簡易檢索 / 詳目顯示

研究生: 李彥蓁
Yen-Chen Lee
論文名稱: 貴金屬奈米粒子/二維奈米片混成材料之製備及其表面增強拉曼光譜之應用
Fabrication of Precious Metal Nanoparticles and Two-dimensional Nanoplatelets Hybrids for Surface-Enhanced Raman Spectroscopy Applications
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 邱顯堂
游進陽
鄭智嘉
鄭如忠
蔡燕鈴
劉定宇
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 173
中文關鍵詞: 奈米金粒子表面增強拉曼散射黏土靜電紡絲石墨烯腺嘌呤
外文關鍵詞: AuNPs, SERS, Clay, Graphene, Electrospinning, Adenine
相關次數: 點閱:364下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼散射(Surface Enhanced Raman Scattering,縮寫為SERS)可以廣泛應用於生物、醫藥、電化學、食品科學、環境工程等領域,並可偵測各種的有機生物分子。其原理是利用粗糙的貴金屬表面,例如奈米金或銀粒子,可以將拉曼散射訊號放大一百萬倍,有這高靈敏度、無單一性及快速的好處,加上近十年奈米技術的進步,使得其發展迅速。然而,一般市面上所製備的底板大多面積小、成本高及製成不易,為了解決這些問題,本研究中使用簡單的化學還原法複合二維材料產生三維熱點,作為大面積高靈敏度的表面增強拉曼散射底版。
    第一部分利用無機的奈米矽片(黏土)良好的陽離子交換的能力,可以用以穩定奈米金粒子,使用穿透式電子顯微鏡(Transmission Electron Microscopy,TEM)成功證實了使用不同尺寸的黏土(laponite、Na + -MMT、雲母)來穩定奈米金粒子落在25 - 30nm並且有形狀的相似性。另一方面,黏土也具有高吸水性,可以用以捕捉待測分子,我們使用此底板做拉曼散射的快篩,用來檢測常見的染料直接藍200 (Direct Blue 200)、DNA的腺嘌呤 (Adenine)及農藥的百草枯 (Paraquat),都可達到三維的熱點效應,其極限濃度達10-8M以上,大約為0.01ppm以下,增強因子 (Enhancement Factor, EF)為7 × 105。
    第二部分設計柔性便於攜帶的拉曼散射基材,以生物可降解的聚乙烯醇(Polyvinyl alcohol, PVA)作為靜電紡絲的支架,使用同軸靜電紡絲技術,將奈米金粒子均勻的分佈在奈米纖維表面上,製備殼/核奈米金粒子@人造黏土/聚乙烯醇奈米纖維膜。其纖維膜因纖維隨機沉積而具有三維的纖維結構。比較與傳統的靜電紡絲技術,所需的金含量濃度低,且可以接觸到待測物,進而展現出較高的拉曼散射訊號達到10-7M,同時因減少奈米金粒子對纖維結構的破壞,其極限抗拉強度提升1.5倍。拉曼檢測中,其在直接藍200展現出10-8M的極限濃度及增強因子2.5× 105,對百草枯和腺嘌呤的極限檢測濃度都有10-7M的極限濃度,展現出良好的再現性。
    第三部分,思考是否可以在二維材料本身就用可以用以增強拉曼散射訊號,故選用了石墨烯材料。其分散劑的設計是以親水/疏水性三團聯共聚物和氧化石墨烯(Graphene Oxide,GO)所組成的有機/無機奈米混成分散劑來穩定奈米銀粒子(AuNPs)。透射電子顯微鏡測量證實了所得的AgNPs具有〜15nm的窄尺寸分佈。這些AgNPs吸附在氧化石墨烯的兩側上,形成AgNPs /共聚物/ GO的複合材料。氧化石墨烯提供1-5 nm的厚度,使得奈米銀粒子間有一定的距離,形成三維熱點。用於表面增強拉曼散射,對腺嘌呤的增強因子為1.2×105。
    第四部份,因奈米銀粒子活性高且易氧化,使應用受限,故使用奈米金粒子為材料,以奈米金粒子/共聚物/石墨烯複合材料底板做為表面增強拉曼材料。經由穿透式電子顯微鏡觀察可以知道奈米金粒子粒徑介於25 nm至35 nm的窄粒徑範圍。進一步將AuNPs/GO分散液利用溶液滴塗法沉積在鋁基板上,因二維的氧化石墨烯具有自組裝特性,使得奈米金粒子/氧化石墨烯混合物形成規則的層狀排列,成為大面積拉曼基板,並以300℃退火2小時移除分散劑後,通過掃描式電子顯微鏡(Scanning Electron Microscopy,SEM)測量證實,因二維GO奈米片的穩定控制金奈米顆粒尺寸僅成長至40 nm左右。且因氧化石墨烯的厚度約為1~5 nm間,使得AuNPs的顆粒間距小而產生良好的三維(3D)熱點效應。最後對具有高螢光性質的常見染料羅丹明6G(Rhodamine 6G,R6G)進行表面增強拉曼散射的檢測,其增強因子(Enhancement Factor,EF)呈現極佳的靈敏度,約為2.7 × 107。因此,奈米金/氧化石墨烯奈米片作為SERS基底,且其為可撓且大面積的基板材料,在環境檢測應用中具有很大的潛力。


    Surface Enhanced Raman Scattering (SERS) can be widely used in biology, medicine, electrochemistry, food science, environmental engineering and other fields. It can detect a variety of organic biological molecules. The principle of SERS is to use a rough precious metal surface, such as gold or silver nanoparticles, to amplify the Raman scattering signal more than million times. SERS is good at its’ high sensitivity and wide application. With the progress of nanotechnology, SERS develop rapidly. However, the substrate in market are almost small in area with high cost and difficult on manufacture. In order to solve these problems, a simple chemical reduction method was used in this study to generate three-dimensional hotspots by compositing two-dimensional materials as a large-area high-sensitivity Surface enhancement Raman Scattering substrate.
    In the first part, use the cation exchange capacity from clay to stable the gold nanoparticle (AuNPs). The use of various dimensions of clay to stabilize the AuNPs, such as laponite, Na+-MMT, mica, that forming the narrow particle diameter range between 25–30 nm was successfully confirmed by transmission electron microscopy (TEM) measurement. In addition, the SERS substrate could be applied to biological, environmental, and food safety that measured by small molecules included adenine of DNA, direct blue of dye, paraquat of pesticide and the sensitivity was improved with an enhancement factor (EF) of 9.3 × 105 and limit of detection (LOD) of 10-9 M.
    In the second part, make the bendable and environmentally friendly substrates prepared by coaxial electrospinning technique composed of core/shell gold nanoparticles(AuNPs) with clay nanoplateles synthesized by sodium citrate reducing and poly(vinyl alcohol) nanosphere hybrids as core fluid. The core/shell hybrid nanofiber membrane has the three-dimensional (3D) networked formation which has homogeneous AuNPs distribution insides layer-by-layer deposited randomly. Transmission electron microscopy (TEM) observation showed the core/shell structure and the AuNPs embedded into the surface of nanofiber and oriented along their axes while getting the better mechanical properties which confirmed by tensile test. Compare with traditional electrospinning, the core-shell membranes can easier contact with molecular and enhance the Raman intensity. Detecting dye (Direct Blue 200) and herbicide (paraquat) showed good enhancement factor (EF) more than 10-5 and LOD is 10-8 M and 10-7M respectively. In additional, the high EF and LOD more than 10-7M found in detecting DNA (adenine molecule), the basic component of life, and the high relative standard deviations (RSD) of different contents adenine was about 92.3% which can confirm the possibility in bio-tech.
    In the third part, select the two-dimensional materials such as graphene oxide (GO) to improve the Raman signal. Silver nanoparticles (AgNPs) are well dispersed in an organic/inorganic nanohybrid surfactant consisting of an amphiphilic triblock copolymer and graphene oxide (GO) as Raman substrate. AgNPs had a narrow size distribution of ∼15 nm confirmed by TEM measurements. These AgNPs were adsorbed on both sides of the GO nanosheets, forming controllable nanodispersions of the AgNPs/copolymer/GO hybrid. A facile method for fabricating the desired nanohybrid SERS films was therefore developed by immobilizing spherical AgNPs with a narrow size distribution on both sides of the 3−5 nm-thick GO nanosheets, which afforded 1−5 nm interparticle distances between the AgNPs. Furthermore, the hybrid substrate films formed three-dimensional (3D) hot-junctions and exhibited an SERS enhancement factor (EF) of 1.2 × 105 toward adenine molecules from DNA, which served as a model biomolecular target.
    In the fourth part, because of the oxidation reaction from AgNPs, use the AuNPs as materials. The narrow particle diameter range between 25nm to 35nm was confirmed by transmission electron microscopy (TEM) measurements. After the annealing at 300 ℃ for 2hrs to remove the dispersant, the gold nanoparticles grew up to around 40nm confirmed by scanning electron microscopy (SEM) measurements. These AuNPs were adsorbed on both sides of the GO nanosheets to produce the three-dimensional (3D) hot-junctions which afforded 1-5nm interparticle distances between the AuNPs by the thickness from graphene oxide. On the other side of the great self-assembling property of the graphene oxide that the AuNPs/GO hybrid become regular layered arrangement to be large area Raman substrate and exhibited an SERS enhancement factor (EF) of 2.7 × 107 toward adenine molecules from DNA, which served as a model biomolecular target. Therefore, the AuNPs/GO nanosheets as SERS substrates have great potential in biosensor technology applications because they are flexible, free-standing, highly stable and large-scale.

    Chinese Abstract I Abstract III Acknowledgement VI Contents VII Figure X Tables XV Chapter 1 Introduction 1 1.1 Prolegomena 1 1.2 Purpose 2 Chapter 2 Review 3 2.1 Raman Scattering 3 2.1.1 History and Basic Principles 3 2.1.2 Surface Enhance Raman Scattering 3 2.1.3 Application 7 2.2 Nanotechnology 7 2.2.1 Dispersion of nanomaterials 9 2.2.2 Nano-metal 10 2.2.3 Clay 13 2.2.4 Graphene 16 2.3 Electrospinning 22 2.3.1 Electrospinning Device 23 2.3.2 Processing Parameters of Electrospinning 24 2.3.3 Electrospinning technology use as SERS substrate 26 2.4 Reference 28 Chapter 3 Experiment Section 35 3.1 Flow chart 35 3.2 Materials 37 3.3 Instruments 40 Chapter 4 Immobilization and 3D Hot-Junction Formation of Gold Nanoparticles on Two-Dimensional Silicate Nanoplatelets as Substrates for High-Efficiency Surface-Enhanced Raman Scattering Detection 42 4.1 Abstract 42 4.2 Introduction 42 4.3 Experiment section 44 4.3.1 Preparation of AuNPs /clay Nanocomposites Hybrid Suspensions 44 4.3.2 Preparation of the SERS Samples 45 4.4 Results and discussion 46 4.4.1 Dispersion Mechanism for the Gold Nanoparticles/Clay Nanoplatelet 46 4.4.2 Comparison of the Stabilization of AuNPs in Different Weight Ratio of Clay as Inorganic Stabilizer Agent 50 4.4.3 The Raman Shift of SERS Samples in AuNPs/Clay Hybrids 58 4.5 Summary 64 4.6 References 65 Chapter 5 Spherical Nanohybrids of Core-Shell Gold Nanoparticles-Silican Nanoplatelets@Poly(Vinyl Alcohol) by coaxial electrospinning technique as High-Efficiency SERS Substrates 70 5.1 Abstract 70 5.2 Introduction 70 5.3 Experiment section 73 5.3.1 Preparation of AuNPs /clay Nanocomposites hybrid suspensions 73 5.3.2 Fabrication of the AuNPs/Laponite@PVA Composite Nanofiber membrance by Co-Electrospinning Technique 73 5.4 Results and discussion 74 5.4.1 Fabrication and dispersion for the Gold Nanoparticles/Clay Nanoplatelet 74 5.4.2 Fabrication and Characterization of Core-Shell Structured Nanofibers with AuNPs Loaded Shell 77 5.4.3 Application of Gold Nanoparticles/Silicate@Poly(Vinyl Alcohol) membranes as SERS Substrates 85 5.5 Summary 92 5.6 References 93 Chapter 6 Controllable 3D Hot-Junctions of Silver Nanoparticles Stabilized by Amphiphilic Tri-block Copolymer/Graphene Oxide Hybrid Surfactants for Use as Surface-Enhanced Raman Scattering Substrates 97 6.1 Abstract 97 6.2 Introduction 98 6.3 Experiment section 100 6.3.1 Synthesis and characterization of triblock copolymer as a dispersant tri-Block Copolymer as a Dispersant 100 6.3.2 Preparation of immobilized AgNPs on copolymer/GO nanohybrid surfactants 100 6.3.3 Preparation of the SERS Samples 101 6.4 Results and Discussion 102 6.4.1 Dispersion Mechanism for the AgNPs/Copolymer/GO Nanohybrids. 102 6.4.2 Comparison of the Stabilization of AgNPs by Organic Copolymer Dispersants and Organic/Inorganic Copolymer/GO Hybrid Dispersants 104 6.4.3 3D Hot-Junctions in AgNPs/Copolymer/GO Hybrids 110 6.5 Summary 116 6.6 References 117 Chapter 7 Fabrication and Layer-by-Layer Self-Assembling of Gold Nanoparticles Stabilized by Organic/Inorganic Hybrid Dispersants for Large Area and Highly Sensitive SERS Detection 124 7.1 Abstract 124 7.2 Introduction 124 7.3 Experiment Section 127 7.3.1 Preparation of Immobilized AuNPs on Copolymer/Graphene oxide Composite Hybrids 127 7.3.2 Preparation of Large Area SERS Substrate 127 7.4 Results and Discussion 128 7.4.1 Dispersion Mechanism for the AgNPs/Copolymer/GO Nanohybrids. 128 7.4.2 Fabrication and Dispersion for the Gold Nanoparticles and Copolymer 131 7.4.3 Fabrication of the Gold anoparticles/Copolymer/Graphene oxide 133 7.4.4 The Raman Substrate with Large Area 141 7.5 Summary 145 7.6 Reference 146 Chapter 8 Conclusion 151 Appendix 153 8.1 Publication List 153 8.2 Award Record 155

    [2-1] C. V. Raman. A new radiation, Indian J. Phys. 2 (1928) 387–398.
    [2-2] M. Fleischmann, P.J. Hendra, A.J. McQuillian, Raman Spectra of Pyridine Adsorbed at a Silver Electrode, Chemical Physics Lett. 4 (1974) 163-166.
    [2-3] C.L. Haynes, R.P.V. Duyne. Plasmon-Sampled Surface Enhanced Raman Excitation Spectroscopy. J. Phys, Chem. B. 107 (2003) 7426-7433.
    [2-4] M. Litorja, C.L. Haynes, A.J. Haes, T.R. Jensen, R.P. V. Duyne. Surface-enhanced Raman scattering detected temperature programmed desorption: Optical properties, nanostructure, and stability of silver film over SiO2 nanosphere surfaces. J. Phys. Chem. B. 105 (2001) 6907-6915.
    [2-5] K.B. Mogensen, M. Gühlke, J. Kneipp, S. Kadkhodazadeh, J.B. Wagner, M.E. Palanco, H. Kneipp, K. Kneipp. Surface-Enhanced Raman Scattering on Aluminum Using Near Infrared and Visible Excitation. Chem. Commun. 50 (2014) 3744−3746.
    [2-6] N.A. Hatab, J.M Oran, M. J. Sepaniak. Surface-enhanced Raman spectroscopy substrates created via electron beam lithography and nanotransfer printing. ACS Nano. 2 (2008) 377-385.
    [2-7] J.W. Ager, M.D. Drory. Quantitative measurement of residual biaxial stress by Raman spectroscopy in diamond grown on a Ti alloy by chemical vapor deposition. Phys. Rev. B. 48 (1993) 2601-2607.
    [2-8] S. Matsui, T. Kaito, J. Fujita, M. Komuro, K. Kanda, Y. Haruyama. Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition. J. Vacu. Sci. Tech. B. 18 (2000) 3181-3184.
    [2-9] P. Zheng, Y. Guo. Surface-Enhanced Raman Scattering inside Metal Nanoshells. J. Am. Chem. Soc. 131 (2009) 3808-3809.
    [2-10] D.L. Jeanmaire, R. P.V. Duyune. Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Elec. Chem. Inter. Elec. 10 (1977) 1-20.
    [2-11] M.G. Albrecht, J.A. Creighton. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. 99 (1977) 5215-5217.
    [2-12] G. H. Chan, J. Zhao, E.M. Hicky, G.C. Schatz, R.P.V. Duyne. Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography. Nano Lett. 7 (2007) 1947-1952.
    [2-13] S. Zou, G.C. Schatz. Coupled Plasmonic Plasmon/Photonic Resonance Effects in SERS. Phys. Appl. 103 (2006) 67-85.
    [2-14] A. Otto. Surface-enhanced Raman scattering: “Classical” and “Chemical” origins. 54 (2005) 289-418.
    [2-15] M. Moskovits. Surface-enhanced spectroscopy. Rev. Modern Phys. 57 (1985).
    [2-16] H, Xu, J. Aizpurua, M. Kall, P. Apell. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering. Phys. Rev. E. 62 (2000) 4318-4324.
    [2-17] H.H. Wang, C.Y. Lin, S.B. Wu, N.W. Liu, C.Y. Peng, T.H. Chan, C.F. Hsu, J. K. Wang, Y.L. Wang. Highly Raman-Enhancing Substrates Based on Silver Nanoparticle Arrays with Tunable Sub-10 nm Gaps. Adv. Mater. 18 (2006) 491-495.
    [2-18] S.Y. Lee, S.H. Kim, M.P. Kim, H.C. Jeon, H. Kang, H.J. Kim, B.J. Kim, S.M. Yang. Freestanding and Arrayed Nanoporous Microcylinders for Highly Active 3D SERS Substrate, Chem. Mater. 25 (2013) 2421−2426.
    [2-19] M. Chirumamilla, A. Toma, A. Gopalakrishnaa, G. Das, R.P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F.D. Angelis, E.D. fabrizio. 3D Nanostar Dimers with a Sub-10-nm Gap for Single-/Few-Molecule Surface-Enhanced Raman Scattering. Adv. Mater. 26 (2014) 2353-2358.
    [2-20] J.R. Anema, J.F. Li, Z.L. Yang, B. Ren, Z.Q. Tian. Shell-isolated Nanoparticle-enhanced Raman Spectroscopy: Expanding the Versatility of Surface-enhanced Raman Scattering. Annu Rev. Anal. Chem., 4 (2011) 129-150.
    [2-21] E. Koglin, S. Jean-marie. Surface Enhanced Raman Scatteing of Biomolecules. Top. Curr. Chem. 134 (1986) 1-57.
    [2-22] J. Li, L. Chen, T. Lou, Y. Wang. Highly Sensitive SERS Detection of AS3+ Ions in Aqueous Media Using Glutathione Functionalized Silver Nanoparticles, ACS Appl. Mater. Inter. 3 (2011) 3936-3941.
    [2-23] N. Hoshyar, S. Gray, H. Han, G. Bao. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedi. 11 (2016) 673-692.
    [2-24] L.Y. Zheng, K.T. Lau, l.X. Zhao, Y.Q. Zhang, D. Hui. Mechanical and Thermal Properties of Nano-Al2O3/Nylon 6 Composites. Chem. Eng. Communications. 197 (2009).
    [2-25] J.j. Storhoff, A.A. Lazarides, R.C. Mucic, C.A. Mirkin, R.L. Letsinger, G.C. Schatz. What Controls the Optical Properties of DNA-Linked Gold Nanoparticle Assemblies? J. Am. Chem. Soc. 19 (2000) 4640-4650.
    [2-26] T. Mitsudome, K. Kaneda. Gold Nanoparticle Catalysts for Selective Hydrogenations. Green Chem. 10 (2013) 2636-2654.
    [2-27] M.A. Albrecht, C.W. Evans, C.L. Raston. Green chemistry and the health implications of nanoparticles. Green. Chem. 8 (2016) 417-432.
    [2-28] A. Nel, T. Xia, L. Mabler, N. Li. Toxic potential of materials at the nanolevel. Sci. 311 (2006) 622-627.
    [2-29] S. Fedrigo, W. Harbich, J. Buttet. Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys. Rev. B 47 (1993) 10706-10715.
    [2-30] W. J. Cho, Y. Kim, J.K. Kim. Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility. ACSNano 6 (2012) 249-255.
    [2-31] Z. Huang, Z. Li, R. Chen, G. Chen, D. Lin, G. Xi, Y. Chen, H. Lin, J. Lei. The application of Silver nanoparticle based SERS in diagnosing thyroid tissue. J. Phys. 277 (2011) 012014.
    [2-32] N.G. Bastus, J. Comenge, V. Puntes. Kinetically Controlled Seeded Growth Synthesis of Citrate-Stabilized Gold Nanoparticles of up to 200 nm: Size Focusing versus Ostwald Ripening. Langmuir 27 (2011) 11098–11105.
    [2-33] N.R. Jana, L. Gearheart, C.J. Murphy. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles. Langmuir. 17 (2001) 6782-6786.
    [2-34] I. Ojea-Jimenez, F.M. Romero, N.G. Bastus, V. Puntes. Small Gold Nanoparticles Synthesized with Sodium Citrate and Heavy Water: Insights into the Reaction Mechanism. J. Phys. Chem. C 114 (2010) 1800–1804.
    [2-35] S. Bandyopadhyay, J. Chanda. Monolayer of Monododecyl Diethylene Glycol Surfactants Adsorbed at the Air/Water Interface: A Molecular Dynamics Study. Langmuir 19 (2003) 10443-10448.
    [2-36] E. Bourgeat-Lami, N. Othman, A.M.D. Santos. Polymer–Clay Nanocomposite Particles and Soap-free Latexes Stabilized by Clay Platelets: State of the Art and Recent Advances. RCS Nanosci. Nanotech. (2010)
    [2-37] C.W. Chiu, T.K. Huang, Y.C. Wang, B.G. Alamani, J.J. Lin. Intercalation Strategies in Clay/Polymer Hybrids. Prog. Poly. Sci. 39 (2014) 443–485.
    [2-38] J.J. Lin, J.C. Wei, T.Y. Juang, W.C. Tsai. Preparation of Protein−Silicate Hybrids from Polyamine Intercalation of Layered Montmorillonite. Langmuir 23 (2007) 1995-1999.
    [2-39] Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nat Nano, 3 (2008) 270-274.
    [2-40] A.K. Geim, K. S. Novoselove. The rise of graphene, Nat Mater, 6 (2007) 183-191.
    [2-41] S. Dhawane, G.N. Halder, T. Kumar. Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel. Eng. Conve. Manag. 167 (2018) 176-202.
    [2-42] C. Lee, X. Wei, J. W. Kysar, J. Hone. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 321 (2008) 385.
    [2-43] S. Dusari, J. Barzola-Quiquia, P. Esquinazi, N. Garcia. Ballistic transport at room temperature in micrometer-size graphite flakes. Phys. Rev. B, 83 (2011) 125402.
    [2-44] C. Berger, Z. Song. Electronic confinement and coherence in patterned epitaxial graphene, Sci. 312 (2006) 1191-1196.
    [2-45] Y. Iyechika. Application of graphene to high-speed transistors: expectations and challenges, Science and Technology Trends-Quarterly Review, 37 (2010) 76-92.
    [2-46] A. Reina, X.T. Jia, J. Ho, D. Nezich, H.B. Son, V. Bulovic. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition, Nano Lett. 9 (2009) 30-35.
    [2-47] A.N. Obraztsov, E.A. Obraztsova, A.V. Tyurnina, A.A. Zolotukhin. Chemical vapor deposition of thin graphite films of nanometer thickness, Carbon, 45 (2007) 45, 2017-2021.
    [2-48] B. C. Brodie. Sur le poids atomique du graphite, Ann. Chim. Phys. 59 (1860) 466-472.
    [2-49] L. Staudenmaier. Verfahren zur Darstellung der graphitsaure, Berichte der deutschen chemisch Gesellschaft, 31 (1898) 1481-1487.
    [2-50] W.S. Hummers, R.E. Offeman. Preparation of Graphite Oxide, J. Amer. Chem. Soc. 80 (1958) 1339-1339.
    [2-51] L.M. Malard, M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus. Raman Spectroscopy in Graphene. Phys. Reports. 473 (2009) 51-87.
    [2-52] H.J. Park, J. Meyer, S. Roth, V. Skakalova. Growth and Properties of Few-Layer Graphene Prepared by Chemical Vapor Deposition. Carbon 48 (2010) 1088-1094.
    [2-53] W. Xu, N. Mao, J. Zhang. Graphene: A Platform for Surface-Enhanced Raman Spectroscopy. Small 9 (2013) 1206–1224.
    [2-54] D. Papadakis, A. Diamnatootulou, P. A. Pantazopoulous, D. Palles, E. Sakellis, N. Boukos. Nanographene oxide–TiO2 Photonic Films as Plasmon-Free Substrates for Surface-Enhanced Raman Scattering. Nanoscale (2019).
    [2-55] G. Taylor. Disintegration of Water Drops in an Electric Field. Process. R. Soc. London, Ser. A 280 (1964) 383-397.
    [2-56] J. H. Park, M.R. Karim, I.K. Kim, I. W. Cheong, J.W. Kim, D. G. Bae, J.W. Cho, J.H. Yeum. Electrospinning Fabrication and Characterization of Poly(vinyl alcohol)/Montmorillonite/Silver Hybrid Nanofibers for Antibacterial Applications. Colloid Polym. Sci. 288 (2010) 115–121.
    [2-57] Z. Zhang, Y. Wu, Z. Wang, X. Zou, Y. Zhao, L. Sun. Fabrication of Silver Nanoparticles Embedded into Polyvinyl Alcohol (Ag/PVA) Composite Nanofibrous Films Through Electrospinning for Antibacterial and Surface-Enhanced Raman Scattering (SERS) Activities. Mate. Sci. Eng. C 69 (2016) 462–469.
    [2-58] A. Khalil, B.S. Lalia, R. Hashaikeh, M. Khraisheh. Electrospun Metallic Nanowires: Synthesis, Characterization, and Applications. Polymer 49 (2008).
    [2-59] C. Demir, H. Ozaltin, Y. Celik. Determining the Level of Job Satisfaction of Nurses Working at Turkish Military Forces Hospitals. M.I. Med. 167 (2002) 402-405.
    [2-60] G.W. Buchko, G.W. Danghdrill, R. de Lorimier, B.K. Rao, N.G. Isern, J.M. Lingbeck, J.S. Taylor, M.S. Wold, M. Gochin, L.D. Spicer, D.F. Lowry, M.A. Kennedy. Cadmium mutagenicity and human nucleotide excision repair protein XPA. Carcinogenesis. 5 (2000) 1051-1057.
    [2-61] Y. Fong, J. Fortner, M.F. Brennan, L.H. Blumgart. Clinical Score for Predicting Recurrence after Hepatic Resection for Metastatic Colorectal Cancer: Analysis of 1001 Consecutive Cases. Ann. Surg. 230 (1999) 309-321.
    [2-62] S. Chen, X. Liu, J. Zhou, L. Zha. Fabrication and SERS Application of the Thermoresponsive Nanofibers with Monodisperse Au@Ag Bimetallic Nanorods Loaded Shells. A. Appl. Polym. Scl. (2017) 45375-45384.

    無法下載圖示 全文公開日期 2025/02/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE