簡易檢索 / 詳目顯示

研究生: 胡益誠
Yi-Cheng Hu
論文名稱: 金奈米棒-石墨烯奈米複合物於表面增強拉曼光譜偵測以及光熱效應之應用
Applications of Au nanorod-Graphene Nanocomposites for Rapid SERS Detection and Photothermal Effect
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 楊銘乾
Ming-Chien Yang
劉定宇
Ting-Yu Liu
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 99
中文關鍵詞: 金奈米棒石墨烯表面增強拉曼光譜光熱效應
外文關鍵詞: gold nanorod, graphene, surface-enhanced Raman scattering, photothermal effect
相關次數: 點閱:306下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來奈米科技蓬勃發展,金奈米材料優異生物相容性被受重視,根據結構 及粒徑大小而有更多元的應用性。金奈米棒依據入射光頻率產生表面電漿共振效應(SPR)吸收,其SPR吸收波段介於可見光與近紅外光間,廣泛應用於生醫、光電及顯影技術。
    本研究金奈米棒 (gold nanorod,AuNR)被包覆於十六烷基三甲基溴化銨 (CTAB),粒子表面帶正電分布於聚乙烯吡咯烷酮 (PVP)改質還原石墨烯 (reduce graphene oxide,RGO)得到的RGO-PVP上形成AuNR@RGO奈米複合物。AuNR@RGO具有光學穿透性並且能夠提升對於偵測物的接觸面積進而提高表面增強拉曼光譜 (surface-enhanced Raman scattering,SERS)偵測的靈敏度,藉由調控不同比例之AuNR和RGO尋找最佳拉曼增強效應並用於偵測染料小分子Rhodamine 6G (R6G) SERS訊號,也由於AuNR@RGO具有良好光熱效應,可置於雷射照射下產生熱能達到升溫作用。結果顯示AuNR@RGO不僅擁有良好之拉曼增強效應,在光熱升溫方面也有明顯的效果,為一多功能型奈米複合材料。


    In recent years nanotechnology is flourishing. Gold (Au) based materials have excellent biocompatibility. By tuning the particle size and shape, a diverse range of applications are readily available. For a certain range of frequency of an incident light irradiated upon gold nanorod (AuNR), surface plasmon resonance (SPR) effect can be produced. The SPR effect was utilized to acquire the absorption bands between visible and near-infrared light (NIR) of the Au nanorod for biomedical, optical electronics, and imaging applications.
    In this study, Au nanorods were prepared by seed-mediated growth method. Then Au nanorods were attached onto polyvinylpyrrolidone (PVP)-modified reduce graphene oxide (RGO) sheets through in situ self-assembly behaviors, termed as AuNR@RGO. The resulting AuNR@RGO was characterized systematically by transmission electron microscopy (TEM). It revealed that Au nanorods were immobilized and dispersed homogeneously on the surface of graphene oxide layer. The surface charge was confirmed by zetasizer measurement. The results showed that Au nanorods successfully immobilized on the graphene oxide. Furthermore, the rapid surface-enhanced Raman scattering (SERS) detection and identification of Rhodamine 6G (R6G) was conducted through Raman spectroscopy. In addition, photothermal effect was induced by external laser illumination. Hence, these new nanohybrids exhibit potentials for both sensing and thermal therapeutic applications.

    致謝 中文摘要 Abstract 目錄 圖目錄 表目錄 第 1 章 緒論 (Introduction) 1.1 研究背景 1.2 研究目的 第 2 章 文獻回顧 (Literature) 2.1 金屬奈米粒子 2.1.1 金奈米棒性質 2.1.2 金奈米棒合成方法與結構 2.2 石墨烯 2.2.1 石墨烯結構與性質 2.2.2 石墨烯的製備方法 2.3 聚乙烯吡咯烷酮(PVP) 2.4 陽離子界面活性劑(CTAB) 2.5 拉曼光譜 2.5.1 拉曼光譜的歷史 2.5.2 拉曼光譜的原理 2.6 表面增強拉曼光譜 2.6.1 表面增強拉曼光譜簡介 2.6.2 表面增強拉曼光譜效應機制 2.6.3 Rhodamine 6G(R6G)之SERS訊號 2.7 光熱效應 2.7.1 光熱效應原理簡介 2.7.2 光熱療法發展 第 3 章 實驗(Experiment) 3.1 實驗材料 3.2 實驗設備 3.3 實驗流程 3.4 實驗原理及方法 3.4.1 金奈米棒合成(CTAB-Au nanorod) 3.4.2 氧化石墨烯合成 3.4.5 RGO-PVP合成 3.4.6 AuNR@RGO合成 3.4.7 表面增強拉曼光譜實驗 3.4.8 光熱實驗 3.4.9 儀器分析 第 4 章 結果討論(Results and Discussion) 4.1 金奈米棒-石墨烯奈米複合物合成 4.1.1 金奈米棒合成 4.1.2 氧化石墨烯以及RGO-PVP之合成 4.1.3 AuNR@RGO奈米複合物之合成 4.2 SERS效應與應用探討 4.2.1 金奈米棒於SERS效應之應用 4.2.2 AuNR@RGO複合物於SERS效應之應用 4.2.3 AuNR@RGO奈米複合物之SERS偵測極限 4.3 光熱效應實驗之應用探討 第 5 章 結論 參考文獻 (Reference)

    1. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA: The golden age: gold nanoparticles for biomedicine. Chemical Society Reviews 2012, 41(7):2740-2779.
    2. Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM: Shape control in gold nanoparticle synthesis. Chemical Society Reviews 2008, 37(9):1783-1791.
    3. Gou L, Murphy CJ: Fine-tuning the shape of gold nanorods. Chemistry of materials 2005, 17(14):3668-3672.
    4. Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC: Gold nanoparticles in biology: beyond toxicity to cellular imaging. Accounts of chemical research 2008, 41(12):1721-1730.
    5. Nehl CL, Hafner JH: Shape-dependent plasmon resonances of gold nanoparticles. Journal of Materials Chemistry 2008, 18(21):2415-2419.
    6. Tao AR, Habas S, Yang P: Shape control of colloidal metal nanocrystals. small 2008, 4(3):310-325.
    7. Lohse SE, Murphy CJ: The quest for shape control: a history of gold nanorod synthesis. Chemistry of Materials 2013, 25(8):1250-1261.
    8. Eustis S, El-Sayed MA: Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical society reviews 2006, 35(3):209-217.
    9. Sun X, Wu L, Ji J, Jiang D, Zhang Y, Li Z, Zhang G, Zhang H: Longitudinal surface plasmon resonance assay enhanced by magnetosomes for simultaneous detection of Pefloxacin and Microcystin-LR in seafoods. Biosensors and Bioelectronics 2013, 47:318-323.
    10. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. In.: ACS Publications; 2005.
    11. Kumar J, Thomas KG: Surface-enhanced Raman spectroscopy: investigations at the nanorod edges and dimer junctions. The Journal of Physical Chemistry Letters 2011, 2(6):610-615.
    12. Mueller JE, van Duin AC, Goddard III WA: Development and validation of ReaxFF reactive force field for hydrocarbon chemistry catalyzed by nickel. The Journal of Physical Chemistry C 2010, 114(11):4939-4949.
    13. Wild B, Cao L, Sun Y, Khanal BP, Zubarev ER, Gray SK, Scherer NF, Pelton M: Propagation lengths and group velocities of plasmons in chemically synthesized gold and silver nanowires. ACS nano 2012, 6(1):472-482.
    14. Khlebtsov N, Dykman L: Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chemical Society Reviews 2011, 40(3):1647-1671.
    15. Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y: Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews 2006, 35(11):1084-1094.
    16. Alivisatos AP: Semiconductor clusters, nanocrystals, and quantum dots. Science 1996, 271(5251):933.
    17. Klein DL, McEuen PL, Katari JEB, Roth R, Alivisatos AP: An approach to electrical studies of single nanocrystals. Applied Physics Letters 1996, 68(18):2574-2576.
    18. Alkilany AM, Lohse SE, Murphy CJ: The gold standard: gold nanoparticle libraries to understand the nano–bio interface. Accounts of chemical research 2012, 46(3):650-661.
    19. Link S, Wang ZL, El-Sayed M: Alloy formation of gold− silver nanoparticles and the dependence of the plasmon absorption on their composition. The Journal of Physical Chemistry B 1999, 103(18):3529-3533.
    20. Huang X, Neretina S, El‐Sayed MA: Gold nanorods: from synthesis and properties to biological and biomedical applications. Advanced Materials 2009, 21(48):4880-4910.
    21. Yu Y-Y, Chang S-S, Lee C-L, Wang CC: Gold nanorods: electrochemical synthesis and optical properties. The Journal of Physical Chemistry B 1997, 101(34):6661-6664.
    22. Chang S-S, Shih C-W, Chen C-D, Lai W-C, Wang CC: The shape transition of gold nanorods. Langmuir 1999, 15(3):701-709.
    23. Pérez-Juste J, Pastoriza-Santos I, Liz-Marzán LM, Mulvaney P: Gold nanorods: synthesis, characterization and applications. Coordination Chemistry Reviews 2005, 249(17):1870-1901.
    24. Pérez‐Juste J, Liz‐Marzán LM, Carnie S, Chan DY, Mulvaney P: Electric‐field‐directed growth of gold nanorods in aqueous surfactant solutions. Advanced Functional Materials 2004, 14(6):571-579.
    25. Jana NR, Gearheart L, Murphy CJ: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Advanced Materials 2001, 13(18):1389.
    26. Jana NR, Gearheart L, Murphy CJ: Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. The Journal of Physical Chemistry B 2001, 105(19):4065-4067.
    27. Kim F, Song JH, Yang P: Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 2002, 124(48):14316-14317.
    28. Niidome Y, Nishioka K, Kawasaki H, Yamada S: Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chemical Communications 2003(18):2376-2377.
    29. Murphy CJ, Jana NR: Controlling the aspect ratio of inorganic nanorods and nanowires. Advanced Materials 2002, 14(1):80.
    30. Sau TK, Murphy CJ: Self-assembly patterns formed upon solvent evaporation of aqueous cetyltrimethylammonium bromide-coated gold nanoparticles of various shapes. Langmuir 2005, 21(7):2923-2929.
    31. Kneipp K, Haka AS, Kneipp H, Badizadegan K, Yoshizawa N, Boone C, Shafer-Peltier KE, Motz JT, Dasari RR, Feld MS: Surface-enhanced Raman spectroscopy in single living cells using gold nanoparticles. Applied Spectroscopy 2002, 56(2):150-154.
    32. Talley CE, Jackson JB, Oubre C, Grady NK, Hollars CW, Lane SM, Huser TR, Nordlander P, Halas NJ: Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters 2005, 5(8):1569-1574.
    33. Orendorff CJ, Gole A, Sau TK, Murphy CJ: Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77(10):3261-3266.
    34. Kim AKGaP: Graphene, a newly isolated form of carbon, provides a rich lode of novel fundamental physics and practical applications. Scientific American 2008, 298:90-97.
    35. Eda G, Fanchini G, Chhowalla M: Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature nanotechnology 2008, 3(5):270-274.
    36. Geim AK, Novoselov KS: The rise of graphene. Nature materials 2007, 6(3):183-191.
    37. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA: Electric field effect in atomically thin carbon films. science 2004, 306(5696):666-669.
    38. Meyer J, Chuvilin A, Kaiser U: Electron microscopic studies with graphene. Microscopy and Microanalysis 2009, 15(S2):126-127.
    39. Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U: From graphene constrictions to single carbon chains. New Journal of Physics 2009, 11(8):083019.
    40. Lee C, Wei X, Kysar JW, Hone J: Measurement of the elastic properties and intrinsic strength of monolayer graphene. science 2008, 321(5887):385-388.
    41. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN: Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8(3):902-907.
    42. Bolotin KI, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H: Ultrahigh electron mobility in suspended graphene. Solid State Communications 2008, 146(9):351-355.
    43. Yu X, Cai H, Zhang W, Li X, Pan N, Luo Y, Wang X, Hou J: Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS nano 2011, 5(2):952-958.
    44. Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus MS, Zhang J, Liu Z: Can graphene be used as a substrate for Raman enhancement? Nano letters 2009, 10(2):553-561.
    45. Rafiee J, Mi X, Gullapalli H, Thomas AV, Yavari F, Shi Y, Ajayan PM, Koratkar NA: Wetting transparency of graphene. Nature materials 2012, 11(3):217-222.
    46. Chen S, Wu Q, Mishra C, Kang J, Zhang H, Cho K, Cai W, Balandin AA, Ruoff RS: Thermal conductivity of isotopically modified graphene. Nature materials 2012, 11(3):203-207.
    47. Neto AC, Novoselov K: New directions in science and technology: two-dimensional crystals. Reports on Progress in Physics 2011, 74(8):082501.
    48. Novoselov KS, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, Dubonos S, Firsov A: Two-dimensional gas of massless Dirac fermions in graphene. nature 2005, 438(7065):197-200.
    49. Novoselov K, Neto AC: Two-dimensional crystals-based heterostructures: materials with tailored properties. Physica Scripta 2012, 2012(T146):014006.
    50. Iyechika Y: Application of graphene to high-speed transistors: expectations and challenges. Sci Technol Trends 2010, 37:76-92.
    51. Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano letters 2008, 9(1):30-35.
    52. Obraztsov A, Obraztsova E, Tyurnina A, Zolotukhin A: Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 2007, 45(10):2017-2021.
    53. Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS nano 2011, 5(7):6069-6076.
    54. Yung K, Wu W, Pierpoint M, Kusmartsev F: Introduction to graphene electronics–a new era of digital transistors and devices. Contemporary Physics 2013, 54(5):233-251.
    55. He H, Klinowski J, Forster M, Lerf A: A new structural model for graphite oxide. Chemical physics letters 1998, 287(1):53-56.
    56. Lerf A, He H, Forster M, Klinowski J: Structure of graphite oxide revisited‖. The Journal of Physical Chemistry B 1998, 102(23):4477-4482.
    57. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M: Thin-film particles of graphite oxide 1:: High-yield synthesis and flexibility of the particles. Carbon 2004, 42(14):2929-2937.
    58. Szabó T, Szeri A, Dékány I: Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 2005, 43(1):87-94.
    59. Brodie BC: Sur le poids atomique du graphite. Annales de chimie et de physique 1860, 59:466-472.
    60. Staudenmaier L: Verfahren zur darstellung der graphitsäure. European Journal of Inorganic Chemistry 1898, 31(2):1481-1487.
    61. Hummers Jr WS, Offeman RE: Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80(6):1339-1339.
    62. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB: Structural evolution during the reduction of chemically derived graphene oxide. Nature chemistry 2010, 2(7):581-587.
    63. Fischer F, Bauer S: Polyvinylpyrrolidon. Ein tausendsassa in der chemie. Chemie in unserer Zeit 2009, 43(6):376-383.
    64. Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE: Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions 2015, 44(41):17883-17905.
    65. Washio I, Xiong Y, Yin Y, Xia Y: Reduction by the end groups of poly (vinyl pyrrolidone): a new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Advanced Materials 2006, 18(13):1745-1749.
    66. Xiong Y, Washio I, Chen J, Cai H, Li Z-Y, Xia Y: Poly (vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 2006, 22(20):8563-8570.
    67. Chen S, Cheng B, Ding C: Synthesis and Characterization of Poly (vinyl pyrrolidone)/Reduced Graphene Oxide Nanocomposite. Journal of Macromolecular Science, Part B 2015, 54(4):481-491.
    68. Khan Z, Singh T, Hussain JI, Hashmi AA: Au (III)–CTAB reduction by ascorbic acid: Preparation and characterization of gold nanoparticles. Colloids and Surfaces B: Biointerfaces 2013, 104:11-17.
    69. Ferraro JR: Introductory raman spectroscopy: Academic press; 2003.
    70. Fleischmann M, Hendra PJ, McQuillan AJ: Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26(2):163-166.
    71. Doering WE, Nie S: Single-molecule and single-nanoparticle SERS: examining the roles of surface active sites and chemical enhancement. The Journal of Physical Chemistry B 2002, 106(2):311-317.
    72. Felidj N, Aubard J, Levi G, Krenn J, Hohenau A, Schider G, Leitner A, Aussenegg F: Optimized surface-enhanced Raman scattering on gold nanoparticle arrays. Applied Physics Letters 2003, 82(18):3095-3097.
    73. Nie S, Emory SR: Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275(5303):1102-1106.
    74. Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS: Single molecule detection using surface-enhanced Raman scattering (SERS). Physical review letters 1997, 78(9):1667.
    75. Campion A, Kambhampati P: Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27(4):241-250.
    76. Jeanmaire DL, Van Duyne RP: Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84(1):1-20.
    77. Albrecht MG, Creighton JA: Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99(15):5215-5217.
    78. Le Ru E, Blackie E, Meyer M, Etchegoin PG: Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C 2007, 111(37):13794-13803.
    79. Haes AJ, Van Duyne RP: A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry 2004, 379(7-8):920-930.
    80. Kelly KL, Coronado E, Zhao LL, Schatz GC: The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. In.: ACS Publications; 2003.
    81. Le Ru EC, Etchegoin PG: Principles of Surface-Enhanced Raman Spectroscopy: Amsterdam: Elsevier; 2009.
    82. Xu H, Bjerneld EJ, Käll M, Börjesson L: Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters 1999, 83(21):4357.
    83. Hao E, Schatz GC: Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics 2004, 120(1):357-366.
    84. Jensen TR, Schatz GC, Van Duyne RP: Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet− visible extinction spectroscopy and electrodynamic modeling. The Journal of Physical Chemistry B 1999, 103(13):2394-2401.
    85. Liu GL, Lee LP: Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005, 87(7):074101.
    86. Wang HH, Liu CY, Wu SB, Liu NW, Peng CY, Chan TH, Hsu CF, Wang JK, Wang YL: Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 2006, 18(4):491-495.
    87. He XN, Gao Y, Mahjouri-Samani M, Black P, Allen J, Mitchell M, Xiong W, Zhou Y, Jiang L, Lu Y: Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology 2012, 23(20):205702.
    88. Link S, El-Sayed MA: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. International reviews in physical chemistry 2000, 19(3):409-453.
    89. Weissleder R: A clearer vision for in vivo imaging. Nature biotechnology 2001, 19(4):316-316.
    90. Ekici O, Harrison R, Durr N, Eversole D, Lee M, Ben-Yakar A: Thermal analysis of gold nanorods heated with femtosecond laser pulses. Journal of physics D: Applied physics 2008, 41(18):185501.
    91. Huang X, Jain PK, El-Sayed IH, El-Sayed MA: Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in medical science 2008, 23(3):217.
    92. Orendorff CJ, Murphy CJ: Quantitation of metal content in the silver-assisted growth of gold nanorods. The Journal of Physical Chemistry B 2006, 110(9):3990-3994.
    93. Li M, Cushing SK, Zhang J, Lankford J, Aguilar ZP, Ma D, Wu N: Shape-dependent surface-enhanced Raman scattering in gold–Raman-probe–silica sandwiched nanoparticles for biocompatible applications. Nanotechnology 2012, 23(11):115501.
    94. Guo H, Ruan F, Lu L, Hu J, Pan J, Yang Z, Ren B: Correlating the shape, surface plasmon resonance, and surface-enhanced Raman scattering of gold nanorods. The Journal of Physical Chemistry C 2009, 113(24):10459-10464.

    QR CODE