簡易檢索 / 詳目顯示

研究生: 張竣賀
CHUN-HO CHANG
論文名稱: 圖案化表面製備聚甲基丙烯酸高分子刷應用於大腸癌臨床檢測
Fabrication of the Poly(methacrylic acid) Brushes on Pattern of Polydimethylsiloxane for Clinical Detection of Colorectal Cancer
指導教授: 陳建光
Jem-Kun Chen
口試委員: 陳志堅
Jyh-Chien Chen
范士岡
Shih-Kang Fan
李愛薇
Ai-Wei Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 116
中文關鍵詞: 聚二甲基矽氧烷圖案化原子轉移自由基聚合法高分子刷PMAA循環腫瘤細胞
外文關鍵詞: Pattern transfer, Poly(methacrylic acid), Anti-Epithelial Cellular Adhesion molecule
相關次數: 點閱:240下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為三個部分,第一部份為微影製程的圖案化轉印,以聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)為材料,注入不同圖案化的矽晶圓,加熱使其固化,當聚二甲基矽氧烷從晶圓上移除時,即使是最小的微流道設計細節也會印在二甲基矽氧烷的基板上。根據微影製程中光罩的設計,共製備了五種圖案,各別是1um、1.5um、2um、3um四種線寬以及洞型光阻;經過轉印後,成功翻印出四種線寬與柱型結構。。
    第二部分為高分子刷製備。包括表面親水處理、合成矽烷類自組裝層、固定聚合起始劑,再藉由原子轉移自由基聚合法(Atom transfer radical polymerization,ATRP)進行表面起始聚合,製備聚甲基丙烯酸(Poly(methacrylic acid),PMAA)高分子刷,並以原子力顯微鏡(Atomic Force Microscope,AFM)及場發射式掃瞄式電子顯微鏡(Field Emission Gun Scanning Electron Microscopy,FEGSEM)進行形貌分析。
    本研究第三部分以EDC/NHS反應將PMAA之Carboxylic acid活化,固定Streptavidin與上皮細胞黏附分子抗體(Anti-Epithelial Cellular Adhesion molecule,Anti-EpCAM),偵測大腸癌臨床病患血液中的循環腫瘤細胞(Circulating tumor cells, CTCs)。


    In this study, we divide into three parts, the first one we using PDMS(Polydimethylsiloxane)to transfer the pattern which on Silica wafer. Inject PDMS into different pattern and heat it led to harden .When removed even the smallest of details is left imprinted in the PDMS. According to the mask design, we fabricate five patterns,1um,1.5um,2um,3um line with the different widths and ordered hole array.
    The second part was the fabrication of polymer brush on PDMS, including surface hydrophilic modification, the synthesis of the silane self assembly monolayer (SAM), the immobilization of the initiator of polymerization, and the polymerization of Poly(methacrylate acid) brushes (PMAA) initiated from the surface of silicon wafer via atom transfer radical polymerization (ATRP). Morphology analyzing with AFM(Atomic Force Microscope) and FEGSEM (Field Emission Gun Scanning Electron Microscopy).
    The last part, activate the Carboxylic acid of PMAA by EDC/NHS reaction and immobilize Streptavidin and Anti-EpCAM (Anti-Epithelial Cellular Adhesion molecule).Detect the CTCs(Circulating tumor cells) in clinical colon cancer patient blood.

    內容 摘要 Abstract 致謝 目錄 表目錄 圖目錄 1.前言 1.1.研究背景 1.2.研究動機與目的 2.理論與文獻回顧 2.1.微流體元件簡介 2.2.聚二甲基矽氧烷 2.3.微影製程 2.4.高分子刷簡介 2.5.自組裝單分子層 2.6.原子轉移自由基聚合法 2.7.液態除氣法 2.8.聚甲基丙烯酸(PMAA) 2.9.共價鍵固定法(EDC/NHS reaction) 2.10.生物親和法(Streptavidin-biotin system) 3.儀器簡介 3.1.電漿蝕刻機(Plasma Machine) 3.2.原子力顯微鏡(AFM) 3.3.掃描式電子顯微鏡(SEM) 3.4.X光光電能譜儀 (XPS) 3.5.共軛焦顯微鏡 (CLSM) 4.實驗流程與方法 4.1.實驗流程圖 4.2.實驗藥品 4.3.實驗儀器 4.4.實驗步驟 4.4.1. 微影製程製備聚圖案化光阻層 4.4.2.圖案化轉印於PDMS薄膜 4.4.3.PDMS表面起始聚合PMAA高分子刷 4.4.4.表面改植Streptavidin 4.4.5.表面改植Anti-EpCAM(Biotin) 4.4.6.白血球抗沾黏 4.4.7.細胞培養、標記、染色 4.4.8.掃描式電子顯微鏡生物試片製作 4.4.9.血液樣品 4.4.10.PDMS-PMAA抓取細胞 5.結果與討論 5.1圖案化表面分析 5.1.1.微影製程光阻圖案 5.1.2.PDMS圖案化轉印表面形貌 5.2. PDMS表面接枝高分子刷分析 5.2.1. ESCA光譜 5.2.2.熱重分析(TGA) 5.2.3. 接觸角親疏水測定 5.2.4. 高分子刷表面分析 5.2.5. 液態高分子刷表面分析 5.3.生物分子偶和測定 5.3.1. 表面改植Streptavidin測定 5.3.2. 生物親合法之螢光測定 5.4.白血球抗沾黏測定 5.5. AntiE-PDMS-PMAA抓取循環腫瘤細胞 5.5.1. 專一性抓取能力 5.5.2. 奈米三維結構抓取細胞之表現 5.5.3. 抓取不同癌症細胞株之表現 5.5.4. 模擬大腸癌病患血液臨床實驗 5.5.4.大腸癌病患血液臨床實驗 6.結論 參考文獻

    [1]MANZ, Andréas; GRABER, N.; WIDMER, H. áM. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and actuators B: Chemical, 1990, 1.1: 244-248.
    [2] H. Xiao, "半導體製程技術導論, 羅正忠和張鼎張譯," ed: 二版, 臺灣培生教育出版, 臺北市, 民國九十三年, 2007.
    [3] DU, Ke, et al. Wafer-Scale pattern transfer of metal nanostructures on polydimethylsiloxane (PDMS) substrates via holographic nanopatterns. ACS applied materials & interfaces, 2012, 4.10: 5505-5514.
    [4] XU, Jingdong, et al. Room-temperature imprinting method for plastic microchannel fabrication. Analytical Chemistry, 2000, 72.8: 1930-1933.

    [5 BUNJES, N., et al. On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures. Colloid and Polymer Science, 2004, 282.8: 939-945.
    [6] DE GENNES, PrG. Conformations of polymers attached to an interface.Macromolecules, 1980, 13.5: 1069-1075..
    [7] ZHAO, Bin; BRITTAIN, William J. Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science, 2000, 25.5: 677-710.
    [8] MILNER, S. T. Polymer brushes. Science, 1991, 251.4996: 905-914.
    [9] EJAZ, M.; TSUJII, Y.; FUKUDA, T. Controlled grafting of a well-defined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer, 2001, 42.16: 6811-6815.
    [10] BIESALSKI, M.; RÜHE, Jürgen. Preparation and characterization of a polyelectrolyte monolayer covalently attached to a planar solid surface.Macromolecules, 1999, 32.7: 2309-2316.
    [11] BIESALSKI, M.; RÜHE, Jürgen. Swelling of a polyelectrolyte brush in humid air. Langmuir, 2000, 16.4: 1943-1950.
    [12] KOPF, A., et al. On the adsorption process in polymer brushes: a Monte Carlo study. Macromolecules, 1996, 29.5: 1433-1441.
    [13] HAN, CHENG-ZUO. Fabrication of the patterned Poly (methacrylic acid) brushes on silicon wafer via surface-initiated ATRP for covalently coupling antibody-adhesive gelatin. 2013.
    [14] BIGELOW, W. C.; PICKETT, D. L.; ZISMAN, W. A. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. Journal of Colloid Science, 1946, 1.6: 513-538.
    [15] NUZZO, Ralph G.; ALLARA, David L. Adsorption of bifunctional organic disulfides on gold surfaces. Journal of the American Chemical Society, 1983, 105.13: 4481-4483.
    [16] LAIBINIS, Paul E., et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. Journal of the American Chemical Society, 1991, 113.19: 7152-7167.
    [17] GOPIREDDY, Deepthi; HUSSON, Scott M. Room temperature growth of surface-confined poly (acrylamide) from self-assembled monolayers using atom transfer radical polymerization. Macromolecules, 2002, 35.10: 4218-4221.
    [18] YAMADA, Ryo; WANO, Hiromi; UOSAKI, Kohei. Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au (111) surface.Langmuir, 2000, 16.13: 5523-5525.
    [19] DELAMARCHE, E. a al, et al. Thermal stability of self-assembled monolayers.Langmuir, 1994, 10.11: 4103-4108.
    [20] HOWARTER, John A.; YOUNGBLOOD, Jeffrey P. Optimization of silica silanization by 3-aminopropyltriethoxysilane. Langmuir, 2006, 22.26: 11142-11147.
    [21] SIMON, A., et al. Study of two grafting methods for obtaining a 3-aminopropyltriethoxysilane monolayer on silica surface. Journal of colloid and interface science, 2002, 251.2: 278-283.
    [22] MATYJASZEWSKI, Krzysztof; XIA, Jianhui. Atom transfer radical polymerization. Chemical reviews, 2001, 101.9: 2921-2990.
    [23] MATYJASZEWSKI, Krzysztof. Controlled radical polymerization. Current Opinion in Solid State and Materials Science, 1996, 1.6: 769-776.
    [24] WANG, Jin-Shan; MATYJASZEWSKI, Krzysztof. Controlled/" living" radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu (I)/Cu (II) redox process. Macromolecules, 1995, 28.23: 7901-7910.
    [25] PATTEN, Timothy E., et al. Polymers with very low polydispersities from atom transfer radical polymerization. Science, 1996, 272.5263: 866-868.
    [26] PYUN, Jeffrey; MATYJASZEWSKI, Krzysztof. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/“living” radical polymerization. Chemistry of Materials, 2001, 13.10: 3436-3448.
    [27] MATYJASZEWSKI, Krzysztof; NAKAGAWA, Yoshiki; GAYNOR, Scott G. Synthesis of well‐defined azido and amino end‐functionalized polystyrene by atom transfer radical polymerization. Macromolecular rapid communications, 1997, 18.12: 1057-1066.
    [28] MATYJASZEWSKI, Krzysztof, et al. Controlled/“Living” Radical Polymerization of Styrene and Methyl Methacrylate Catalyzed by Iron Complexes 1.Macromolecules, 1997, 30.26: 8161-8164.
    [29] MASCI, Giancarlo; GIACOMELLI, Laura; CRESCENZI, Vittorio. Atom Transfer Radical Polymerization of N‐Isopropylacrylamide. Macromolecular rapid communications, 2004, 25.4: 559-564.
    [30] SANTONICOLA, M. Gabriella, et al. Reversible pH-controlled switching of poly (methacrylic acid) grafts for functional biointerfaces. Langmuir, 2010, 26.22: 17513-17519.
    [31] SANJUAN, Sarah; TRAN, Yvette. Stimuli-responsive interfaces using random polyampholyte brushes. Macromolecules, 2008, 41.22: 8721-8728.
    [32] PATTEN, Timothy E.; MATYJASZEWSKI, Krzysztof. Atom transfer radical polymerization and the synthesis of polymeric materials. Advanced Materials, 1998, 10.12: 901-915.
    [33] Synthesis of Poly(methacrylic acid) Brushes via Surface-Initiated Atom Transfer Radical Polymerization of Sodium Methacrylate and Their Use as Substrates for the Mineralization of Calcium Carbonate
    [34] XU, F. J., et al. Functionalized polylactide film surfaces via surface-initiated ATRP. Macromolecules, 2011, 44.7: 2371-2377.
    [35] XU, F. J.; WANG, Z. H.; YANG, W. T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials, 2010, 31.12: 3139-3147.
    [36] COSTANTINI, Francesca, et al. Enzyme-functionalized polymer brush films on the inner wall of silicon–glass microreactors with tunable biocatalytic activity.Lab on a Chip, 2010, 10.24: 3407-3412.
    [37] GREEN, N. Michael. Avidin. Advances in protein chemistry, 1974, 29: 85-133.
    [38] SMITH, Cassandra L.; MILEA, Jaqueline S.; NGUYEN, Giang H. Immobilization of nucleic acids using biotin-strept (avidin) systems. In:Immobilisation of DNA on Chips II. Springer Berlin Heidelberg, 2005. p. 63-90.
    [39] BONTEMPO, Debora; MAYNARD, Heather D. Streptavidin as a macroinitiator for polymerization: in situ protein-polymer conjugate formation. Journal of the American Chemical Society, 2005, 127.18: 6508-6509.
    [40] HUANG, Bi-Hai, et al. Surface labeling of enveloped viruses assisted by host cells. ACS chemical biology, 2012, 7.4: 683-688.
    [41] LEHNERT, Michael, et al. Adsorption and conformation behavior of biotinylated fibronectin on streptavidin-modified TiOX surfaces studied by SPR and AFM.Langmuir, 2011, 27.12: 7743-7751.
    [42] JOO, Kye-Il, et al. Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. ACS nano, 2008, 2.8: 1553-1562.
    [43] KRUEGER, Anke, et al. Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir, 2008, 24.8: 4200-4204.
    [44] MORRA, M., et al. On the aging of oxygen plasma-treated polydimethylsiloxane surfaces. Journal of Colloid and Interface Science, 1990, 137.1: 11-24.
    [45] ZELIKIN, Alexander N.; QUINN, John F.; CARUSO, Frank. Disulfide cross-linked polymer capsules: en route to biodeconstructible systems.Biomacromolecules, 2006, 7.1: 27-30.
    [46] GAZOULI, Maria, et al. Development of a quantum-dot-labelled magnetic immunoassay method for circulating colorectal cancer cell detection. World journal of gastroenterology: WJG, 2012, 18.32: 4419.
    [47] KOJIMA, Taisuke; TAKAYAMA, Shuichi. Patchy Surfaces Stabilize Dextran–Polyethylene Glycol Aqueous Two-Phase System Liquid Patterns. Langmuir, 2013, 29.18: 5508-5514.
    [48] JHON, Young K., et al. Formation of Polyampholyte Brushes via Controlled Radical Polymerization and Their Assembly in Solution. Langmuir, 2011, 28.1: 872-882.
    [49] COATS, A. W.; REDFERN, J. P. Thermogravimetric analysis. A review.Analyst, 1963, 88.1053: 906-924.
    [50] CHEN, Hao, et al. Thermal and bonding properties of nano size carbon black filled PDMS. 2009.
    [51] YAN, Junfeng, et al. CdS/CdSe quantum dot co-sensitized graphene nanocomposites via polymer brush templated synthesis for potential photovoltaic applications. Nanoscale, 2012, 4.6: 2109-2116.
    [52] Fang Lan, et al. Superparamagnetic Fe3O4/PMMA composite nanospheres as a nanoplatform for multimodal protein separation. RSC Advances, 2013, 3,
    1557
    [53] HAŠEK, Jiří; STREIBLOVÁ, Eva. Fluorescence microscopy methods. In:Yeast Protocols. Humana Press, 1996. p. 391-405.
    [54] YUK, Jong Seol, et al. Surface plasmon-coupled emission (SPCE)-based immunoassay using a novel paraboloid array biochip. Biosensors and Bioelectronics, 2010, 25.6: 1344-1349.
    [55] KANWAR, Shailender S., et al. The Wnt/β-catenin pathway regulates growth and maintenance of colonospheres. Molecular cancer, 2010, 9.1: 212.
    [56] CHEN, Jian; LI, Jason; SUN, Yu. Microfluidic approaches for cancer cell detection, characterization, and separation. Lab on a Chip, 2012, 12.10: 1753-1767.
    [57] WANG, Shunqiang; WAN, Yuan; LIU, Yaling. Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors. Nanoscale, 2014, 6.21: 12482-12489.
    [58] WANG, Shutao, et al. Three‐Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells. Angewandte Chemie, 2009, 121.47: 9132-9135.
    [59] YANAMOTO, Souichi, et al. Clinicopathologic significance of EpCAM expression in squamous cell carcinoma of the tongue and its possibility as a potential target for tongue cancer gene therapy. Oral oncology, 2007, 43.9: 869-877.
    [60] WENT, Philip TH, et al. Frequent EpCam protein expression in human carcinomas. Human pathology, 2004, 35.1: 122-128.
    [61] HSIAO, Yu‐Sheng, et al. 3D Bioelectronic Interface: Capturing Circulating Tumor Cells onto Conducting Polymer‐Based Micro/Nanorod Arrays with Chemical and Topographical Control. Small, 2014, 10.15: 3012-3017.
    [62] SUN, Wenjie, et al. High-Performance Size-Based Microdevice for the Detection Of Circulating Tumor Cells from Peripheral Blood in Rectal Cancer Patients. 2013.
    [63] VERMEULEN, Louis, et al. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature cell biology, 2010, 12.5: 468-476.
    [64] PATRIARCA, Carlo, et al. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer treatment reviews, 2012, 38.1: 68-75.
    [65] KHASHAN, S. A.; ALAZZAM, A.; FURLANI, E. P. Computational Analysis of Enhanced Magnetic Bioseparation in Microfluidic Systems with Flow-Invasive Magnetic Elements. Scientific reports, 2014, 4.
    [66] ZHENG, Siyang; LIU, Jing-Quan; TAI, Yu-Chong. Streamline-based microfluidic devices for erythrocytes and leukocytes separation.Microelectromechanical Systems, Journal of, 2008, 17.4: 1029-1038.

    無法下載圖示 全文公開日期 2020/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE