簡易檢索 / 詳目顯示

研究生: 李化楨
Hua-Chen Lee
論文名稱: 以 SpyTag-SpyCatcher 系統提高菌株對 HMF 耐受性並同時生產高價值之 FDCA
Enhancing the tolerance of 5-hydroxymethylfurfural (HMF) and the production of high-value 2,5-furandicarboxylic acid (FDCA) by the SpyTag-SpyCatcher system
指導教授: 蔡伸隆
Shen-Long Tsai
口試委員: 李振綱
Cheng-Kang Lee
王勝仕
Steven S.-S. Wang
葉怡均
Yi-Chun Yeh
蔡伸隆
Shen-Long Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 89
中文關鍵詞: 羥甲基糠醛2,5-呋喃二甲酸戀臭假單胞菌蛋白接合反應提高產率提高耐受性
外文關鍵詞: hydroxymethylfurfural (HMF), 2,5-furandicarboxylic acid (FDCA), SpyTag-SpyCatcher
相關次數: 點閱:149下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 摘要 III Abstract IV 致謝 V 總目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1. 研究背景 1 1.2. 研究動機與目的 2 1.3. 研究內容 3 第二章 文獻回顧 4 2.1. HMF 降解 4 2.1.1. FDCA (2,5-Furandicarboxylic acid) 4 2.1.2. HMF 氧化還原酶 5 2.2. Pseudomonas putida S12 6 2.3. Spytag-SpyCatcher 系統 7 2.4. Catalase 過氧化氫酶 8 2.5. Bacterioferritin (bfr) 9 2.6. 全細胞生物催化劑(whole-cell biocatalysis) 10 第三章 實驗材料與方法 11 3.1. 菌種與質體 13 3.2. 實驗藥品 14 3.3. 實驗器材 17 3.4. 實驗方法 19 3.4.1. 質體 DNA 純化法 Mini-prep (小量質體製備) 19 3.4.2. 聚合酶鏈反應(Polymerase Chain Reaction, PCR) 21 3.4.3. DNA 瓊脂凝膠電泳(DNA Agarose Gel Electrophoresis) 25 3.4.4. DNA 瓊脂凝膠回收(DNA Recovery) 26 3.4.5. 酶切(Digestion) 27 3.4.6. 核酸接合作用(DNA Ligation) 27 3.4.7. 大腸桿菌勝任細胞(Competent cell)之製備 28 3.4.8. 大腸桿菌轉型作用(Transformation) 29 3.4.9. 電穿孔勝任細胞(Electrocompetent Cell)之製備 30 3.4.10. 電穿孔轉型作用(Electroporation Transformation) 31 3.4.11. SDS-PAGE 32 3.4.12. 西方墨點法(Western Blot) 34 3.4.13. 活性測試 35 3.4.14. HPLC 分析 37 3.4.15. SpyTag-SpyCatcher 接合反應(Conjugation) 38 第四章 結果與討論 39 4.1. 質體建構 Plasmid Constructions 39 4.1.1. pET24a-GFP-SpyCat 及 pET24a-SpyTag-GFP 質體建構 39 4.1.2. p122H-SpyCat 質體建構 42 4.1.3. p122-SpyCat-HMFH 質體建構 45 4.1.4. p122H-SpyTag 質體建構 48 4.1.5. p122H-SpyTag-pHCE-katE-SpyCat 質體建構 50 4.1.6. p122H-pHCE-katE-SpyCat 質體建構 53 4.1.7. p122H-SpyTag-pHCE-katE-SpyCat-Bfr 質體建構 56 4.1.8. p122H-SpyTag-pHCE-katE-SpyCat-Bfr (s12)質體建構 58 4.2. HPLC 檢量線 60 4.3. SpyTag-SpyCather 系統蛋白表達測試 62 4.4. p122H-SpyCat, p122-SpyCat-HMFH 蛋白表達及活性測試 63 4.5. p122H-SpyTag 活性測試 67 4.6. p122H-SpyTag-pHCE-katE-SpyCat 蛋白表達及活性測試 68 4.7. bfr 及 bfr (s12)質體活性測試 71 第五章 結論 73 參考文獻 74

    1. Werpy, T. and G. Petersen, Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. 2004: United States.
    2. Sajid, M., X. Zhao, and D. Liu, Production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chemistry, 2018. 20(24): p. 5427-5453.
    3. van Deurzen, M.P.J., F. van Rantwijk, and R.A. Sheldon, Chloroperoxidase- Catalyzed Oxidation of 5-Hydroxymethylfurfural. Journal of Carbohydrate Chemistry, 1997. 16(3): p. 299-309.
    4. Koopman, F., et al., Identification and characterization of the furfural and 5- (hydroxymethyl)furfural degradation pathways of Cupriavidus basilensis HMF14. Proc Natl Acad Sci U S A, 2010. 107(11): p. 4919-24.
    5. Van den Oever, M., et al., Bio-based and biodegradable plastics – Facts and Figures. Focus on food packaging in the Netherlands. 2017.
    6. Pang, K., R. Kotek, and A. Tonelli, Review of conventional and novel polymerization processes for polyesters. Progress in Polymer Science, 2006. 31(11): p. 1009-1037.
    7. Sousa, A.F., et al., New copolyesters derived from terephthalic and 2,5- furandicarboxylic acids: A step forward in the development of biobased polyesters. Polymer, 2013. 54(2): p. 513-519.
    8. Zhang, J., et al., Advances in catalytic production of bio-based polyester monomer 2,5-furandicarboxylic acid derived from lignocellulosic biomass. Carbohydrate Polymers, 2015. 130: p. 420-428.
    9. Hanke Paul, D., Enzymatic Oxidation Of Hmf. 2009, ARCHER DANIELS MIDLAND CO: WO.
    10. Koopman, F., et al., Efficient whole-cell biotransformation of 5- (hydroxymethyl)furfural into FDCA, 2,5-furandicarboxylic acid. Bioresour Technol, 2010. 101(16): p. 6291-6.
    11. Wierckx, N., et al., Microbial degradation of furanic compounds: biochemistry, genetics, and impact. Appl Microbiol Biotechnol, 2011. 92(6): p. 1095-105.
    12. Tao, F., et al., Novel organic solvent-responsive expression vectors for biocatalysis: application for development of an organic solvent-tolerant biodesulfurizing strain. Bioresour Technol, 2011. 102(20): p. 9380-7.
    13. Tao, F., et al., Biodesulfurization in biphasic systems containing organic solvents. Appl Environ Microbiol, 2006. 72(7): p. 4604-9.
    74
    14. Pinkart, H.C., et al., Cell Envelope Changes in Solvent-Tolerant and Solvent- Sensitive Pseudomonas putida Strains following Exposure to o-Xylene. Appl Environ Microbiol, 1996. 62(3): p. 1129-32.
    15. Isken, S. and J.A.M. de Bont, Bacteria tolerant to organic solvents. Extremophiles, 1998. 2(3): p. 229-238.
    16. Li, L., et al., A Toluene-tolerant Mutant of Pseudomonas aeruginosa Lacking the Outer Membrane Protein F. Bioscience, Biotechnology, and Biochemistry, 1995. 59(12): p. 2358-2359.
    17. Heipieper, H.J., et al., Mechanisms of resistance of whole cells to toxic organic solvents. Trends in Biotechnology, 1994. 12(10): p. 409-415.
    18. Sikkema, J., J.A. de Bont, and B. Poolman, Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev, 1995. 59(2): p. 201-22.
    19. Wery, J., et al., An insertion sequence prepares Pseudomonas putida S12 for severe solvent stress. J Biol Chem, 2001. 276(8): p. 5700-6.
    20. Kieboom, J., et al., Identification and molecular characterization of an efflux pump involved in Pseudomonas putida S12 solvent tolerance. J Biol Chem, 1998. 273(1): p. 85-91.
    21. Hosseini, R., et al., Regulation of solvent tolerance in Pseudomonas putida S12 mediated by mobile elements. Microb Biotechnol, 2017. 10(6): p. 1558-1568.
    22. Kieboom, J., et al., Active Efflux of Organic Solvents by Pseudomonas putida S12 Is Induced by Solvents. Journal of Bacteriology, 1998. 180(24): p. 6769- 6772.
    23. Reddington, S.C. and M. Howarth, Secrets of a covalent interaction for biomaterials and biotechnology: SpyTag and SpyCatcher. Curr Opin Chem Biol, 2015. 29: p. 94-9.
    24. Zakeri, B., et al., Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc Natl Acad Sci U S A, 2012. 109(12): p. E690-7.
    25. Dovala, D., et al., Rapid analysis of protein expression and solubility with the SpyTag-SpyCatcher system. Protein Expr Purif, 2016. 117: p. 44-51.
    26. Zhang, G., M.B. Quin, and C. Schmidt-Dannert, Self-Assembling Protein Scaffold System for Easy in Vitro Coimmobilization of Biocatalytic Cascade Enzymes. ACS Catalysis, 2018. 8(6): p. 5611-5620.
    27. Liu, Z., et al., A novel method for synthetic vaccine construction based on protein assembly. Sci Rep, 2014. 4: p. 7266.
    28. Si, M., et al., SpyTag/SpyCatcher Cyclization Enhances the Thermostability of Firefly Luciferase. PLoS One, 2016. 11(9): p. e0162318.
    29. Jung, I.L. and I.G. Kim, Transcription of ahpC, katG, and katE genes in Escherichia coli is regulated by polyamines: polyamine-deficient mutant sensitive to H2O2-induced oxidative damage. Biochemical and Biophysical Research Communications, 2003. 301(4): p. 915-922.
    30. Miller, C.D., Y.C. Kim, and A.J. Anderson, Cloning and mutational analysis of the gene for the stationary-phase inducible catalase (catC) from Pseudomonas putida. J Bacteriol, 1997. 179(16): p. 5241-5.
    31. Hillar, A., L. Van Caeseele, and P.C. Loewen, Intracellular location of catalase- peroxidase hydroperoxidase I of Escherichia coli. FEMS Microbiol Lett, 1999. 170(2): p. 307-12.
    32. Schellhorn, H.E., Regulation of hydroperoxidase (catalase) expression in Escherichia coli. FEMS Microbiology Letters, 1995. 131(2): p. 113-119.
    33. Mulvey, M.R., et al., Regulation of transcription of katE and katF in Escherichia coli. J Bacteriol, 1990. 172(12): p. 6713-20.
    34. Chiancone, E., et al., Iron and proteins for iron storage and detoxification. Biometals, 2004. 17(3): p. 197-202.
    35. Eshelman, K., et al., Inhibiting the BfrB:Bfd interaction in Pseudomonas aeruginosa causes irreversible iron accumulation in bacterioferritin and iron deficiency in the bacterial cytosol. Metallomics, 2017. 9(6): p. 646-659.
    36. Bou-Abdallah, F., et al., Iron detoxification properties of Escherichia coli bacterioferritin. Attenuation of oxyradical chemistry. J Biol Chem, 2002. 277(40): p. 37064-9.
    37. Ma, J.F., et al., Bacterioferritin A modulates catalase A (KatA) activity and resistance to hydrogen peroxide in Pseudomonas aeruginosa. J Bacteriol, 1999. 181(12): p. 3730-42.
    38. Kim, Y.C., C.D. Miller, and A.J. Anderson, Identification of adjacent genes encoding the major catalase and a bacterioferritin from the plant-beneficial bacterium Pseudomonas putida. Gene, 1997. 199(1-2): p. 219-24.
    39. Nijkamp, K., et al., The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose. Appl Microbiol Biotechnol, 2005. 69(2): p. 170-7.
    40. Ishige, T., K. Honda, and S. Shimizu, Whole organism biocatalysis. Curr Opin Chem Biol, 2005. 9(2): p. 174-80.
    41. Prather., K.J., 10.492-2 Integrated Chemical Engineering Topics I: Introduction to Biocatalysis. 2004.
    42. Hartmans, S., et al., Metabolism of Styrene Oxide and 2-Phenylethanol in the Styrene-Degrading Xanthobacter Strain 124X. Appl Environ Microbiol, 1989. 55(11): p. 2850-5.

    無法下載圖示 全文公開日期 2025/08/20 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE