dhanasekaran, S. Negi, and Y. Sugiura, "Designer Zinc Finger Proteins:  Tools for Creating Artificial DNA-Binding Functional Proteins," Accounts of Chemical Research, vol. 39, no. 1, pp. 45-52, 2006, doi: 10.1021/ar050158u.
    [7] M. Schmeer, Buchholz, T., & Schleef, M., "Plasmid DNA Manufacturing for Indirect and Direct Clinical Applications," Human Gene Therapy, vol. 28, pp. 856–861, 2017, doi: 10.1089/hum.2017.159.
    [8] A. Xenopoulos, & Pattnaik, P, "Production and purification of plasmid DNA vaccines: is there scope for further innovation?," Expert Review of Vaccines, vol. 13, no. 12, pp. 1537–1551, 2014, doi: 10.1586/14760584.2014.968556
    [9] G. M. Forde, S. Ghose, N. K. H. Slater, A. V. Hine, R. A. J. Darby, and A. G. Hitchcock, "LacO-LacI Interaction in Affinity Adsorption of Plasmid DNA," Biotechnology and Bioengineering, vol. 95, 2006, doi: 10.1002/bit.20955.
    [10] U. L. Lao, J. Kostal, A. Mulchandani, and W. Chen, "Affinity purification of plasmid DNA by temperature-triggered precipitation," Nature Protocols, vol. 2, no. 5, pp. 1263-1268, 2007, doi: 10.1038/nprot.2007.171.
    [11] Z. L. Wang X, Wu X, Luo H, Wu D, Zhang M, Zhang J, Pakvasa M, Wagstaff W, He F, Mao Y, Zhang Y, Niu C, Wu M, Zhao X, Wang H, Huang L, Shi D, Liu Q, Ni N, Fu K, Hynes K, Strelzow J, El Dafrawy M, He TC, Qi H, Zeng Z., "Development of a simplified and inexpensive RNA depletion method for plasmid DNA purification using size selection magnetic beads (SSMBs)," Genes & Diseases, pp. 298-306, 2020, doi: 10.1016/j.gendis.2020.04.013.
    [12] A. Sousa, F. Sousa, and J. A. Queiroz, "Advances in chromatographic supports for pharmaceutical-grade plasmid DNA purification," J Sep Sci, vol. 35, no. 22, pp. 3046-58, Nov 2012, doi: 10.1002/jssc.201200307.
    [13] D. Fani Sousa, M. F. Prazeres, and J. o. A. Queiroz, "Affinity chromatography approaches to overcome the challenges of purifying plasmid DNA," Trends in Biotechnology, vol. 26, no. 9, pp. 518-525, 2008, doi: 10.1016/j.tibtech.2008.05.005.
    [14] J. Woodgate, D. Palfrey, D. A. Nagel, A. V. Hine, and N. K. H. Slater, "Protein-mediated isolation of plasmid DNA by a zinc finger-glutathione S-transferase affinity linker," Biotechnology and Bioengineering, vol. 79, no. 4, pp. 450-456, 2002, doi: 10.1002/bit.10296.
    [15] H. C. Birnboim and J. Doly, "A rapid alkaline extraction procedure for screening recombinant plasmid DNA," Nucleic Acids Research, vol. 7, no. 6, pp. 1513-1523, 1979, doi: 10.1093/nar/7.6.1513.
    [16] J. Stadler, R. Lemmens, and T. Nyhammar, "Plasmid DNA purification," The Journal of Gene Medicine, vol. 6, no. S1, pp. S54-S66, 2004, doi: 10.1002/jgm.512.
    [17] L. P. J. A. Q. F. Sousa "Biomedical application of plasmid DNA in gene therapy: A new challenge for chromatography," Biotechnology and Genetic Engineering Reviews, vol. 26, pp. 83-116, 2009, doi: 10.5661/bger-26-83.
    [18] N. L. Wolfe SA, Pabo CO, "DNA recognition by Cys2His2 zinc finger proteins," Annual Review of Biophysics and Biomolecular Structure, vol. 29, pp. 183-212, 2000, doi: 10.1146/annurev.biophys.29.1.183.
    [19] D. J. Segal et al., "Evaluation of a Modular Strategy for the Construction of Novel Polydactyl Zinc Finger DNA-Binding Proteins†," Biochemistry, vol. 42, no. 7, pp. 2137-2148, 2003, doi: 10.1021/bi026806o.
    [20] J.Miller, A.D.McLachlan, and A.Klug, "Repetitive zinc-binding domains in the protein transcription factor IIIA from Xenopus oocytes," The EMBO Journal, vol. 4, pp. 1609-1614, 1985, doi: 10.1002/j.1460-2075.1985.tb03825.x.
    [21] N. P. P. a. C. O. Pabo, "Zinc Finger-DNA Recognition: Crystal Structure of a Zif268-DNA Complexat 2.1A," SCIENCE, vol. 252, no. 5007, pp. 807-817, 1991, doi: 10.1126/science.2028256.
    [22] Mir A. Hossain, Joeva J. Barrow, Yong Shen, MD Imdadul Haq, and J. Bungert, "Artificial Zinc Finger DNA Binding Domains: Versatile Tools for Genome Engineering and Modulation of Gene Expression," Journal of Cellular Biochemistry, vol. 116, pp. 2435-2444, 2015, doi: 10.1002/jcb.25226.
    [23] C. A. Gersbach, T. Gaj, and C. F. B. III, "Synthetic Zinc Finger Proteins: The Advent of Targeted Gene Regulation and Genome Modification Technologies," Accounts of Chemical Research, vol. 47, 8, pp. 2309-2318, 2014, doi: 10.1021/ar500039w.
    [24] C. Shi, Q. Xu, Y. Ge, L. Jiang, and H. Huang, "Luciferase-Zinc-Finger System for the Rapid Detection of Pathogenic Bacteria," Journal of Agricultural and Food Chemistry, vol. 65, no. 31, pp. 6674-6681, 2017, doi: 10.1021/acs.jafc.7b02204.
    [25] Y. Zhang, Q. Zhou, H. Cai, L. Wang, and Z. Dong, "Development of an artificial zinc finger – Luciferase fusion protein for the rapid detection of Salmonella typhimurium," Biochemical and Biophysical Research Communications, vol. 579, pp. 35-39, 2021, doi: 10.1016/j.bbrc.2021.09.033.
    [26] D. T. Ha, V.-T. Nguyen, and M.-S. Kim, "Graphene Oxide-Based Simple and Rapid Detection of Antibiotic Resistance Gene via Quantum Dot-Labeled Zinc Finger Proteins," Analytical Chemistry, vol. 93, no. 24, pp. 8459-8466, 2021, doi: 10.1021/acs.analchem.1c00560.
    [27] S. C. Reddington and M. Howarth, "Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher," Current Opinion in Chemical Biology, vol. 29, pp. 94-99, 2015, doi: 10.1016/j.cbpa.2015.10.002.
    [28] J. Tian et al., "One-step purification and immobilization of recombinant proteins using SpyTag/SpyCatcher chemistry," Biotechnology Letters, vol. 43, no. 5, pp. 1075-1087, 2021, doi: 10.1007/s10529-021-03098-x.
    [29] I. Levy and O. Shoseyov, "Cellulose-binding domains Biotechnological applications," Biotechnology Advances, vol. 20, pp. 191-213, 2002, doi: 10.1016/s0734-9750(02)00006-x.
    [30] N. Sugimoto, K. Igarashi, and M. Samejima, "Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain," Protein Expression and Purification, vol. 82, no. 2, pp. 290-296, 2012, doi: 10.1016/j.pep.2012.01.007.
    [31] I. S. Yunus and S.-L. Tsai, "Designed biomolecule–cellulose complexes for palladium recovery and detoxification," RSC Advances, vol. 5, no. 26, pp. 20276-20282, 2015, doi: 10.1039/c4ra16200e.

    無法下載圖示 全文公開日期 2027/09/26 (校內網路)
    全文公開日期 2027/09/26 (校外網路)
    全文公開日期 2027/09/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE