簡易檢索 / 詳目顯示

研究生: 陳婉慈
Wan-Tzu Chen
論文名稱: 多孔性複合SERS基板設計與生醫-環境檢測之應用
SERS-active Porous Substrate for Detection of Biomolecule and Uremic Toxins
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
鄭詠馨
Yung-Hsin Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 61
中文關鍵詞: 中孔二氧化矽氧化石墨烯銀奈米粒子表面增強拉曼光譜
外文關鍵詞: Mesoporous silica, graphene oxide, silver nanoparticles, surface-enhanced Raman scattering (SERS)
相關次數: 點閱:249下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著人類對傳染性疾病預防的日漸重視,檢驗試劑的需求也逐漸擴大。表面增強拉曼散射(SERS)為檢測低濃度的化學和生物分子提供了一種快速、靈敏且功能強大的分析技術。通常在銀或金奈米貴金屬不同排列下,對於拉曼增強具有很大的影響。其他具有功能性材料,例如:樹枝狀聚合物、蜂窩狀材料和多孔材料,都能縮小貴金屬奈米顆粒之間的間隙以得到最強之熱點效應(hot spots)及拉曼增強效應。本研究將銀奈米粒子(AgNPs)嵌入中孔二氧化矽(MPS)形成AgNPs @ MPS奈米球,用於SERS技術來檢測分子,例如:腺嘌呤、羅丹明6G、孔雀石綠和尿毒症毒素。經由TEM顯示MPS的平均尺寸和孔徑粒子分別為360 nm和2 nm。 AgNPs均勻分散在MPS上的粒徑(D,直徑:〜20 nm)和AgNP的顆粒之間隙(W)。結果表明SERS強度隨顆粒之間隙(或W/D比)的減少而增加。另外由於氧化石墨烯能提升拉曼增強效應,因此我們將銀奈米顆粒(AgNPs)固定在中孔二氧化矽(MPS)上功能化還原氧化石墨烯(mrGO)奈米片形成AgNPs @ mrGO SERS基板,用於生物檢測。通過MPS的高度多孔結構以rGO奈米片為基板的拉曼增強作用,經由TEM、 XRD和UV-Vis光譜顯示,孔洞通道(〜5 nm)的mrGO可以用作模板來操縱粒子之間隙和粒子大小使AgNPs獲得均勻的奈米顆粒陣列。而AgNPs @ mrGO和AgNPs @ rGO相比(不含MPS的rGO底物),通過添加mrGO的 SERS光譜信號背景值比(S/B ratio)為6.9,相較AgNPs @ rGO提高許多信號強度。AgNPs @ mrGO SERS底物可用於快速靈敏地檢測尿毒症毒素(肌酐酸、尿酸和尿素)和副甲狀腺激素(PTH)用於慢性腎臟疾病。快速無需標記即可實現尿毒症毒素(10 -6 M尿酸)和PTH(0.2 ng/mL)的可重複性和超靈敏檢測。


    With the improving emphasis on the prevention of infectious diseases in recent years, the demand for testing reagents has gradually expanded. Surface-enhanced Raman scattering (SERS) has provided a rapid, sensitive and powerful analytical technique for detection of chemical and biological molecules at low concentrations. Typically, Raman enhancement in noble metal of silver (Ag) or gold (Au) nanoparticles with different arrangement and morphology have been a highly SERS-active substrates. Moreover, the noble metal nanoparticles with other functional materials (such as dendritic polymer, honeycomb-like materials, and porous materials) has narrowed the gaps between the noble metal nanoparticles for the strong “hot spots” and Raman enhancement. Silver nanoparticles (AgNPs) have been successfully embedded into mesoporous silica (MPS) particles to form AgNPs@MPS nanohybrid nanospheres, which can be exploited for sensitive detection of molecules (e.g. adenine, Rhodamine 6G, malachite green, and uremic toxins) via SERS. Transmission electron microscopy (TEM) showed that the average size and pore diameter of the MPS particles are 360 nm and 2 nm respectively. The homogeneous dispersion of AgNPs on the MPS could enhance Raman signal by the well-controlled particle size (D, diameter: ~20 nm) and interparticle gap (W) of AgNPs. The results show that the significant SERS intensity increases with the interparticle gap (or W/D ratio) decreases. Moreover, graphene oxide can enhance the Raman enhancement effect, so silver nanoparticles (AgNPs) have been successfully immobilized on mesoporous silica (MPS). Functionalized reduced graphene oxide (mrGO) nanosheets form AgNP @ mrGO SERS-active substrate for biological detection. Highly porous structure through MPS Raman enhancement using rGO nanosheets as templates, AgNPs self-assembled on the floating 2D platform of mrGO nanosheets, passed the TEM, X-ray diffraction (XRD) and UV-Vis spectroscopy. Channel (~ 5 nm) mrGO can be used as a template to manipulate the gap and particle size between particles. AgNP is used to obtain a uniform array of nanoparticles. Compare with AgNP @ mrGO and AgNP @ rGO (RGO substrate without MPS), the signal-to-background ratio (S/B ratio) of the SERS spectrum is shown 6.9 folds increase by adding mrGO. This indicates that increasing SERS intensity and decreasing SERS intensity by using the mrGO template as the background. AgNPs @ mrGO can be used as SERS-active substrate, rapid and sensitive detection of uremic toxins (creatinine, uric acid and urea) and parathyroid hormone (PTH) for chronic kidney disease rapidly and reproducibly without labeling, and detect uremic toxin (10-6 M uric acid) and PTH (0.2 ng / mL) with ultra-high sensitivity.

    致謝 I 摘要 II Abstract IV 目錄 VI 圖目錄 IX 表目錄 XIII 第 1 章 緒論(Introduction) 1 1.1 研究動機 1 1.2 研究目的 2 第 2 章 文獻回顧 (Literature) 3 2.1 奈米孔洞材料 3 2.1.1 奈米孔洞材料簡介 3 2.1.2 中孔二氧化矽性質 4 2.2 石墨烯 5 2.2.1 石墨烯性質 5 2.2.2 石墨烯的製備方法 8 2.2.3 氧化石墨烯 11 2.3 銀奈米粒子 12 2.3.1 銀奈米粒子簡介 12 2.3.2 銀奈米粒子合成方法 13 2.4 拉曼光譜 15 2.4.1 拉曼光譜的原理 15 2.4.2 表面增強拉曼光譜簡介 19 第 3 章 實驗 (Experiment) 23 3.1 實驗材料 23 3.2 實驗設備 25 3.3 實驗流程 26 3.4 實驗原理及方法 26 3.4.1 銀奈米粒子@中孔二氧化矽 (AgNPs @ MPS) 26 3.4.2 銀奈米顆粒@功能化還原氧化石墨烯(AgNPs @ mrGO) 29 第 4 章 結果討論 (Results and Discussion) 33 4.1 銀奈米粒子@中孔二氧化矽 (AgNPs @ MPS) 33 4.1.1 X光繞射分析 (XRD) 33 4.1.2 穿透式電子顯微鏡及場發射掃描式電子顯微鏡 (TEM & FE-SEM) 33 4.1.3 化學分析影像能譜儀 (ESCA) 35 4.1.4 分子檢測實驗 36 4.2 銀奈米粒子@功能化還原氧化石墨烯(AgNPs @ mrGO) 42 4.2.1 拉曼光譜儀分析 (Raman) 42 4.2.2 X光繞射分析 (XRD) 44 4.2.3 穿透式電子顯微鏡 (TEM) 45 4.2.4 分子檢測實驗 46 4.2.5 SERS基板的拉曼增強效果………………………………….....53 第 5 章 結論 54 參考文獻 (Reference) 55

    1. Lewis, L. N. (1993). Chemical catalysis by colloids and clusters. Chemical Reviews, 93(8), 2693-2730.
    2. Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 26(2).
    3. Zhao, L. L., Jensen, L., & Schatz, G. C. (2006). Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters. Nano Letters, 6(6), 1229-1234.
    4. Zhu, J., Du, H. F., Zhang, Q., Zhao, J., Weng, G. J., Li, J. J., & Zhao, J. W. (2019). SERS detection of glucose using graphene-oxide-wrapped gold nanobones with silver coating. Journal of Materials Chemistry C, 7(11), 3322-3334.
    5. Chen, D., Feng, H., & Li, J. (2012). Graphene oxide: preparation, functionalization, and electrochemical applications. Chemical reviews, 112(11), 6027-6053.
    6. Zhang, S., Shao, Y., Liao, H., Engelhard, M. H., Yin, G., & Lin, Y. (2011). Polyelectrolyte-induced reduction of exfoliated graphite oxide: a facile route to synthesis of soluble graphene nanosheets. ACS nano, 5(3), 1785-1791.
    7. Li, D., Müller, M. B., Gilje, S., Kaner, R. B., & Wallace, G. G. (2008). Processable aqueous dispersions of graphene nanosheets. Nature nanotechnology, 3(2), 101.
    8. Liu, T. Y., Ho, J. Y., Wei, J. C., Cheng, W. C., Chen, I. H., Shiue, J., & Lin, J. J. (2014). Label-free and culture-free microbe detection by three dimensional hot-junctions of flexible Raman-enhancing nanohybrid platelets. Journal of Materials Chemistry B, 2(9), 1136-1143.
    9. Ho, J. Y., Liu, T. Y., Wei, J. C., Wang, J. K., Wang, Y. L., & Lin, J. J. (2014). Selective SERS detecting of hydrophobic microorganisms by tricomponent nanohybrids of silver–silicate-platelet–surfactant. ACS applied materials & interfaces, 6(3), 1541-1549.
    10. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., & Beck, J. S. (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. nature, 359(6397), 710-712.
    11. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 78(9), 1667.
    12. Xu, H., Bjerneld, E. J., Käll, M., & Börjesson, L. (1999). Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters, 83(21), 4357.
    13. Singh, R. (2002). CV Raman and the Discovery of the Raman Effect. Physics in Perspective, 4(4), 399-420.
    14. Dou, X., Yamaguchi, Y., Yamamoto, H., Doi, S., & Ozaki, Y. (1996). Quantitative analysis of metabolites in urine using a highly precise, compact near-infrared Raman spectrometer. Vibrational spectroscopy, 13(1), 83-89.
    15. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I., & Novoselov, K. S. (2007). Detection of individual gas molecules adsorbed on graphene. Nature materials, 6(9), 652-655.
    16. Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385-388.
    17. Bunch, J. S., Verbridge, S. S., Alden, J. S., Van Der Zande, A. M., Parpia, J. M., Craighead, H. G., & McEuen, P. L. (2008). Impermeable atomic membranes from graphene sheets. Nano letters, 8(8), 2458-2462.
    18. Frank, I. W., Tanenbaum, D. M., van der Zande, A. M., & McEuen, P. L. (2007). Mechanical properties of suspended graphene sheets. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 25(6), 2558-2561.
    19. Colonna, F., Los, J. H., Fasolino, A., & Meijer, E. J. (2009). Properties of graphite at melting from multilayer thermodynamic integration. Physical Review B, 80(13), 134103.
    20. Neek-Amal, M., & Peeters, F. M. (2010). Nanoindentation of a circular sheet of bilayer graphene. Physical Review B, 81(23), 235421.
    21. Charlier, J. C., Eklund, P. C., Zhu, J., & Ferrari, A. C. (2007). Electron and phonon properties of graphene: their relationship with carbon nanotubes. In Carbon nanotubes (pp. 673-709). Springer, Berlin, Heidelberg.
    22. Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., Vandersypen, L. M., & Morpurgo, A. F. (2007). Induced superconductivity in graphene. Solid State Communications, 143(1-2), 72-76.
    23. Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. (2005). Experimental observation of the quantum Hall effect and Berry's phase in graphene. nature, 438(7065), 201-204.
    24. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., & Lau, C. N. (2008). Superior thermal conductivity of single-layer graphene. Nano letters, 8(3), 902-907.
    25. Jorio, A., Dresselhaus, M. S., Saito, R., & Dresselhaus, G. (2011). Raman spectroscopy in graphene related systems. John Wiley & Sons.
    26. Neto, A. C., Guinea, F., Peres, N. M., Novoselov, K. S., & Geim, A. K. (2009). The electronic properties of graphene. Reviews of modern physics, 81(1), 109.
    27. Wallace, P. R. (1947). The band theory of graphite. Physical review, 71(9), 622.
    28. Geim, A. K., & Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and technology: a collection of reviews from nature journals (pp. 11-19).
    29. Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., & Conrad, E. H. (2006). Electronic confinement and coherence in patterned epitaxial graphene. Science, 312(5777), 1191-1196.
    30. Novoselov, K. S., & Neto, A. C. (2012). Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta, 2012(T146), 014006.
    31. Iyechika, Y. (2010). Application of graphene to high-speed transistors: expectations and challenges. NISTEP Science & Technology Foresight Center.
    32. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., & Kong, J. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters, 9(1), 30-35.
    33. Obraztsov, A. N., Obraztsova, E. A., Tyurnina, A. V., & Zolotukhin, A. A. (2007). Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 45(10), 2017-2021.
    34. Vlassiouk, I., Regmi, M., Fulvio, P., Dai, S., Datskos, P., Eres, G., & Smirnov, S. (2011). Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano, 5(7), 6069-6076.
    35. Yung, K. C., Wu, W. M., Pierpoint, M. P., & Kusmartsev, F. V. (2013). Introduction to graphene electronics–a new era of digital transistors and devices. Contemporary Physics, 54(5), 233-251.
    36. Chen, Y. W., Liu, T. Y., Chen, P. J., Chang, P. H., & Chen, S. Y. (2016). A High‐Sensitivity and Low‐Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti‐EGFR‐Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets. Small, 12(11), 1458-1468.
    37. Chen, H. Y., Lin, M. H., Wang, C. Y., Chang, Y. M., & Gwo, S. (2015). Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. Journal of the American Chemical Society, 137(42), 13698-13705.
    38. Wang, Y. W., Kao, K. C., Wang, J. K., & Mou, C. Y. (2016). Large-scale uniform two-dimensional hexagonal arrays of gold nanoparticles templated from mesoporous silica film for surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 120(42), 24382-24388.
    39. Pham, X. H., Hahm, E., Kim, H. M., Shim, S., Kim, T. H., Jeong, D. H., & Jun, B. H. (2016). Silver nanoparticle-embedded thin silica-coated graphene oxide as an SERS substrate. Nanomaterials, 6(10), 176.
    40. Chen, P. J., Hu, S. H., Hung, W. T., Chen, S. Y., & Liu, D. M. (2012). Geometrical confinement of quantum dots in porous nanobeads with ultraefficient fluorescence for cell-specific targeting and bioimaging. Journal of Materials Chemistry, 22(19), 9568-9575.
    41. Kao, K. C., Lin, C. H., Chen, T. Y., Liu, Y. H., & Mou, C. Y. (2015). A general method for growing large area mesoporous silica thin films on flat substrates with perpendicular nanochannels. Journal of the American Chemical Society, 137(11), 3779-3782.
    42. Vlčková, B., Moskovits, M., Pavel, I., Šišková, K., Sládková, M., & Šlouf, M. (2008). Single-molecule surface-enhanced Raman spectroscopy from a molecularly-bridged silver nanoparticle dimer. Chemical Physics Letters, 455(4-6), 131-134.
    43. Camden, J. P., Dieringer, J. A., Wang, Y., Masiello, D. J., Marks, L. D., Schatz, G. C., & Van Duyne, R. P. (2008). Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. Journal of the American Chemical Society, 130(38), 12616-12617.
    44. Tong, G., Geng, X., Yu, Y., Yu, L., Xu, J., Jiang, Y., ... & Chen, K. (2017). Rapid, stable and self-powered perovskite detectors via a fast chemical vapor deposition process. RSC advances, 7(30), 18224-18230.
    45. Nguyen-Tri, P., Nguyen, T. A., Carriere, P., & Ngo Xuan, C. (2018). Nanocomposite coatings: preparation, characterization, properties, and applications. International Journal of Corrosion, 2018.
    46. Agnihotri, S., Mukherji, S., & Mukherji, S. (2014). Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. Rsc Advances, 4(8), 3974-3983.
    47. Placzek, G. (1934). Rayleigh-streuung und Raman-effekt (Vol. 2). Akad. Verlag-Ges..
    48. Graves, P. R. G. D. J., & Gardiner, D. (1989). Practical Raman spectroscopy. Springer.
    49. Tanaka, M., & Young, R. J. (2006). Review Polarised Raman spectroscopy for the study of molecular orientation distributions in polymers. Journal of Materials Science, 41(3), 963-991.
    50. Fleischmann, M., Hendra, P. J., & McQuillan, A. J. (1974). Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 26(2).
    51. Doering, W. E., & Nie, S. (2002). Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B, 106(2), 311-317.
    52. Félidj, N., Aubard, J., Lévi, G., Krenn, J. R., Hohenau, A., Schider, G., & Aussenegg, F. R. (2003). Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters, 82(18), 3095-3097.
    53. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., & Feld, M. S. (1997). Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters, 78(9), 1667.
    54. Zuloaga, J., Prodan, E., & Nordlander, P. (2010). Quantum plasmonics: optical properties and tunability of metallic nanorods. ACS nano, 4(9), 5269-5276.
    55. Hubenthal, F. (2014). Does the excitation of a plasmon resonance induce a strong chemical enhancement in SERS? On the relation between chemical interface damping and chemical enhancement in SERS. Applied Physics B, 117(1), 1-5.
    56. Campion, A., & Kambhampati, P. (1998). Surface-enhanced Raman scattering. Chemical society reviews, 27(4), 241-250.
    57. Haes, A. J., & Van Duyne, R. P. (2004). A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry, 379(7-8), 920-930.
    58. Kelly, K. L., Coronado, E., Zhao, L. L., & Schatz, G. C. (2003). The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment.
    59. Hao, E., & Schatz, G. C. (2004). Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics, 120(1), 357-366.
    60. Etchegoin, P. G., & Le Ru, E. C. (2008). A perspective on single molecule SERS: current status and future challenges. Physical Chemistry Chemical Physics, 10(40), 6079-6089.
    61. Potara, M., Baia, M., Farcau, C., & Astilean, S. (2012). Chitosan-coated anisotropic silver nanoparticles as a SERS substrate for single-molecule detection. Nanotechnology, 23(5), 055501.
    62. Wang, H. H., Liu, C. Y., Wu, S. B., Liu, N. W., Peng, C. Y., Chan, T. H., & Wang, Y. L. (2006). Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials, 18(4), 491-495.
    63. Huang, Q., Wen, S., & Zhu, X. (2014). Synthesis and characterization of an AgI/Ag hybrid nanocomposite with surface-enhanced Raman scattering performance and photocatalytic activity. RSC advances, 4(70), 37187-37192.
    64. Kang, Y., Chu, Z., Zhang, D., Li, G., Jiang, Z., Cheng, H., & Li, X. (2013). Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon, 61, 200-208.
    65. Wang, K. S. , Juang, R. S., Cheng, Y. W., Fu, C. C., Chen, W. T., Liu, C. M., & Liu, T. Y. (2019). Floating SERS substrates of silver nanoparticles-graphene based nanosheets for rapid detection of biomolecules and clinical uremic toxins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 576, 36-42.

    無法下載圖示 全文公開日期 2025/06/17 (校內網路)
    全文公開日期 2025/06/17 (校外網路)
    全文公開日期 2025/06/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE